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This research study was conducted using a focuses on the High-Rise Pier 93 Building, located at in the Klong 4 
district of Thanyaburi, Phathumthani which show in (see Figure 1). This location is at the east side of Bangkok, 
and it is classified as one of the central districts. The region experiences a rainy season that can span from July to 
October of each year (Abhijit Date., 2012.), and with occasional rainfalls from November to December in some 
cities. Table 1 shows the distribution of rainfall amount expectations in across the year. 

 

Table 1. Thailand rainfall by district (mm) (Abhijit Date., 2012) 

Region July Aug. Sept. Oct. Nov. Dec. Total (1Y) 

North 130-210   190-280 210-280 100-140 20-40 <10 1226.3 

Northeast 210-320 200-300 240-330 100-140 15-30 <10 1395.6 

Central 110-190   130-210 260-340 160-200 30-50 <10 1229.7 

East 260-360 190-310 290-400 200-250 40-60 <10 1903.4 

Southern 90-160 100-170 110-170 230-280 330-380 210-260 2724.2 

 

1.2 Turbine Selection 

Turbines are differentiated according to their operational principles (Deepak Bisen,. 2014.), and can be classified 
as follows: (1) Reaction turbines, in which the rotor of the turbine is fully immersed in water and enclosed in 
pressure casing. The imposed pressure exacts a lifting force on the rotor causing the rotation of the runner. (2) 
Gravity turbines, which are driven by the weight of water entering the top of the turbine and falling to the bottom. 
(3) Impulse turbines, which are driven by high-speed water jets. These are widely used for micro- and 
pico-hydropower installations, because they have several advantages such as their simple design and greater 
tolerance of sand and other particles within the water (Hermod Brekke, 2011). Impulse turbines can be further 
classified into three main types: the Pelton, Turgo, and Crossflow turbines. Crossflow turbines have low running 
speeds, but require substantial speeds to drive the generator. The efficiency of crossflow turbines has been 
measured at around 80% under laboratory conditions, whereas the efficiency of the Turgo turbine has been 
reported to be close to 90% (S.J. Williamson., 2011.). 

The Turgo turbine is similar to the Pelton, but the jet strikes the plane of the runner at an angle (typically 15–25°) 
so that the water enters the runner on one side and exits on the other. Therefore, the flow rate is not limited by 
the discharged fluid interfering with the incoming jet (as is the case with Pelton turbines). As a consequence, 
Turgo turbines can have smaller diameter runners and rotate faster than Pelton turbines for an equivalent flow 
rate (A.H. Elbatran, 2015).  

The Turgo turbine is selected for the design installation because it is able to function normally under variable 
seasonal flows and is efficient for a range of heads (Bryan Patrick Ho-Yan., 2012). The machine is ideal for 
remote home-sites. In this study, the direct-drive generator is used because it is suitable for heads of 6–21 m.  

The pressurised water emerging from the end of the nozzle creates a force that impacts the cup of the Turgo 
turbine and drives the runner, which is connected to a runner shaft, to produce electrical power. The quantity of 
electricity is dependent on the head and flow rate: a steady flow from a given head will produce consistent 
electricity. The pressure or head is generated by the difference in elevation between the water storage and the 
turbine. The general classification of hydropower turbines can be stated in terms of capacity of each machine and 
the different ratings of hydro turbine classes (Kyle Gaiser., 2016.). 

This research study considered a Low Head Pico Hydro Turbine. The turbine type depends mainly on the 
characteristic head and flow situation available at the site. The hydrostatic pressure (Pg) created from the head is 
given by 

                                      =                                          (1) 

where ρ is the water density, g is acceleration due to gravity, and H is the head of water. The continuity 
equation can be derived from Bernoulli’s equation, assuming that the flow is steady and laminar and the 
fluid is incompressible. Assuming negligible viscosity, the Bernoulli equation is given by  

                                  + + =                                  (2) 

 



jsd.ccsenet.org Journal of Sustainable Development Vol. 11, No. 1; 2018 

114 
 

2. Materials and Methods 
The processes in this study are shown in Figure 2. And considers design conditions for the water head and water 
flow rate. The design proceeds according to theoretical calculations to determine the size of the turbine runner, 
the bucket space, and the amount of energy generated from the potential energy and water flow rate. The next 
step is to create a 3D study model for the simulation process using computational fluid dynamics (CFD). A 
prototype was built for testing, and the output was compared with the results from the theory and CFD. 

 

 

 

 

 

 

 

 

Figure 2. Process flowchart 

 

A reservoir was designed for the rooftop to collect and store rainwater which would be passed to the turbine 
machine. The Pier 93 building is shown in Figure 3 (a). The rooftop was initially designed as shown in Figure 
3(b). The rooftop was reconstructed and enlarged to collect up to 57.6 m3 of rainwater, as shown in Figure 3 (c). 
The storage area can collect 354.15 m3/year of rainwater. 

 

 

 

 

 

 

 

 

 

The quantitative theoretical analysis is as follows. 

The Pico Turgo turbine has four nozzles of 10 mm diameter. The rate of water is 0.0062 m3/s or 22.3 m3/h. The 
building is 21 m high. The annual volume of water collected on the roof is 354.15 m3.  

2.1 Runner Design & Parameterisation 

The hydraulic head  can be calculated at any location using the elevation , pressure , and velocity :  

                                 = + +                                      (3) 

where  is the density of the fluid and  is gravity. The mean velocity of the free jet from the nozzle is 
determined from the net head as:  

 = 2 ≈0.97 2                                (4) 

where φ is the efficiency of the nozzle (generally 0.97 − 0.98). The flow rate  for a jet diameter of  can be 
calculated using: 

                        =                                         (5) 

At optimum efficiency, the circumferential speed of the runner is connected with the jet velocity as:  

                                  ≈ (0.46 − 0.47)                                   (6) 

 

        

(a)                       (b)                  (c)  
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barometric pressure. In this input boundary process, the water stream from the nozzle is injected into the rotating 
region. A grid and mesh were created for the different parts of the study model. The mesh was determined by a 
grid-independent check using coarse, medium, and fine meshes to acquire the torque and rotation speed (rpm). 
CFD uses numerical methods to solve the governing equations describing the behaviour of fluids (Crewdson, E., 
1922).  

The governing equations of conservation: the continuity equation, the momentum equation, and the energy 
equation. The governing equations, including the Navier–Stokes equation, are presented in their most general 
form below. 

Continuity equation: 

                                    + ∇ ∙ ( ) = 0                                 (9) 

Momentum equation: 

Expressed as the Navier–Stokes equation: 

                ( ) + ( ∙ ∇ ) = −∇ + ∇ ∙ +                        (10) 

where the stress tensor  is related to the strain rate by 

                                = ∇ + (∇ ) − ∇                             (11) 

Energy equation: 

            ( ℎ ) − + ∇ ∙ ( ℎ ) = ∇ ∙ ( ∙ ) + ∙ +                   (12) 

where the total enthalpy ℎ  is related to the static enthalpy ℎ  by:  

                                ℎ = ℎ +                                  (14) 

 

Table 4. Turgo turbine boundary specifications  

Parameter name Units Parameter Value 

Inlet Total Pressure Bar 1–4 

Inlet Total Temperature K 320 

Angular Velocity rad/s Free spin 

Cup Number 

Nozzle Number 

 24 

4 

Viscosity Pa-s 0.001003 

Specific heat J/kg.K 4182 

 Working fluid  Water  

Density  kg/m3 998.2 

Emissivity   1 

 

The development of CFD methods to analyze complex phenomena such as multiphase, free-surface, highly 
turbulent flows for a large number of design variations in a reasonable timescale (Anagnostopoulos, J. H .,2011). 
Recent developments in CFD codes mean that simulations of this nature show good agreement with 
experimental data (Audrius Židonis., 2011), giving confidence in the reliability of the numerical results produced 
when simulating complex phenomena. The numerical results were validated by an experimental test (Audrius 
Židonis., 2012). The flow features of the Turgo turbine were also investigated. The components of the Turgo 
turbine were separated from the assembly model, namely the nozzle passage and runner passage. The boundary 
conditions of the Turgo turbine are presented in Table 4. 
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BOUNDARY FOR CFD SIMULATIONS 

Figure 6 shows the three major sections analysed in this study: the nozzle, bucket, and rotating region. The 
efficiency of the Turgo turbine can be affected by the bucket shape. However, an accurate technique for 
modelling the flow in a rotating Turgo runner is required for further improvements and design validations. 

 

 

 

 

 

 

 

Figure 6. Turgo turbine computational domain and boundary conditions 

 

Transient simulations were conducted involving the interaction of a rotating bucket or runner. The torque in 
Turgo turbines is periodic, as each bucket is subjected to the same loading by the jet when operated in steady 
conditions (H. K. Versteeg., 2007). Many researchers used the minimum number of buckets required to simulate 
the torque on a single bucket, and then constructed the torque on the complete runner using this periodicity. The 
most widely used turbulence models is k-ε models include additional separate equations for the turbulent kinetic 
energy (k) and turbulent dissipation rate (ε). 

2.3 Grid Independence Check 

CFD uses an Eulerian fluid flow field specification (Audrius Židonis., 2015). The domain is discretised using 
cell-vertex numerics (finite volume elements). These may be unstructured tetrahedral elements, which are used 
to capture the complex geometry of rotating domains and to allow automatic meshing for any future geometry 
modifications. 

 

 

 

 

 

 

 

Figure 7. Bucket grid dependency of Turgo turbine (a)Coarse mesh (b) Medium mesh (c) Fine mesh 

 

For the three mesh intensities, denoted as the “Coarse mesh”, “Medium mesh”, and “Fine mesh”, each 
component of the Turgo turbine (i.e. nozzle, runner, rotating region) was constructed and adjusted. Figure 7 
shows the grid refinement of a bucket, and Figure 8 shows the assembly model grid density of nozzles, buckets, 
and the rotating region of a Turgo turbine generated by a commercial CFD program. 

Periodic boundary conditions are applied to simulate the flow through a bucket. At the interface between the exit 
of the runner and the outlet of the nozzle domain, the convergence of the nozzle assembly and rotating region is 
depicted in Figure 9 and Table 5. The mixing plane is widely used because of its efficiency in simulating 
blade-row interactions in the steady state. Grids for the construction of the Turgo turbine component were 
generated, and appear to converge at around 3,500,000 cells, with the angular speed converging to 190 rpm. 

 

 

 

 

 

             

                           

(a)                       (b)                      (c)  
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torque sensor at point A and a rotation sensor at point B. The torque sensor was used to measure the torque 
obtained by the water jets from the nozzles impacting on the buckets. The rotation of the turbine shaft at point B 
determines whether the turbine shaft is being turned by this torque. The torque from the rotation is transmitted to 
the permanent magnet generator (PMG) shown in Figure 11(b). The water in the testing apparatus was circulated 
using a water motor and pump to create water pressure in the four 10-mm nozzles (see Figure 11(c)). Figure 11(d) 
shows water from the nozzles impacting the buckets. The power from the test water turbine was Pout=Tω, where 
T, ω are acquired from the water turbine. 

 

 

 

 

 

 

 

 

 

Figure 11. Pico Turgo turbine testing: (a) 3D testing buckets connected to PMG; 

(b) Pressure water circulation system; (c) water circulation system connected to the nozzles 

(d) Water from nozzles impacting the buckets 

 

3. Results 
Table 6 shows experimental data obtained with a 10-mm nozzle diameter, where the power of the water turbine 
is dependent on the flow rate and water head. The experimental data obtained three times testing for data 
validating.The results show that, at the lowest height of 5 m, the flow rate of 11.21 m3/h generates 101.39 W 
while the flow rate of 22.95 m3/h generates 950.18 W expectively.  

 

Table 6. Power from experimental tests 

Nozzle 

Dia. 

(mm) 

Head 

(m) 

Flow rate 

(m3/h) 

Test 

1 

(W) 

Test 

 2 

 (W) 

Test 

3 

(W) 

Power 

Ave. 

(W) 

 5  11.21 102.82 98.75 102.70 101.39 

 7  13.21 183.52 181.64 183.48 182.86 

 9  15.02 265.32 268.55 265.90 266.59 

10 11 16.61 360.24 362.57 357.85 360.22 

 

13  

15 

17 

19 

21 

 

18.05 

19.39 

20.64 

21.83 

22.95 

 

461.28 

572.64 

691.77 

816.33 

925.32 

464.39 

575.12 

693.53 

818.31 

949.82 

357.85 

573.07 

690.91 

818.52 

948.38 

462.80 

573.61 

692.07 

817.72 

950.18 

 

 

Table 7 shows data obtained with a 10-mm nozzle diameter, where the power of the water turbine is dependent 
on the flow rate and water head. The results show that, at the lowest height of 5 m, the flow rate of 11.21 m3/h 
generates 152.24 W in theory, 138.54 W using the CFD method, and 101.39 W in practical experiments. 

 

                   
(a)                   (b)               (c)               (d) 
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Table 7. Power from theoretical calculations, CFD simulations, and experimental tests 

Nozzle 

Dia. 

(mm) 

Head 

(m) 

Flow rate

(m3/h) 

Power 

Theory 

(W) 

Power 

CFD 

(W) 

Power 

Exp. 

(W) 

 5  11.21 152.24 138.54 101.39 

 7  13.21 252.19 229.49 182.86 

 9  15.02 367.66 334.57 266.59 

10 11 16.61 496.78 452.07 360.22 

 

13  

15 

17 

19 

21 

18.05 

19.39 

20.64 

21.83 

22.95 

638.25 

791.07 

954.45 

1127.74 

1310.41 

580.81 

719.87 

868.55 

1026.24 

1192.47 

462.80 

573.61 

692.07 

817.72 

950.18 

 

At the highest head of 21 m, the flow rate of 22.95 m3/h generates 1310.41 W in theory, 1192.47 W using the 
CFD method, and 950.18 W in actual testing.  

The CFD simulation produces two main results, namely the rotation of the runner (ω) and the torque (T) of the 
turbine. Hence, the power (P) can be calculated using the formula P=Tω. In addition, the CFD simulation results 
depict the streamlines, water velocity, and water velocity distribution on the bucket. The CFD simulations were 
validated by the actual test results, which show a 6.7% difference in power. This verifies that the proposed 
concept and method are feasible, and that CFD simulations can be used to assist the design. 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of power output between theoretical, CFD, and experimental results 

Figure 12 compares the power output given by the theoretical calculations, CFD, and experiments. There is a 
20.31% difference between CFD and the test results, whereas the theoretical and CFD method differ by 8.3%. 

 

 

 

 

 

 

 

 

 

Figure 13. Rotation of runner and water head 
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Figure 13 shows the relationship between the rotation of the runner and the water head. The turbine operates at 
approximately 200–420 rpm. The theoretical, CFD, and test results are 206.86 rpm, 202.48 rpm, and 195.53 rpm, 
respectively.  

The power obtained in the experiment and an annual rainwater collection is 350 m3 indicate that 950.18W x 
15.87h=15.08 kWh/year can be generated.  

In addition, the Pier 93 building has 79 rooms. The electricity that could be generated if the wastewater from 
each apartment was channelled to the turbine, assuming that each apartment had a storage facility of around 150 
L, is listed in Table 7 for various water head heights. 

 

Table 7. Power from wastewater 

Head 

(m) 

Floor  Volume 

(m3/year) 

Power 

(kWh/day) 

Power 

(kWh/year) 

6 3 711.75 0.0231 8.42 

9  4 711.75 0.0424 15.47 

12  5 711.75 0.0652 23.82 

15 6 711.75 0.0912 33.29 

18 

 

 

7 

    

711.75 0.1198 

 

Total 

43.76 

 

124.76 

 

3.1 Flow Modelling 

The liquid flow in the rotating runner of an impulse turbine is complex and unsteady.  

Figure 14 shows streamlines of water jets discharged from the 10 mm nozzles. 

 

 

 

 

 

 

Figure 14. Streamline of water flow in a bucket 

 

The particle flows out of the bucket, as shown in Figures 15 and 16. Particles that pass by the reference blade or 
impinge on the next blade are not counted. 

 

 

 

 

 

 

 

 

Figure 15. Velocity contours on Turgo water turbines (a) Flow velocity (b) Vector velocity 

 

 

   

            

(a)                           (b) 
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experimental test. The results show that pico Turgo turbines are suitable for hydropower applications in high-rise 
buildings. 

The buckets for pico Turgo turbines were designed by applying hydrodynamic theory. This research project 
developed a low-head turbine that can convert rainfall or wastewater into electric power in high-rise buildings, 
thus reducing their grid dependence. We considered annual rainwater input to a rooftop storage facility of 354.15 
m3 and a building height of 21 m. At a constant discharge rate of 22.95 m3/h, the theoretical calculations indicate 
that a pico Turgo turbine could generate 1,310.41 W of electricity. The use of CFD to simulate the same flow 
design gave a result of 1,192.47 W, and an experiment using a prototype design generated 950.18 W. The 
efficiency of the pico Turgo turbine in the CFD simulation is 79.21%, whereas that in the experiment is 72.51%. 
The lower value of the test result is due to losses in the design system, such as head loss and friction loss. 

The CFD simulation results give two main results: by determining the rotation of the runner (ω) and the torque 
(T) of the turbine, we can compute the power of the turbine (P=Tω). In addition, the CFD simulations give 
streamlines, the water velocity, and the velocity distribution on the buckets. 

The CFD simulations were validated by actual testing that shows a 6.7% difference in power results. This design 
concept and method is feasible, and the use of CFD simulations is less costly than conventional design processes. 

Recommendations 
The ability to use wastewater from each apartment in the building should be further investigated. This water 
could be collected, stored, and eventually passed down to the sewage through the same pipe as for the pico Turgo 
turbine. The results of this research show that this will add to the increased running time of the machine, thereby 
generating more electricity.  

To optimise the running speed, numerous tests should be conducted using various angles of attack and numbers 
of cups. This study has only investigated one particular angle. Although a qualitative result was obtained, there 
are numerous possibilities for optimising the angle of attack of the nozzle to the runner. 
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