Identification, Mapping and Ethnobotany of Plant Species in the Peruvian High Andean Wetlands: Stimulating Biodiversity Conservation Efforts towards Sustainability

José Mostacero León¹, Helmut Yabar², Eloy López Medina¹, William Zelada Estraver¹, Jordán De La Cruz Castillo¹ & Armando Efraín Gil Rivero¹

¹ Faculty of Biological Sciences, National University of Trujillo, Jr. San Martin 392, Trujillo 13007, Peru

² Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8587, Japan

Correspondence: Helmut Yabar, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8587, Japan. Tel: 81-298-534-269. E-mail: yabar.mostacero.h.ke@u.tsukuba.ac.jp

Received: December 1, 2020	Accepted: February 10, 2021	Online Published: February 19, 2021
doi:10.5539/jsd.v14n2p66	URL: https://doi.org/10).5539/jsd.v14n2p66

Abstract

The high Andean wetlands of Peru provide not only the well-known ecosystem services such as water storage, flood mitigation, erosion control, and purification of water, but are also a source of income for local economies (as fodder), have medicinal properties, are a source of food, contribute to the development of ecotourism among many other uses. Economic and population growth have already damaged many parts of the high Andean wetlands including their rich flora. In order to promote the conservation of its diversity and unique flora, this study conducted extensive botanical explorations to identify and map the floristic composition of the high Andean wetlands of La Libertad, Peru, as well as their influence on local communities. The authors conducted explorations taking taxonomic, biogeographic and ethno biological data of the flora species as well as their therapeutic and economic botany. The study identified 64 species of flora distributed in 46 genera and 27 families including Asteraceae (with 8 species), Juncaceae (with 7 species), Poaceae (with 6 species), Cyperaceae (with 5 species), Licopodiaceae and Rosaceae (with 4 species each), Apiaceae, Gentianaceae, Orobanchaceae and Sphagnaceae (with 3 species each) and Poligonaceae (with 2 species). With reference to economic botany, it was found that 32.8% of species constitute resources with a very good economic benefit. The study concludes that it is imperative to take actions to protect the high Andean wetlands as they are ecosystems with great biodiversity. This study contribution expects to raise concerns regarding the increasing impact of economic and population growth on the loss of not only natural habitats but species as well. Conservation efforts will help protect the heritage of the Andes wetlands for future generations.

Keywords: plant diversity, flora, ecosystem, high Andean wetlands, Peru

1. Introduction

Peru is among the countries that hosts the greatest biodiversity on earth accounting for the world's 10% species of flora (World Bank, 2014). The country has a variety of ecosystems with great importance both from the biological and social point of view. These ecosystems are the source of sustenance for the population and industry that have gradually increased their impact on natural resources and often in a disorganized and unplanned way (Kahn *et al*, 1993; Mostacero *et al.*, 2007).

A wetland is an ecosystem flooded by water either seasonally or permanently (Keddy, 2010). A wetland is a zone generally flat or with a moderate slope, in which the surface is permanently or intermittently flooded, giving rise to a hybrid ecosystem aquatic and terrestrial, as occurs in the high Andean areas of Peru (Squeo *et al.*, 2006; Ramsar, 2010). The benefits of wetlands can be grouped into seven basic categories: water importance; source of resources and energy; sediment retention and protection; transportation; recreation; ecotourism; and ecological importance (Tabilo, 1999). Regarding water importance, wetlands act as natural liquid retention, regulating their flow and avoiding floods. Wetlands also provide food and medicine to human populations (Tabilo, 1999; Mostacero *et al.*, 2011).

Due to the different types of vegetation that are usually found, wetlands contribute to the removal of nutrients by encouraging sedimentation. On the other hand, they show a recognized importance in the protection of the coastline, avoiding the erosion of estuaries and rivers. From a social and cultural point of view, wetlands are an excellent resource for recreation and tourism, due to their extraordinary landscape importance and their wide biodiversity (Dugan, 1992; Tabilo, 1999). From the ecological point of view, wetlands serve as a refuge for animals that use their environments to reproduce or feed (Kahn *et al.*, 1993; Arana, 1998; Tabilo, 1999; Mostacero *et al.*, 2007).

In Peru there are 16 coastal wetlands of which only four are protected within any of the categories of the National System of Protected Natural Areas (Valdivieso et al, 2016). These wetlands are located in the southern and central region of the country. The High Andean wetlands are located in the high plateaus of Ecuador, Peru, Bolivia, Argentina and Chile. While there are some conservation efforts in the region, these are limited to migratory species and wild animals (Rosetti and Stiles, 2012). In Peru there is yet to be a high Andean conservation area, despite the fact that this zone has a significant outcrop of biological richness (Arana, 1998; Kahn *et al.*, 1993).

While the conservation of these wetlands is of great importance, the government has not given special attention to this issue. Some studies have addressed the importance of Peruvian wetlands in general. ProNaturaleza (2010) made a historic analysis of coastal wetlands in Peru and highlighted their importance and identified the main causes of their degradation including population growth, expansion of agricultural land and desertification. Ubilluz et al (2011) made a general description of a few wetlands in the central coast of Peru and identified agriculture and livestock as the main causes of their degradation. Maldonado (2014) identified the main threats to the conservation of Peruvian Andes wetlands as overgrazing, peat extraction, mining and development of infrastructure.

To the best of our knowledge there is no comprehensive plant inventory of the wetlands located in the Peruvian Andean Northern region. Moreover, the government so far hasn't introduced or implemented specific measures to protect these ecosystems. This study aims to fill this gap by identifying and safeguarding the biodiversity present in such wetlands as well as their impact on local communities. In some cases, these wetlands could constitute the only remaining habitat for some plant species and their identification is essential. The paper is organized as follows. Section 2 describes the materials and methods used during the botanical explorations, section 3 highlights the results of the explorations and discusses the results and finally, section 4 summarizes the most important findings of this study.

2. Materials and Methods

The present investigation was oriented to inventory the flora of the wetlands of the department of La Libertad, located between 2500 and 4500 meters above sea level (m.a.s.l.) as shown in Fig. 1. The data collection was carried out during the decade of 2008 and 2017. The botanical explorations were conducted at a rate of 4 explorations per year (summer, autumn, winter and spring); encompassing altitudinal and latitudinal transects. During the explorations, the collected botanical material and data allowed us to identify the taxonomy, habit, habitat, altitudinal distribution, form of propagation and time of flowering and fruiting. The process of herborization and taxonomic determination of the botanical material was carried out in the Herbarium Truxillense of the National University of Trujillo (HUT).

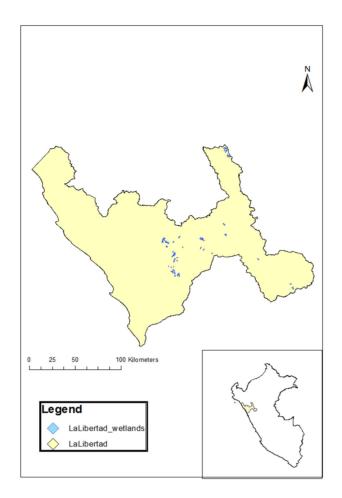


Figure 1. Map of the high Andean wetlands of La Libertad, 2017

Note: the wetlands located in La Libertad region are shown in blue. The box shows the La Libertad region location in Peru

In order to evaluate the potential benefits of the wetland species to the local people, the authors conducted a survey during the last expedition in 2017. We interviewed 384 locals (this value corresponds to the maximum sample size for a 95% confidence level and 5% margin of error) and asked about the value of each of the species from the following options: medicinal, dyeing, soil protector, and fodder. The results of the survey were recorded during the exploration according to the labels attached to the species registered in the HUT.

3. Results and Discussion

Table 1 shows the taxonomic characteristics of the flora of the high Andean wetlands. The table highlights scientific name / family, common names, habit, habitat, altitudinal distribution, propagation form, flowering time and period of fructification.

N	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.) (*)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
1	<i>Acaena torilicarpa</i> Bitter (ROSACEAE)	-	marsh plant 40 cm tall	Disturbed areas. It grows in wetlands, preferably with soil rich in organic matter.	2000-4500	Seeds and stolons.	April-June	June- August
2	<i>Adiantum raddianum</i> C. Presl (PTERIDACEAE)	"culantrillo"	Small herb riparian	Own of flat places, caespitose and wet.	3000-4000	Spores and rhizomes.	All year	All year
3	<i>Agrostis breviculmis</i> Hitchc. (POACEAE)	"grass".	Prostrate and marsh grass	Disturbed areas. It grows in wetlands, preferably with soil rich in organic matter.	2000 - 4500	Seeds.	All year	All year
4	Alchemilla orbiculata R. & P. (ROSACEAE)	-	Prostrate and marsh herb	Ambient with fog and humid soils rich in organic matter.	2000- 4500	Seeds and stolons.	April-June	June- August
5	<i>Alchemilla pinnata</i> R. & P. (ROSACEAE)	-	Prostrate and marsh herb	Marsh and muddy slopes, disturbed areas. It grows in wetlands, preferably with soil rich in organic matter.	2000- 4500	Seeds and stolons.	April-June	June- August
6	<i>Alchemilla procumbrens</i> ROSE (ROSACEAE)	-	Prostrate and marsh herb	Marsh and muddy slopes, disturbed areas. It grows in wetlands, preferably with soil rich in organic matter.	2000 - 4500	Seeds and stolons.	April-June	June- August
7	Baccharis genistelloides (Lam.) Pers. (ASTERACEAE)	"carqueja"	Herb with winged stems	Sub shrub of marshy and rocky areas.	500-4500	Seeds.	May -July	July -August
8	Bartsia bartsioides (Hook.) Edwin (OROBANCHACEAE)	-	Small, glutinous herb	Of places Palustres, flooded, humid and	2000-4500	Seeds.	May -July	July August

Table 1. Characteristics of the flora of the high Andean wetlands of the Department of La Libertad, Peru

N	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.) (*)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
				flat.				
9	<i>Bartsia tomentosa</i> Molau (OROBANCHACEAE)	-	Small, glutinous herb	Endemic to the north of Peru of flat, swampy and waterlogged places.	3000-4800	Seeds.	May -July	July-August
10	<i>Bidens andicola</i> Kunth (ASTERACEAE)	" love dry "	Small herb	Marsh and swampy slopes.	3000-4500	Seeds.	May -July	July- October
11	<i>Bidens squarrosa</i> Kunth (ASTERACEAE)	"love dry"	Small herb	Marsh and swampy slopes	500-3000	Seeds.	May -July	July- October
12	Calamagrostis ligulata(Kunth) Hitchc. (POACEAE)	"pajonal".	Cespitose grass	Flooded areas and edge of lagoons with acid drainages.	3000- 4600	Seeds.	All year	All year
13	<i>Calamagrostis rigescens</i> (J. Presl) Scribn. (POACEAE)	"pajonal".	Cespitose grass	Wet and sub-humid soils, edges of rivers.	3500- 4500	Seeds.	All year	All year
14	<i>Carex lemanniana</i> W. Boott (CYPERACEAE)	-	Herb of stems trines	Herb of regular slope, humid, marshy and aquatic.	2500- 4000	Seeds and rhizome	May -July	July -August
15	Castilleja arvensis Schltdl. & Cham. (OROBANCHACEAE)	" bull blood ".	Herb with red flower	Of flat lands to moderate slopes humid to aquatic.	0-3800	Seeds.	May -July	July -August
16	<i>Ceratophyllum demersum</i> L. (CERATOPHYLLACEAE)	"ceratofilo", " fox's tail ".	Herb	Aquatic and submerged.	10- 500	Seeds and stolons.	All year	All year
17	<i>Cortaderia jubata</i> (Lem.) Stapf (POACEAE)	"cortadera"	Grass with rigid and cutting blades	Riparian grass of shrub, waterlogged and aquatic places.	2000-4300	Seeds.	April -June	June -August
18	<i>Distichia muscoides</i> Nees & Meyen (JUNCACEAE)	"champa"	Grass	Aquatic, submerged in marshy and waterlogged soils.	3500- 4800	Seeds and stolons.	All year	All year
19	<i>Epilobium denticulatum</i> R. & P. <i>(ONAGRACEAE)</i>	-	Cespitose herb	Herb of medium slope to plains, humid, marshy and even	3000-4500	Seeds.	May -July	July -August
20	Fauisatum boastana V	" horse tail "	Comitana	aquatic.	3500 - 4500	Some and	All the second	All the same
20	Equisetum bogotense Kunth	norse tall	Cespitose	Form	5500-4500	Sorus and	All the year	All the year

N	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.) (*)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
	(EQUISETACEAE)		herb	pajonales, humid soil.		rhizomes.		
21	<i>Festuca breviaristata</i> Pilg. (POACEAE)	"pajonal".	Cespitose grass	Semi-humid ambient associated	4100 - 4500	Seeds.	All the year	All the year
22	<i>Festuca rigidifolia</i> Tovar (POACEAE)	"pajonal".	Pubescent grass	River grass and marsh. It grows in wetlands, preferably with soil rich in organic matter.	1000-4000	Seeds.	All the year	All the year
23	<i>Gentianella bicolor</i> (Wedd.) Fabris ex J.S. Pringl <i>e</i> (GENTIANACEAE)	"corpus huay".	Pubescent herb	Disturbed areas. It grows in wetlands, preferably with soil rich in organic matter.	1000-3000	Seeds.	May -July	July- September
24	<i>Gentianella chamuchui</i> (Reimers) Fabri <i>s</i> (GENTIANACEAE)	"chamuchui"	Small herb with yellow flowers	Own of places plans or of slope of little slope, humid, swampy and flooded.	3000-3500	Seeds.	May -July	July- September
25	HaleniavincetoxicoidesGilg (GENTIANACEAE)	-	Herb	Of slopes, swamps and flooded.	2500- 4000	Seeds.	May -July	July- September
26	Huperzia crassa (Humb. & Bonpl. ex Willd.) Rothm. (LYCOPODIACEAE)	"trencilla".	Creeping herbs - ascendant	Creeping herbs from places of plans or slopes of ponca pending, wet, marshy and flooded.	2500-4000	Sorus.	All the year	All the year
27	Huperzia saururus (Lam.) Trevis. (LYCOPODIACEAE)	"trencilla".	Water herb	Aquatic grass grows in swampy and marshy places.	0-3500	Sorus.	All the year	All the year
28	<i>Huperzia tetragona</i> (Hook. & Grev.) Trevis. (LYCOPODIACAEAE)	"órnamo"	Water herb	Aquatic grass grows in swampy and marshy places.	1500-3500	Sorus.	All the year	All the year
29	<i>Hydrocotyle humboldtii</i> A. Richard (APIACEAE)	" Abad's hat "	Flowering bush of yellow flowers	Of cloudy and marshy slopes or very humid.	2000-4500	Seeds and stolons.	May -July	July -August

N	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
30	<i>Hydrocotyle umbellata</i> L. (APIACEAE)	" Abad's hat "	Cespitose herb with yellow capitulos	Herb of flat, marshy or very humid places of the Jalca.	3000-3500	Seeds and stolons.	May -July	July -August
31	Hypericum laricifolium Juss. (HYPERICACEAE)	"chinchango"	Cespitose herb with yellow capitulos	Herb of flat, marshy or very humid places of the Jalca.	1500 -4800	Seeds.	April-June	June -August
32	Hypochaeris schizoglossa Cabrera (ASTERACEAE)	-	Marsh herb	Grass of flat, marshy or very humid places of the Jalca.	2500-4000	Seeds.	April -June	June- August
33	<i>Hypochaeris taraxacoides</i> (Walpers) Bentham & Hokker f. (ASTERACEAE)	-	Marsh herb	Herb of flat, marshy or very humid places of the Jalca.	0-4000	Seeds.	April- June	June- August
34	<i>Juncus arcticus</i> Willd. (JUNCACEAE)	"junco"	Marsh grass	Grass of flat, marshy or very humid places of the Jalca.	3500-4500	Seeds and stolons.	April -June	June- August
35	<i>Juncus bufonius</i> L. (JUNCACEAE)	"junco"	Marsh grass	Grass of flat, marshy or very humid places of the Jalca.	2000-4000	Seeds and stolons.	April -June	June- August
36	<i>Juncus imbricatus</i> Laharpe (JUNCACEAE)	"junco"	Marsh grass	Grass of flat, marshy or very humid places of the Jalca.	1500-4000	Seeds and rhizomes.	April -June	June- August
37	<i>Juncus pallescens</i> Lamarck (JUNCACEAE)	"junco"	Grass	Floating aquatic grass	2000-2500	Seeds and rhizomes.	April -June	June- August
38	<i>Lemna minuta</i> Kunth.(ARACEAE)	" duckweed "	Small herb with blue flowers	From flat to low slope, wet, swampy and waterlogged.	2500-3500	Seeds and stolons.	May -June	June- August
39	<i>Lobelia tenera</i> Kunth (CAMPANULACEAE)	-	Marsh and riparian grass	Own of flat places or slopes of little slope, very humid riverside and marshes.	3000-4500	Seeds.	May -June	July -August
40	<i>Lophosoria quadripinnata</i> (J.F. Gmel.) C. Chr. (DICKSONIACEAE)	" fern ".	Herb	River herb, rizomatosa, lacustrine plains.	3000- 4000	Sorus and rhizomes.	All the year	All the year
41	<i>Loricaria ferruginea</i> (Ruiz & Pav.) Wedd. (ASTERACEAE)	" foot of hen ".	Herb	Poscuda Decumbent edge of ditches, lagoons and wetlands.	3500- 4500	Seeds.	April- June	June -August

Ν	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.) (*)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
42	<i>Luzula gigantea</i> Desvaux (JUNCACEAE)	"luzula"	Grass	Riparian wetlands, lagoons and streams.	2800-3800.	Seeds.	May -July	July -August
43	<i>Lycopodium clavatum</i> L. (LICOPODEACEAE)	"licopodio"	Floating aquatic herb	Emerging in shallow bodies of water and on the banks of springs or ditches.	2500- 4500	Sorus and rhizomes.	All the year	All the year
44	<i>Mimulus glabratus Kunth.</i> (PHRYMACEAE)	"berro yellow".	Herb	Aquatic from emerged to floating.	3000- 3500	Seeds.	May-June	July- August
45	<i>Myriophyllum quitense</i> Kunth (HALORAGACEAE)	" fox's tail ".	Marsh herb and cespitose	Plain places with a little slope, humid, marshy and flooded.	3000-4500	Seeds.	May -June	July -August
46	<i>Oxychloe andina</i> Phil. (JUNCACEAE)	-	Herb	Own grass of flat places, cespitose, humid, marshy and waterlogged.	3000-4500	Seeds.	May -June	July -August
47	<i>Paranephelius uniflorus</i> Poeppig (ASTERACEAE)	-	Herb	Aquatic herb, riparian, emerging.	2000-4000	Seeds.	April- June	June -August
48	Phyllactis rigida (Ruiz & Pav.) Pers. (CAPRIFOLIACEAE)	"valeriana star".	Herb	Water herb, submerged and emerging.	200-3000	Seeds.	May -June	June -August
49	<i>Polygonum aviculare</i> L. (POLYGONACEAE)	"water pepper".	Herb	Water herb, submerged and emerging.	2000-4500	Seeds and stolons.	All the year	All the year
50	Polygonum hydropiperoides Michx. (POLYGONACEAE)	"water pepper".	Marsh herb	Of flat places, humid riparian and marshy.	0-4000	Seeds and stolons.	All the year	All the year
51	PolytrichumcommuneHedw.(POLYTRICHACEAE)	"moss".	Herb	Aquatic, Emerging in wetlands.	50-4000	Spores.	April -July	July- September
52	Potamogeton pectinatus L. (POTAMOGETONACEAE)	"potamogeton".	Herb	Aquatic, Emergent and submerged.	2000- 4000.	Seeds and stolons.	May- June	June -August
53	RanunculuspraemorsusKunthexDC.(RANUNCULACEAE)	"centella".	Rigid, marsh and aquatic herbs.	Riparian, marsh, aquatic and flooded soil.	2500- 3500	Seeds.	May -July	June- August

Ν	SCIENTIFIC NAME / FAMILY	COMMON NAMES	HABIT	HABITAT (*)	ALTITUDE (m.a.s.l.) (*)	PROPAGATION FORM	FLOWERING TIME	TIME OF FRUCTIFICATION
54	<i>Rorippa nasturtiumaquaticum</i> (L.) Hayek (BRASICACEAE)	"berro".	Rigid, marsh and aquatic herbs.	Humid ambient, and when mature the stems harden.	50 - 4200	Seeds.	May -June	July -August
55	<i>Scirpus pungens</i> M. Vahl (CYPERACEAE)	"totora".	Grass	Marsh plant, aquatic and emergent.	3000- 3500	Seeds and stolons.	April- June	June -August
56	Scirpus californicus (C.A.Mey.)Steud.(CYPERACEAE)	"totora".	Grass	Marsh plant, aquatic and emergent.	3000- 3500	Seeds and stolons.	April- June	June -August
57	<i>Scirpus rigidus</i> Boeckeler (CYPERACEAE)	"totora".	Grass	Marsh plant, aquatic and emergent.	3000- 3500	Seeds and stolons.	April- June	June -August
58	<i>Solanum americanum</i> Mill. (SOLANACEAE)	" nightshade ".	Aquatic herbs	Biotype of wetlands of the Jalca or Puna.	3500-4801	Seeds	April -July	June- September
59	<i>Sphagnum magellanicum</i> Brid. (SPHAGNACEAE)	"esfagno".	Herb	Flat, marshy and flooded lands of the jalca or puna.	2500-4000	Spores.	All the year	All the year
60	Sphagnum mossmannianum Müll. Hal. (SPHAGNACEAE)	"esfagno".	Herb	Flat, marshy and flooded lands of the jalca or puna.	3000-4800	Spores.	All the year	All the year
61	<i>Sphagnum subbalticum</i> Warnst. (SPHAGNACEAE)	"esfagno".	Herb	Flat, marshy and flooded lands of the jalca or puna.	3000-4800	Spores.	All the year	All the year
62	<i>Torulinium odoratum</i> (L.) Hooper (CYPERACEAE)	-	Herb	Riverside, swampy, waterlogged and aquatic.	3000- 3500	Seeds.	May -June	July -August
63	<i>Verónica peregrina L.</i> (PLANTAGINACEAE)	"verónica".	Herb	Marsh plant, riverside and aquatic	2800- 3501	Seeds.	May -June	July -August
64	<i>Werneria nubigena</i> Kunth (ASTERACEAE)	" onion of the buzzard "	Herb	Marsh plant, riverside and aquatic	3500- 4500	Seeds.	May -June	July -August

Legend: The (*) identifies the author that the given information refers to (Brako & Zarucchi, 1993).

Figure 2 illustrates the most representative species of flora in the study area namely A) *Loricaria ferruginea*, B) *Werneria nubigena*, and C) *Distichia muscoide*.

Figure 2. Representative species of flora of the high Andean wetlands of the Department of La Libertad, Peru 2008-2017

A) Loricaria ferruginea, B) Werneria nubigena, C) Distichia muscoides.

On the other hand, Figure 3, illustrates the distribution of the 64 plant species in 27 families.

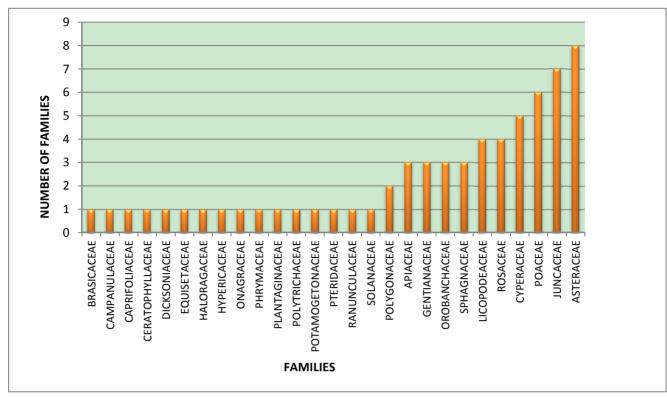


Figure 3. Distribution of the 64 species among 27 families

Table 2 and 3 present the plant species with their respective use and qualitative qualification of their benefits. From the analysis of the species we identified 13 (20.3%) of the 64 species have fodder use, 25 (39.1%) medicinal use, 40 (62.5%) potential phytoremediation, 53 (82.8%) protection of soils and 1 (1.6%) dye.

Table 2. Benefits or uses of the high Andean wetland species from the La Liber	rtad Department, Peru 2008- 2017
--	----------------------------------

N°	Species		Socioec	onomic/ Environmental E	Benefits	
		Fodder	Medicinal	Phytoremediation	Soil	Dye
				Potential	Protection	
1	Acaena torilicarpa Bitter (ROSACEAE)	•		•	•	
2	Adiantum raddianum C. Presl (PTERIDACEAE)		•	•	•	
3	Agrostis breviculmis Hitchc. (POACEAE)	•		•	•	
4	Alchemilla orbiculata R. & P. (ROSACEAE)	•		•	٠	
5	Alchemilla pinnata R. & P. (ROSACEAE)	•		•	٠	
6	Alchemilla procumbrens ROSE (ROSACEAE)	•		•	٠	
7	Baccharis genistelloides (Lam.) Pers. (ASTERACEAE)	٠	•			
8	Bartsia bartsioides (Hook.) Edwin (OROBANCHACEAE)	٠	•			
9	Bartsia tomentosa Molau (OROBANCHACEAE)	٠	•			
10	Bidens andicola Kunth (ASTERACEAE)		•			
11	Bidens squarrosa Kunth (ASTERACEAE)		•			
12	Calamagrostis ligulata(Kunth) Hitchc. (POACEAE)	٠		•	•	
13	Calamagrostis rigescens (J. Presl) Scribn. (POACEAE)	٠		•	٠	
14	Carex lemanniana W. Boott (CYPERACEAE)			•	•	

			2 Species Socioeconomic/			
		Fodder	Medicinal	Phytoremediation	Soil	Dye
				Potential	Protection	
15	CastillejaarvensisSchltdl.&Cham.(OROBANCHACEAE)		•		•	
16	Cortaderia jubata (Lem.) Stapf (POACEAE)				•	
17	Distichia muscoides Nees & Meyen (JUNCACEAE)			•	•	
18	Epilobium denticulatum R. & P.(ONAGRACEAE)				•	
19	<i>Equisetum bogotense</i> Kunth (EQUISETACEAE)		٠		•	
20	Festuca breviaristata Pilg. (POACEAE)	•		•	•	
21	Festuca rigidifolia Tovar (POACEAE)	٠		•	•	
22	<i>Gentianella bicolor</i> (Wedd.) Fabris ex J.S. Pringle (GENTIANACEAE)		•	٠		
23	Gentianella chamuchui (Reimers) Fabris		•	•		
	(GENTIANACEAE)					
24	Halenia vincetoxicoides Gilg (GENTIANACEAE)		•		•	
25	Huperzia crassa (Humb. & Bonpl. ex Willd.) Rothm.		•	•		
	(LYCOPODIACEAE)					
26	Huperzia saururus (Lam.) Trevis. (LYCOPODIACEAE)		•	•		
27	Huperzia tetragona (Hook. & Grev.) Trevis.		•	•		
	(LYCOPODIACAEAE)					
28	Hydrocotyle humboldtii A. Richard (APIACEAE)		٠	•	•	
29	Hydrocotyle umbellata L. (APIACEAE)		•	•	٠	
30	Hypericum laricifolium Juss. (HYPERICACEAE)					•
31	Hypochaeris schizoglossa Cabrera (ASTERACEAE)			•	•	
32	Hypochaeris taraxacoides (Walpers) Bentham & Hokker f.			•	•	
	(ASTERACEAE)					
33	Juncus arcticus Willd. (JUNCACEAE)			•	•	
34	Juncus bufonius L. (JUNCACEAE)			•	•	
35	Juncus imbricatus Laharpe (JUNCACEAE)			•	•	
36	Juncus microcephalus H.B.K. (JUNCACEAE)			•	•	
37	Juncus pallescens Lamarck (JUNCACEAE)			•	•	
38	Lemna minuta Kunth. (ARACEAE)	•		•	•	
39	Lobelia tenera Kunth (CAMPANULACEAE)		•		•	
40	Lophosoria quadripinnata (J.F. Gmel.) C. Chr.					
	(DICKSONIACEAE)			•	•	
41	Loricaria ferruginea (Ruiz & Pav.) Wedd. (ASTERACEAE)		•	•	•	
42	Luzula gigantea Desvaux (JUNCACEAE)			•	•	
43	Lycopodium clavatum L. (LICOPODEACEAE)		•		•	
44	Mimulus glabratus Kunth. (PHRYMACEAE)			•	•	
45	Myriophyllum quitense Kunth (HALORAGACEAE)				•	
46	Oxychloe andina Phil. (JUNCACEAE)				•	

N°	Species		Socioec	onomic/ Environmental B	enefits	
		Fodder	Medicinal	Phytoremediation	Soil	Dye
				Potential	Protection	
47	Paranephelius uniflorus Poeppig (ASTERACEAE)				•	
48	Phyllactis rigida (Ruiz & Pav.) Pers. (CAPRIFOLIACEAE)		•	•	•	
49	Polygonum aviculare L. (POLYGONACEAE)				•	
50	Polygonum hydropiperoides Michx. (POLYGONACEAE)				•	
51	Polytrichum commune Hedw. (POLYTRICHACEAE)				•	
52	Potamogeton pectinatus L. (POTAMOGETONACEAE)				•	
53	<i>Ranunculus praemorsus</i> Kunth ex DC.		•	•	•	
	(RANUNCULACEAE)					
54	<i>Rorippa nasturtiumaquaticum</i> (L.) Hayek		•	•	•	
	(BRASICACEAE)					
55	Scirpus pungens M. Vahl (CYPERACEAE)			•	•	
56	Scirpus californicus (C.A. Mey.) Steud. (CYPERACEAE)			•	•	
57	Scirpus rigidus Boeckeler (CYPERACEAE)			•	•	
58	Solanum americanum Mill. (SOLANACEAE)		٠		٠	
59	Sphagnum magellanicum Brid. (SPHAGNACEAE)			•	٠	
60	Sphagnum mossmannianum Müll. Hal. (SPHAGNACEAE)			•	٠	
61	Sphagnum subbalticum Warnst. (SPHAGNACEAE)			•	•	
62	Torulinium odoratum (L.) Hooper (CYPERACEAE)				•	
63	Verónica peregrina L. (PLANTAGINACEAE)		•		•	
64	Werneria nubigena Kunth (ASTERACEAE)		٠		٠	

Table 3. Main uses of the flora of the high Andean wetlands of the Department of La Libertad, Peru 2008-2017

Total	Fodder	Medicinal	Phytoremediation	Soil	Dye
			Potential	Protection	
Total	12	25	40	53	1
%	18.8	39.1	62.5	82.8	1.6

In the High Andean wetlands of La Libertad it is reported the presence of 64 species of flora. The number of species in La Libertad wetlands exceeds to the Pantanos de Villa, Lima, where 47 species were reported (Ramirez and Cano, 2010) and the wetlands of Puerto Viejo, Cañete, where 32 species were reported (La Torre and Aponte, 2009). On the other hand, regarding the families with the highest number of species in the high Andean wetlands of La Libertad, were: Asteraceae (8), Juncaceae (7), Poaceae (6). Researches corroborate this information about the predominance of species of families: Poaceae and Asteraceae (Ramírez and Cano, 2010; La Torre and Aponte, 2009). By comparing the data obtained with similar works in other wetlands, we can consider the importance of these ecosystems to house an important wealth of flora.

From the analysis in Table 2, it is clear that most of the high Andean wetland species have fodder use, medicinal, and phytoremediation use, among others. Of all of them, medicinal use (39.1%), soil protection function (82.8%) and phytoremediation potential (62.5%) predominate. These results are in accordance with another study that states that wetlands are sources of medicinal, forage resources, avoiding the erosion (Aponte & Cano, 2013). On the other hand, Tables 3 highlights that 32.8% of the species can have a very good use. Studies on economic botany affirm that these ecosystems contribute economically with the surrounding communities to be a source of natural

resources and ecotourism. On the other hand, it is important to consider that they constitute reservoirs of biological diversity, regulating and maintaining the microclimate by contributing to carbon capture (Dugan, 1990; Kahn, *et al.*, 1993; Tabilo, 1999; Arana, 1998).

4. Conclusions

The high Andean wetlands of La Libertad comply with 75% of the world's environmental services (Table 4). Studies have shown that wetlands perform many vital functions, such as: water storage, flood mitigation, erosion control, purification of water by retaining sediment and pollutants and stabilization of local climatic conditions, particularly precipitation and the temperature (Tabilo, 1999; Mostacero *et al.*, 2009; Mostacero *et al.*, 2011). According to Barry & Salt (2012), environmental variation and anthropogenic disturbances can influence this ecosystem. Although wetlands have a complex structure and particles, activities such as agricultural expansion and livestock are its main threats (Aponte & Ramírez, 2011).

Table 4. Comparison of the environmental services of the wetlands of the world with those of La Libertad, Peru

Wetlands	Environmental services								Consideration	
	L	NR	EI	WI	RA	R&EC	SR & P	MB	N°	%
Of the world	Х	Х	Х	Х	Х	Х	Х	Х	8	100
High Andean of La Libertad	Х	Х	Х	Х	Х	-	Х	-	6	75

Legend: EI = ecological importance; R&EC = recreation and ecotourism; L = Livestock; WS= water storage; SR & P = sediment retention and protection; NR= natural resources; RA = reservoir-agriculture; MB = Migration of birds.

At present these ecosystems are undergoing significant changes caused by the rapid economic and population growth as reported in other cases (Arana, 1998; Ramirez & Cano, 2010). As Peru doesn't have a national wetland plant inventory there is an urgent need to generate more information and develop conservation programs (Dugan, 1990; Tabilo, 1999).

In order to promote the conservation of plant diversity it is very important to have a comprehensive inventory first. The lack of a comprehensive study on the wetlands located in the Andean region of Peru coupled with the absence of specific measures to protect these ecosystems were the main drivers of this research. The study concluded that the high Andean wetlands of La Libertad, Peru, are ecosystems with great biodiversity that contribute to the conservation of at least 64 species of flora. By determining the floristic composition of the high Andean wetlands of La Libertad, Peru, as well as their impact on local communities this study aimed to raise awareness on the importance of their preservation for present and future generations.

Acknowledgments

A special thanks to the Herbarium Truxillense of the National University of Trujillo (HUT) for the taxonomic determination of the botanical material.

References

- Angulo, F., Schulenberg, T., & Edevaly, E. (2010). Birds of Eten marshes, Lambayeque, Perú. *Ecol. apl.*, *9*(2), 71-81. https://doi.org/10.21704/rea.v9i1-2.397
- Aponte, H., & Cano, A. (2013). Estudio florístico comparativo de seis humedales de la costa de Lima (Perú): Actualización y nuevos retos para su conservación. *Latin American Journal of Conservation*, 3(2), 15-27. Retrieved from https://www.Cienti fica.edu.pe/documentos/pdfs/Aponte&Cano_2013_RLC32_15_27.pdf
- Aponte, H., & Ramírez, D. (2011). Wetlands of the central coast of Peru: structure and menaces of its vegetal communities. *Ecología Aplicada, 10*(1), 31-39. https://doi.org/10.21704/rea.v10i1-2.411
- Arana, C. (1998). Los pantanos de Villa: biología y conservación. Universidad Nacional Mayor de San Marcos, Museo de Historia Natural (Eds.), Lima, Perú. 238 p. Retrieved from https://www.researchgate.net/publication/288653512_Relaciones_fitogeograficas_de_la_flora_vascular_de _los_Pantanos_de_Villa
- Barry, W., & Salt, D. (2012). Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function.IslandPress(eds.),Washington.240p.Retrievedfromhttps://books.google.com.pe/books?id=LAEBev5Ljr8C&dq=Building+Capacity+to+Absorb+Disturbance+

and+Maintain+Function.+Washington:+Island.&hl=es&source=gbs_navlinks_s

- Brako, L., & Zarucchi, J. (1993). Catalogue of the Flowering Plants and Gymnosperms in Peru. Monogr. Syst. Bot. Missouri Bot. Gard. Retrieved from https://www. researchgate.net/publication/270769424 Catalogue of the Flowering Plants_and_Gymnosperms_of_Peru
- Dugan, P. (1990). Wetland Conservation: A Review of Current Issues and Required Action. International Union for Conservation of Nature and Natural Resources. Gland, Switzerland. Retrieved from https://books.google.com.pe/books?id=Ra

 $raYlXy_SsC\&dq=Wetland+Conservation:+A+Review+of+Current+Issues+and+Required+Action.\&hl=es\&source=gbs_navlinks_s$

- Dugan, P. (1992). Conservación de Humedales, un análisis de temas de actualidad y acciones necesarias. Unión Mundial para la Naturaleza (Eds.), Gland, Suiza. 100 p. Retrieved from https://books.google.com.pe/books?id=RLq2HzktBX4C&dq=Conservaci%C3%B3n+de+Humedales,+un+a n%C3%A1lisis+de+temas+de+actualidad+y+acciones+necesarias.+Suiza.&hl=es&source=gbs_navlinks_s
- Kahn, F., León, B., & Young, K. (1993). *Las Plantas Vasculares en las Aguas Continentales del Perú*. Instituto Francés de Estudios Andinos (IFEA). Tomo 75, Lima, Perú. 357 p. Retrieved from http://horizon.documentation.ird.fr/exl-doc/pleins_text es/divers09-06/39107.pdf
- Keddy, P. A. (2010). *Wetland ecology: principles and conservation* (2nd ed.). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511778179
- La Torre, M., & Aponte, H. (2009). Vascular flora and vegetation from Puerto Viejo wetland. *Rev. peru. biol.*, *16*(2), 215-217. Retrieved from http://revistasinvestigacio n.unmsm.edu.pe/index.php/rpb/article/view/58
- Maldonado Fonken, M. S. (2014). An introduction to the bofedales of the Peruvian High Andes. *Mires and Peat*, 15(4), 1-13.
- Mostacero, J., Castillo, F., Mejía, F., Gamarra, O., Charcape, J., & Ramírez, R. (2011). Plantas Medicinales del Perú: Taxonomía, Ecogeografía, Fenología y Etnobotánica. Trujillo- Perú: Asamblea Nacional de Rectores Fondo (Eds.), Lima, Perú. Retrieved from http://www.librosperuanos.com/libros/detalle/13702/Plantasmedicinales-del-Peru.-Taxonomia-Ecogeografía-Fenologia-y-Etnobotanica
- Mostacero, J., Mejía, F., Zelada, W., & Medina, C. (2007). *Biogeografía del Perú*. Asamblea Nacional de Rectores (Eds.), Trujillo- Perú. Retrieved from http://www.Librosperu anos.com/libros/detalle/13698/Biogeografia-del-Peru
- Mostacero, L., Mejia, F., & Gamarra, T. (2009). *Fanerogamas del Perú*. GRAFICART (Eds.). Trujillo, Perú.1331p. Retrieved from https://books.google.com.pe/books /about /Faner% C3%B 3gamas _del_Per %C3%BA. html?id=rrB qtwAACAAJ &red ir_esc=y
- ProNaturaleza. (2010). Documento Base Para la Elaboración de una Estrategia de Conservación de los Humedales de la Costa Peruana. Conservación Internacional y RAMSAR.
- Ramirez, D., & Cano, A. (2010). State of vascular flora diversity from Pantanos de Villa (Lima Peru). *Rev. peru. biol.*, *17*(1), 111-114. https://doi.org/10.15381/rpb.v17i1.58
- Ramsar. (2010). *Inventario de humedales*. Secretaría de la Convención de Ramsar (Eds.), 4ª edición, vol. 15. Gland, Suiza. Retrieved from https://www.ramsar.org/si tes/default/files/documents/pdf/lib/hbk4-15sp.pdf
- Rosselli, L., & Stiles, F. (2012). Local and Landscape Environmental Factors are Important for the Conservation of Endangered Wetland Birds in a High Andean Plateau. *Waterbirds*, 35, 453-469. https://doi.org/10.1675/063.035.0310
- Squeo, F., Warner, B., Aravena, R., & Espinoza, D. (2006). Bofedales: High altitude peatlands of the central Andes. *Revista Chilena de Historia Natural*, *79*, 245-255. https://doi.org/10.4067/S0716-078X2006000200010
- Tabilo, V. (1999). El beneficio de los humedales en América Central: El potencial de los humedales para el desarrollo. Universidad Nacional Heredia (Eds.), San José, Costa Rica. 58 p. Retrieved from https://www.researchgate.net/publication/285940037_BENEFICIO_DE_LOS_HUMEDALES_EN_AMERI CA_CENTRAL
- Tabilo-Valdivieso, E., & Burmeister, J., Chavez-Villavicencio, C., & Zöckler, C. (2016). Humedales y aves migratorias en la costa árida del Pacífico Sudamericano. Etapa I: Evaluación Ecológica Rápida.
- Ubillús, H., & Ramírez, D. (2011). Wetlands of the central coast of Peru: structure and menaces of its vegetal

communities. Ecol. apl., 10(1).

World Bank. (2014). Peru - Participatory Management of Protected Areas. Washington, DC: World Bank Group.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).