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Abstract 

Peru is an interesting emerging market with a stable development and economic growth during the last years. 
This growth also brings new challenges for sustainable development. The rising energy demand and the 
increasingly high volumes of waste need sustainable solutions. Thus far, Peru has a big unused potential in the 
production of bioenergy, especially a big amount of unused biomass. With the construction of a small Flash 
Pyrolysis Reactor at the Pontificia Universidad Católica del Perú (PUCP), the research of the potential of 
different biomass feedstock for pyrolysis process has started. The first results and an overview of the current 
situation in Peru are presented in this paper. 
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1. Introduction 

Peru is a megadiverse country in a constant economic growth that urgently demands careful sustainable 
development to protect and preserve its natural wealth. The territory is located in tropical and subtropical areas 
in South America. It would draw the conclusion that the climate should be warm and humid but, due to the 
presence of the Andes and a complex system of ocean currents and movements of air masses (South Pacific 
Anticyclone), a rich variety of climates is generated. Therefore, connected to its geological and ecological 
features, Peru becomes a megadiverse country. 

According to Pulgar Vidal (1940), Peru has eight different natural regions (Chala, Yunga, Quechua, Suni, Puna, 
Janca, Rupa Rupa and Omagua) and one maritime region (Mar Peruano). However, the land could be broadly 
divided into three main regions: an arid desert region (Costa), mountains (Sierra) and a tropical forest (Selva) 
into which those, proposed by Pulgar Vidal, can be included. On the other hand, 84 different life zones, 
according to Holdridge, can be found in Peru, the country with the largest amount (Figure 1) in the world. Only 
in the Peruvian Amazon exists around 1700 varieties of birds as well as many species of mammals, fish and 
insects, being part of a great variety of unique fauna. Moreover, the Peruvian flora has the greatest variety of 
domesticated plants in the world; for example, there are over one thousand varieties of potatoes. National 
reserves in Peru are the richest sources of natural resources in the world (MINAM, 2013). 

The area dedicated to agriculture is roughly 24% of the total land, and the forests cover 70% of the national 
territory, including the tropical rainforest (Khwaja, 2010). The economy of this developing country grew 6.92% 
in the year 2011 thanks to the mining sector as the most important income (Indexmundi, 2012). Around 91.5% of 
the Peruvians living in urban areas have access to public water systems compared to only 52.3% in rural areas. It 
is also a fact that not more than 72.5% of rural households have electric lighting in comparison to 98.8% of 
urban ones. Another alarming figure shows that 34.7% of the population suffers from calorie deficit (23.9% in 
Lima and up to 48.9% in rural areas), and 13.9% of the children under 5 years old suffers from chronic 
malnutrition. These numbers show that Peru has a state of food insecurity and, for this reason, it must be avoided 
that food production is affected by the bioenergy industry. It is important to emphasize that the lack of food and 
the rise of food prices are not only related to competition by liquid biofuels, these are also associated with low 
levels of income, inadequate use of food and other multiple factors (INEI, 2012). On October 2012, 167 social 
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 erosion, 

 land use change, 

 increased water demand, 

 increased food prices, and 

 others. 

Some projects in renewable energy field have been developed in the country, such as the use of sugar cane for 
the production of ethanol. Peru counts on 12 refineries with potential production capacity of 64 million liters per 
year. The high water demand of sugar cane and the water constraints in some regions of Peru raise the question 
whether it is more important to grow agrobiofuels instead of prioritizing crops for food production. For biodiesel 
production, oil palm (Elaeis guineensis) and jatropha (Jathropa curcas) are potential feedstock with some 
projects using jatropha at experimental stage to date. On the other hand, there is an installed area of more than 44 
882 ha for oil palm, 38% of the total area in production, 34% in growth and the rest in nurseries (Khwaja, 2010). 

Life cycle analyses of biofuel production in the Peruvian Amazon show that not all production ways make 
environmental sense. Nowadays, the fact that biofuel production is ecological or not in Peru strongly depends on 
the previous land use where the energy crops are planted. The most pessimistic scenarios are those where 
primary forests are destroyed to get farmland for energy crops (SVN, 2009). It can be shown from the carbon 
debt calculated for eight different scenarios. Oil palm and jatropha crops have positive environmental impacts on 
degraded forest land with values of - 8.1 and - 9.5 t CO2eq / ha, while biofuel production, in primary forests, 
incurs debts (the amount of years necessary using biodiesel in order to compensate for the carbon emissions 
caused by the land use change to produce biodiesel) of 40 and 140 years for oil palm and jatropha (SVN, 2009). 

The most commonly bioenergy used in Peru is solid biofuel, as dung, firewood and charcoal, 10 - 12% of total 
energy consumption is based on solid biomass. For the generation of electric power, the most important 
bioenergy resource is biogas generated by the anaerobic decomposition of plant and animal waste. Used residues 
include bagasse, rice husk, forestry waste, grain chaff, and remains from the poultry, beef cattle and pig farming. 
From January 2012 to September 2012, 114.9 GWh of electricity were produced by biogas, nearly twice 
compared to the production in the same period in the 2011 (OSINERGMIN, 2012). 

The total offer of available biomass in Peru for the production of energy is 272 million metric tons according to 
WISDOM (Woodfuels Intergrated Supply/Demand Overview Mapping) analysis carried out by FAO (Felix & 
Rosell, 2010). This number includes 16 million tons of organic waste yearly available from agricultural and 
forest industries. The remaining 256 million tons represent the potential of woody biomass from the natural 
forests in Peru. The tropical forest zone has the biggest amount of available forest biomass, while the arid coastal 
region and the south of the Sierra have only a short supply of biomass. This heterogeneous distribution of 
resources is the result of geographical and climate variations that characterize the Peruvian territory. However, 
WISDOW analysis shows that many regions of the country have significant volumes of biomass that could 
potentially be used to provide local energy. For instance, the woody biomass and forest industry residues could 
be not only used for direct or indirect generation of local energy, but also transported over long distances as 
briquettes, coal, gas, etc. (Felix & Rosell, 2010). The production potential data for renewable energies, energy 
efficiency and co-generation in Peru, expressed in tons of oil equivalent (Toe), is shown in Table 1. 

 

Table 1. Potential production for renewable energy, energy efficiency and co-generation in Peru (i.e., any 
authoritative assessments) (ECLAC-UN & GTZ, 2004) 

Source Production Potential 

Hydroenergy 2 852 000 Toe/year 

Fuel wood 66 000 000 Toe/year 

Agricultural waste 530 000 Toe/year 

Livestock waste 150 000 Toe/year 

Agroindustrial waste 395 000 Toe/year 

Urban waste 236 000 Toe/year 

Wind power 450-5.000 kWh/m2/ year 

Solar energy 4-5 kWh/m2 
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Table 3. Overview of fast pyrolysis reactor features for bio-oil production (Pyne, 2012) 

Property Status1 

Bio-oil 

yield 

[wt%, dry 

biomass] 

Complexity
Feed size 

specification

Inert gas 

requirements

Specific  

reactor size 
Scale up 

Gas 

quality

Fluid bed Commercial 75  Medium High High Medium Easy Low 

CFB & Transported 

bed 
Commercial 75  High High High Medium Easy Low 

Rotating cone Demonstration 70  High High Low Low Medium High 

Entrained flow Laboratory 60  Medium High High Medium Easy Low 

Ablative Laboratory 75  High Low Low Low Difficult High 

Screw or Auger Pilot 60  Medium Medium Low Low Medium High 

Vacuum None 60  High Low Low High Difficult Medium

Notes: 1) commercial (2 t/h - 20 t/h); demonstration (200-2000 kg/h); pilot (20-200 kg/h); laboratory (1-20 kg/h). 
2) Colors: green = favorable feature; purple = moderate feature; blue = unfavorable feature. 

 

3. Flash Pyrolysis 

Fast or flash pyrolysis occurs in a period of few seconds or less. Therefore, chemical reaction kinetics, heat and 
mass transfer processes as well as phase transition phenomena play important roles. The critical issue is to bring 
the reacting biomass particle to the optimum process temperature and minimize its exposure to the intermediate 
(lower) temperatures that favor formation of charcoal. It is possible to reach this goal by using small particles, 
for example, in the fluidized bed processes. Another way is to transfer heat very fast only to the particle surface 
that contacts the heat source, which is applied in ablative processes (Bridgewater, 2001).  

In fast pyrolysis, the biomass decomposes to generate mostly vapors, aerosols and some charcoal. After cooling 
and condensation, a dark brown liquid is formed and its heating value is around half of that of conventional fuel 
oil. While it is related to the traditional pyrolysis processes in charcoal making, fast pyrolysis is an advanced 
process with carefully controlled parameters to give high yields of liquid products (Bridgwater, 2008). 

The main product bio-oil is obtained in yields up to 75% wt on dry feed basis, (in the most developed processes) 
along with by-products such as charcoal and gas. Bio-oil is a liquid mixture of oxygenated compounds 
containing various functional chemical groups, such as carbonyl, carboxyl and phenolic components. The two 
by-products (gas and biochar) can be used to provide the process heat requirements, thus there are finally no 
other waste streams left than flue gas and ash (Pyne, 2012). 

Based on the fact that there is a lot of unused potential biomass and a lack of appropriate local technology in 
Peru, a bench-scale Flash Pyrolysis Reactor was constructed at the Pontificia Universidad Católica del Perú 
(PUCP) to carry out first experiments with different feedstock. One of the goals was to use only materials and 
instruments available in Peru; therefore, nothing has to be imported. 

For the first experiments, coffee ground was used. Peru is not only exporting special kinds of coffee all over the 
world but also the consumption within the country is rising. In general, coffee is the most widely traded tropical 
agricultural commodity in the world mainly used for beverages, with a production of 93.4 144 million bags (i.e. 
4 750 000 in Peru) in the year 2012 (one bag weights 60 kilograms). Depending on coffee varieties, the oil 
amount varies from 11 to 20 wt% (ICO, 2012). With the increase of the coffee consumption, the volume of 
coffee ground is also growing. Normally, coffee ground is put into the household waste that goes mainly to 
landfills. In some cases, this feedstock is used as compost or deodorizer, but a big amount is unused and can be 
turned into renewable energy (Jin et al., 2012). 

4. Results 

After planning the small bench-scale reactor, the parts were constructed and assembled in one laboratory at 
PUCP. The reactor has a fluidized bed and can operate between 450 and 600°C. Specifications of the reactor are 
presented in Table 4. 
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Peru is a gifted land with a lot of potential to grow. Society and authorities not only should think in profit but 
also in sustainable development to protect its natural treasures and to provide social justice. 
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