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Abstract 
The development and evaluation of a nonlinear pitch controller for wind turbine blades and the design and 
modeling of an associated actuator and controller was examined. The pitch actuator and controller were modeled 
and analyzed using Pneumatically Actuated Muscles (PAMs) for actively pitching the wind turbine blade. PAMs 
are very light and have a high specific work and a good contraction ratio. Proportional Integral and Derivative 
(PID) controllers were envisaged for the wind turbine pitching system at the blade tip due to its routine usage in 
the wind turbine industry. Deployment of controllers enables effective pitch angle tracking for power abatement 
at various configurations. The controller was subjected to four pitch angle trajectory signals. PID controllers 
were tuned to achieve satisfactory performance when subjected to the test signal. Low pitch angle errors resulted 
in satisfactory blade pitch angle tracking. Deployment of these controllers enhances wind turbine performance 
and reliability. The data suggest that the pitch system and actuator that was modeled using PAMs and PID 
controllers is effective providing robust pitch angle trajectory tracking. The results suggest that the proposed 
design can be successfully integrated into the family of wind turbine blade pitch angle controller technologies. 
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1. Introduction 
1.1 Problem Introduction 

Wind turbines are primarily controlled by varying the pitch angle of the blade at their roots where the blades are 
attached to the hub of the rotor. Minute deviations in pitch angle due to wind variations can lead to significant 
fluctuations in turbine blade loads affecting rated turbine power output, stability, and turbine life. Actuations of 
pitch angle are inhibited by high blade inertia leading to slower control response time at high or fluctuating 
speeds. Power required for full length pitching for large blades are high thereby undermining power generation. 
Mechanisms for full length pitching are large, complex, and expensive requiring higher manufacturing and 
maintenance costs. 

1.2 Wind Turbine Blade Theory 

For a section of blade—see Figure 1, the lift force and moment (Singh & Yim, 2003; Fung, 2002; Hoogedoorn, 
Jacobs, & Beyene, 2010) are given in Equations (1) and (2). The lift force of any blade section results in a 
pressure difference between the upper and lower surface of the airfoil when the air flows past it. The pressure 
difference is caused due to the geometry and the camber of the airfoil which causes changing velocities at the top 
and bottom surface of the airfoil. The pressure difference when multiplied by the area of a section of the blade 
length produces the lift force of dL. 
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The Lagrange kinteic energy of the SePCaT is given as 

21

2s sT I θ= & 

The Lagrange potential energy of the SePCaT is given as 

2 4
,

1 1

2 4s NLV k kθ θθ θ= +  

The damping force is given as follows 

,( ( ))damping NLQ c c signθ θθ θ= − +& &  

Therefore the equation of motion of SePCaT is given as 

3
, ,( ( ))s NL NL aero controlI k k c c sign Q Qθ θ θ θθ θ θ θ θ+ + + + = +&& & &  

sI is the moment of inertia of SePCaT, cθ  and ,NLcθ are linear and non-linear damping terms,and, kθ and
,NLkθ

are linear and non-linear spring stifness terms. 
aeroQ is the change in aerodynamic moment and 

controlQ  is the 

controller moment applied. PAM actuator force is expressed in terms of the overall PAM actuator force F, 

Deflection δ, and PAM constant  

PAMk . Both PAMs are treated having same geometrical and dynamical properties. 

PAMF k δ=  

aeroQ  and 
controlQ are related as follows. Here 

PAMd  is the distance of the PAM line of action to the SePCaT 

pitching axis and δΔ  is the change in PAM displacement.  

2 PAM PAM aero controlk d Q QδΔ − =  

Thererfore Equation (10-11) becomes 

3
, ,( ( )) 2s NL NL PAM PAMI k k c c sign k dθ θ θ θθ θ θ θ θ δ+ + + + = Δ&& & &   

Finally, expressing Equation (12) as functions of θ , and contoller inputu and parameter b , 

                                  ( )f buθ θ= − +&&   

3
, ,( )

( ) NL NL

s s s s

c sign kc k
f

I I I I
θ θθ θθ θθ θθ θ= = + + +

&&
&&  

2 2
, ,PAM PAM PAM PAM

u
s s

k d k d
bu b u

I I

δ δ δΔ= = = Δ =  

2. Method 
2.1 Wind Turbine Blade Model 

The entire blade along with SePCaT was digitized using the 5MW National Renewable Energy Laboratory 
(NREL) (Jonkman, 2009) turbine specifications in three-dimension (3D) and analyzed using 3D computational 
fluid dynamics (CFD) routines.  

(6)

 (8)

(10)

(7)

(11)

(12)

(13)

(9)
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Figure 14. SePCaT response when PID is deployed. This response is for signal 2 

 

Figure 12 indicates satisfactory controller tracking response to signal 2, and Figure 13 indicates the resulting 
error. The response indicates satisfactory tracking. However, sharp changes experienced during large step 
changes generated large errors during the start of the wind turbine signal change at 20 and 30 seconds. Figure 14 
indicates satisfactory controller tracking response to signal 2. 

4. Conclusions 

This study focused on the development of an effective nonlinear pitch controller for wind turbine blades. The 
data suggest that the pitch system and actuator that was modeled using PAMs and PID controllers is effective in 
providing robust pitch angle trajectory tracking. The results suggest that the proposed design can be successfully 
integrated into the family of wind turbine blade pitch angle controller technologies. 
The design and analysis of the pitch angle actuator and controller system provides effective tracking at various 
pitch angle trajectory settings. The model response and results suggest that the pitch controller design is robust 
and reliable. Initially the PID controllers were tuned to achieve satisfactory performance when subjected to the 
test signal. Pitch errors range from 0.5 degrees to .14 degrees for given test signals and PID values were selected 
for satisfactory tracking. For the remaining signals, tuned PID values were deployed and exhibited robust 
trajectory tracking. The controller and actuator design includes PAMs for actively pitching the blade thereby 
keeping the system light and exhibiting strong actuator force.  
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