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Abstract 

Africa suffers from the following serious problems: (i) the distribution of desertification vulnerability suggests 
that every country is prone to environmental desertification, and desertification processes currently affect about 
46% of the total land area; (ii) the Basel Convention is an international agreement that regulates cross-border 
shipments of toxic waste, but this tight regulation for prohibiting export of end-of-life electronic devices 
(so-called e-waste) to the third world has resulted in an increase in illegal transport to Africa. The present 
research is intended to conduct a technical pre-feasibility study in order to tackle the above-mentioned problems. 
About 80% of e-waste comes from television sets and computers, and cathode ray tubes (CRTs) correspond to 
about 2/3 of the total weight ‒ the neck and funnel parts of CRTs contain toxic materials. The manufacture of 
foam glasses is considered as safe CRT treatment. The control of soil water is significant to cultivate plants the 
desert, and the waste-based foam particles can improve water retention in arid soils; i.e. a key proposal is the 
production of soil amendment from CRT glass. The water-use efficiencies of this amendment’s layer are higher 
than those of the control. Furthermore, leaching fractions of heavy metals from the produced foam glass 
amendment are lower than the statutory limits.  

Keywords: Africa, Basel Convention, desertification, e-waste, land degradation 

1. Introduction 

Africa is endowed with enough land to undertake actions to improve household quality, country progress, 
domestic and international trade, etc. There are, however, some threats and challenges (UNEP, 2008): 
desertification is considered as a serious problem - about one billion habitants suffer from this desertification, 
and the situation is growing worse in Sub-Saharan Africa (SSA) in particular.   

The word “e-waste” is roughly used to electronic apparatus which is almost or at the end of its life. A global 
amount of this waste is annually estimated at about 50 million tons (Widmer et al., 2005). The Basel Action 
Network (2005) reports that the e-waste amount has been growing considerably in developed nations in 
particular, and some African countries have become dumping grounds for the world’s e-waste - e.g. the UNEP 
(2009) estimates that the South African e-waste amount of end-of-life computers will increase by at least 200 % 
from 2007 levels in the near future. If action is not taken to appropriately treat materials, such nations have vast 
amounts of dangerous e-waste with severe environmental problems (UNEP, 2009).       

Conducting a pre-feasibility study is one of the key activities within the project initiation phase. As the present 
paper intends to logically combine two solutions (desertification and e-waste in Africa), it mainly aims to justify 
this combination in terms of technical feasibility. Basic information about desertification and e-waste is reviewed 
first, followed by a description of the principal discussion. 

2. Desertification 

Based on data published by Reich et al. (2001), desertification means that soil in arid, semi-arid, and dry 
sub-humid lands is degraded by some aspects such as climatic change and anthropogenic causes. A 
desertification phenomenon damages about 46% in African land.  
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2.1 Drivers of Land Degradation 

Land degradation reduces or destroys soil productivity, vegetation, arable and grazing land, as well as forest. In 
the most extreme cases, hunger and poverty set in and become both the cause and consequence of further 
degradation (UNCCD, 2011). Drivers of land degradation can be classified as (review in Mainguest, 2001): (i) 
natural, which means climatic change, reduction in rainfall, and increase in the frequency of drought, but also 
excessive rainfalls with destructive floods; and (ii) anthropogenic, which includes socioeconomic aspects with 
unavoidable feedback that desertify land by reducing its productive potential, leading to much more demand and 
further destruction of land. 

High, sustained temperatures lasting for months with infrequent and irregular rainfall lead to drought and 
difficult growing conditions for plants and trees. As a result, severe hydrological imbalances jeopardize natural 
production systems (UNCCD, 2011). In countries where major economic resources are dependent on agricultural 
activities, there are few alternative sources of income, or none at all. Soil is damaged by excessive use when 
farmers neglect or shorten fallow periods, which are necessary to allow the soil to recover sufficiently to produce 
enough food to feed the population.  

2.2 Countering Desertification 

The desertification factors are associated with soil acidity, non-permeable soil layers, water logging, tendency to 
keep salts or some attributes (see Table 1). It is considered that the soil quality is an original land property or due 
to human-caused degradation in Africa (Oldeman et al., 1991).   

Conventional techniques have been experimented in terms of diminishing the desert area and recover the 
degraded land, but the applied measures mainly deal with sand movement (cf. Sugiyama, 1984). It is now known 
that there are some techniques to manage and combat desertification - landscaping modification to reduce 
evaporation and erosion, regeneration of salty or degenerated soils, flood control, prevention of overgrazing and 
firewood use, etc.  

Desert greening is usually related with a water utility. If enough water for irrigation is available, any desert can 
be basically greened. However, the water issue is put on a wide range of subjects such as impeded drainage, 
seasonal moisture stress, etc. In this paper, attention is mainly focused on the water-holding capacity of soils. 
The soils with low water-holding capacity occupy about 20% (5.3 million km2) of the land area in Africa, and 
this rate is recognized as the inherent quality of African land (see Table 1). 

 

Table 1.Typical land stresses and inherent land quality in Africa (after Reich et al., 2001).  

Land stress Inherent quality of land 

Stress type Area (1,000 km2) Area (1,000 km2) Land occupation (%) 

High soil temperature 

Impeded drainage 

Nutrient leaching 

Low water holding 

Shallow soil 

Moisture stress 

910 

520 

110 

2219 

1016 

13551 

1319 

898 

5932 

5309 

1394 

13551 

4.5 

3.1 

20.2 

18.1 

4.8 

46.2 

 

3. Electronic Waste 

The disposal amount of electronic devices, such as personal computers (PCs), mobile phones and so on is 
globally increasing (Widmer et al., 2005). It is reported that old-fashioned PCs increased from 20 million in 
1994 to 100 million in 2004 (Widmer et al., 2005). The cumulative amount of disposal PCs corresponds to 
2,873,000 tons plastics, 719,000 tons Pb, 1,364 tons Cd and 287 tons Hg (Puckett & Smith, 2002). This disposal 
tendency indicates that the PC business is not saturated and its life span is considerably diminishing: i.e. from 5 
years in 1997 to 2 years in 2005 (Culver, 2013).  

3.1 Transboundary Trade and Basel Convention 

The transboundary movement of electronic waste is restricted by the Basel Convention because such waste it is 
considered to be dangerous according List A of Annex VIII of the Convention. It is hard to answer to a question 
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4.3 Application of Foam Glass to Soil Amendment 

Foam particles generally absorb water, and this absorption has a high capacity of water retention in (Andersen, 
2013). Thus, there a possibility that the foam particles reduce the amount of water demand in irrigation. 
Furthermore, the foam particles discharge water to the plant roots as the surrounding soil moisture drops (cf. 
Hara et al., 2003). Heated to the softening temperature, this inorganic material will not be decomposed soil 
microbes, but it will act as a substrate for them (Ramsey & Ungerleider, 2007). Inorganic amendments such as 
porous material offer some benefits for improving sand-based root zones (Habeck & Christians, 2000); that is, 
they are less prone to compaction than organic materials and have higher cation exchange and water holding 
capacities without reducing non-capillary pore space (air-filled porosity). They are essentially permanent 
additions to the root zones, demonstrating very little break down over time (Habeck & Christians, 2000). 

4.4 Field Test of Amendment Produced From Waste Glass 

As stated in section 4.3, foam glass can be prepared from end-of-life glass through reaction with a reducing 
agent at a high temperature. The waste-based foam glass for soil amending has been commercialized - Porous α, 
Nextone α and so on (cf. Yamane & Takeuchi, 2009). A field test using such foam glass is presented according 
to published data (Ahmed & Inoue, 2009). The tested soil contains 95 wt% sand, 1.2 wt% silt and 3.8 wt% clay. 
This soil shows water holding capacity of 0.06 cm3 cm-3, wilting point of 0.028 cm3 cm-3 and field capacity of 
0.09 cm3 cm-3. The characteristics of the materials applied in this field test can be seen from Table 2. 

 

Table 2. Characteristics of the materials applied in the field test (after Ahmed & Inoue, 2009). 

Parameter 
Value 

Soil Waste-based vitreous amendment 

Electrical conductivity, dS m-1 

pH 

Exchangeable K+, cmol kg-1 

Exchangeable Ca2+, cmol kg-1 

Exchangeable Mg2+, cmol kg-1 

Exchangeable Na+, cmol kg-1 

Cation exchange capacity, cmol kg-1

Bulk density, g cm-3 

Hydraulic conductivity, cm s-1 

0.012 

6.7 

3.3 

3.4 

0.17 

0.14 

0.40 

1.57 

0.052 

8.36 

10.3 

3.24 

31.7 

0.37 

0.15 

2.51 

1.1 to 1.3 

0.002 

 

The test field consists of two amendment layers of 2 cm and 5 cm thickness in the soil and one control without 
amendment. Swiss chard was sown in this field in April, and a compound NPK fertilizer 8-8-8 was applied each 
10 days. A drip system was used to irrigate this filed: 40 cm of emitter distance and 2 ℓ h-1 of discharge rate with 
0.1 MPa. Water irrigation started 14 days after seeding, and it continued until the harvest time in July.  

The term of water use efficiency means a level of fresh yield per unit of water used up in the crop growth, and 
this efficiency is often considered an important determinant of yield under stress and even as a component of 
crop resistance (Stiles & Cocking, 1969). The efficiencies obtained from the field test are summarized in Table 
3. 

 

Table 3. Irrigation, crop yield and water-use efficiency in the test field (after Ahmed & Inoue, 2009). 

 Water input, 
mm 

Yield, ton ha-1 on a 
fresh weight basis

Water-use efficiency, g ℓ-1 
on a fresh weight basis 

Control 

Amendment layer of 2 cm 

Amendment layer of 5 cm 

440 

369 

369 

4.15 

12.09 

11.05 

1.07 

4.91 

4.49 
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reducing agent to evaluate the technical feasibility (Nakamoto & Yamamoto, 2010): a sample of CRT glass 
containing 19.1 wt% PbO was mixed with CaO as the auxiliary agent, and this mixture was melted and reduced 
to Pb in an iron crucible at 1,350 °C. The PbO content of 0.4 wt% was measured in the glass phase; to put it 
differently, the PbO contained in CRT glass can be recovered as metallic lead at a high efficiency. However, this 
recovery should be more technically sophisticated, and a pilot-scale test is also required to assess its feasibility 
and cost performance on an industrial scale. 

6. Conclusions 

Although the Basel Convention regulates cross-border shipments of toxic waste (cf. section 3.1), it is reported 
that embargoing e-waste trade to third nations is an idealistic attempt resulting in illegal transport (review in 
Mueller et al., 2012). In any case, it is important to obey this convention protecting human health and the 
environment from toxic waste. One problem remains in how to solve the vast amount of e-waste already 
exported and accumulated. The other problem is the desertification that currently affects African land in 
particular (section 2). The study presented in this paper aimed at discussing the combination of e-waste 
management with desert greening in Africa, and this combination is concluded to be feasible.  
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