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Abstract 

One of the key aspects of a green economic development model of a country is to develop indigenous resources 
and local expertise while utilizing sustainable technologies. This review explored the possibilities of utilizing 
jackfruit waste for production of biogas, briquettes and biochar. In many of the developing countries, there is huge 
potential for organic waste conversion into appropriate energy solutions. These can contribute to developing rural 
areas especially small holder farmers and diversifying the available energy sources. Biomass waste like jackfruit 
waste when managed well can produce bio-energy, but also the GHG emissions need to be reduced from 
unmanaged, decomposing organic material. When put to use, agricultural biowastes like jackfruit waste could be 
used as raw materials in the production of bio-products (biofuels, biochar, bio pesticides), briquettes, among others. 
The biochar can be mixed with the soil producing carbon-rich soils and contribute to CO2 sequestration and soil 
fertility. This paper reviews works focused on using jackfruit waste for anaerobically producing of biogas, 
briquettes and biochar for improved crop production. The paper concluded that jackfruit waste can anaerobically 
decompose to produce biogas and it can also be used for briquette production. It was further concluded that 
jackfruit waste can undergo decomposition at high temperatures to produce biochar which can be incorporated 
into the soil creating a CO2 sink hence helping in mitigating the effects of the climate change. 
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1. Introduction 

Sustainable energy contributes to sustainable development and to the seventh Sustainable Development Goal 
(SDG) which advocates for all people to access affordable and clean energy (United Nations Development 
Programme[UNDP], 2015). Additionally, all countries have to follow the resolutions of the UN Conference of 
Parties (COP 21) on climate change in Paris in the year 2015 to lower the greenhouse gases (GHG), in which 
renewable energy significantly contributes (United Nations Framework Convention on Climate Change 
[UNFCCC], 2015). Energy is very crucial in reducing poverty there by contributing towards attainment of the first 
SDG of reducing to zero the number people living below $1.90 a day (World Bank, 2016) by 2030 through job 
opportunities for persons providing biogas, briquettes and biochar. Since the industrial revolution, energy has 
supported the growth of standards of living of the people in many countries from low to high income levels. 
Renewable energies are preferred for their ability to reduce the long lasting negative changes to natural 
environment and ecosystems due to emission of greenhouse gases (Moomaw et al., 2014). Crop residues and 
leftovers from agriculture are by-products of different agricultural activities in Uganda, but to-date few or no value 
addition takes place to these wastes. In many rural communities in Uganda, people mostly use firewood while 
others commonly use charcoal that severely contributed to degradation of woodland and forests.  

Jackfruit is a tropical tree that bears fruits and originated from India (Ranasinghe & Marapana, 2019). The fruit 
belongs to Genus Artocarpus and Moraceae (Mulberry) family (Sundarraj & Ranganathan, 2018). Jackfruit is an 
evergreen tree about 8-25 m high and its fruits are considered to be the heaviest with an average weight about 80 
kg (Nakintu, Olet, Andama, & Lejju, 2019). Jackfruit has two varieties; the firm and soft varieties (Ranasinghe & 
Maduwanthi, 2019; Priya, Suneta, Gupta, Thangam, & Singh, 2014; Nakintu et al., 2019) with the perianth of the 
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firm variety remaining hard at full ripening while that of the soft one turns soft and fleshy at ripening. The chemical 
and biological compositions have been reported to vary between the soft and firm jackfruits varieties (Ranasinghe 
& Marapana, 2019). Jackfruit is an underutilized crop (Akter & Haque, 2019), although its demand has increased 
due to its economical and nutritional benefits. Economically, jackfruit is gradually being valued in Uganda because 
of its potential to provide incomes for farmers with its marketing and consumption being evident in most towns in 
the country. Unlike other fruits, Jackfruit provides a number products ranging from food, timber, firewood, and 
medicinal herbs (Barua, Rahman, Parwary, Nahar, & Ahmmed, 2016). It contains vitamin A and C, calcium, 
riboflavin, potassium, iron, sodium and zinc (Swami, Thakor, Haldankar, & Kalse, 2012); Mondal et al., 2013). 
Another benefit of jackfruit nutritionally is its provision with phytonutrients like lignans, isoflavones and saponins 
which were suggested to contribute towards prevention of cancer. (Swami et al., 2012).  

The edible portion of jackfruit is reported to be 25-35% while the waste contains 75-65% (Swami et al., 2012). 
Despite economic and nutritive value, jackfruit has attracted little research attention in Uganda probably because 
the largest part of the fruit is considered waste. However, a few studies have been done on its waste as animal 
feeds as reported by Ndyomugyenyi, Okot and Mutetikka (2014) and Nyamweha and kebirungi (2018). Other 
studies have revealed that jackfruit has an experimental Higher Heating Value (HHV) of 3.030 MJ/Kg (Pratiwi, 
Waluyo, Widyawidura, & Noviansyah, 2019). Hence its waste can be densified into briquettes using an appropriate 
binder (Carnaje, Talagon, Peralta, & Shah, 2018) to increase its calorific value (Vilela, Rezende, Carneiro, & Silva 
2016). These briquettes can be used to meet part of the energy requirements of households and industries (Emerhi, 
2011).  

Besides the briquettes, jackfruit waste is potential raw material for biochar through pyrolysis (Daful & 
Chandraratne, 2018) given its carbon content (Ibrahim, Abid, Hanim, & Zain, 2020). This biochar can be mixed 
with the soil to produce carbon-rich soils with properties similar to terra preta soils such as improved soil structures 
and microbial activity that improve the availability of nutrients required by plants (Winsley, 2007). This contributes 
to the attainment of the second SDG of ending hunger, ensuring that everyone is food secure with improved 
nutrition (UNDP, 2015). Given its sugar content, jackfruit waste has been digested anaerobically to produce biogas 
(Garrido, Conesa, & Garcia, 2017). This biogas can supplement the energy requirements of households in the 
villages. It is therefore of utmost importance that possibilities of converting jackfruit waste into renewable energy 
are explored to increase its economic importance and reduce the negative environmental effects when this waste 
is poorly disposed-off. This paper reviews works on using jackfruit waste for anaerobically producing biogas and 
briquettes for energy provision as well as biochar for soil amendment. 

2. Production and use of Jackfruits in Uganda 

Jackfruit was introduced in Uganda in the 1890s by the Asians (Nakintu et al., 2019). Since then, many farmers in 
different districts have grown it although on small-scale. The major growing regions are the central, eastern and 
western regions of Uganda. Like in other jackfruit growing countries, two jackfruit varieties are produced in 
Uganda which are the soft and the firm varieties (Nakintu et al., 2019). These varieties have different local names 
in different languages and the firm variety jackfruits have bulbs with different colours (Table 1). Jackfruit bulbs 
are a delicacy among Ugandans with its marketing and consumption being evident in most towns of the country. 
Although the jackfruit bulbs are consumed by majority people in Uganda, its waste is normally given to animals 
as feed and in other cases, its discarded as waste. In Urban and peri-urban markets, the discarded waste is an 
environmental hazard because it attracts flies. However, some people in villages roast the jackfruit seeds and make 
a meal eaten with maize or potatoes (Ndyomugyenyi et al., 2014). Compared to its economical and nutritional 
benefits, jackfruit is still underutilized in Uganda and in many other countries where it is being grown.  

 

Table 1. Jackfruit varieties in Uganda (Nakintu et al., 2019)  

Language Soft variety  Firm variety 

Firm white Firm Yellow Firm red 

Luganda Serebera, Njebu  Namata Kanaanansi Namusaayi 

Lusoga Erikutena Edheru Kapapali Omutukuriki 

Lugishu Siwulo Iwanga Nabuloba Imbesemu 

Ateso Enonok Ekwang Odosoikit Ereng 

Runyankole Miluku Erikweera Eyakyenju Erikutukura 

Rukiga Eyorobi Eyamutale Kinekye Erikutukura 
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2.1 Reasons for Underutilization of Jackfruit 

Although jackfruit has a number of health and nutritional benefits, it is underutilized and farmers rarely grow it in 
large scale because of its short shelf life with no processing facilities (Ranasinghe, Maduwanthi, & Marapana, 
2019). Jackfruit is very perishable and quickly loses flavour and browns on the surfaces (Mondal et al., 2013) 
which is undesirable. Following the harvesting, ripe jackfruits undergo rapid deterioration because of knowledge 
gaps on post-harvest practices and recommended storage facilities (Jagtap, Waghmare, Lokhande, Suprasanna, & 
Bapat, 2011). In Uganda, many jackfruits are harvested prematurely and they ripen near markets which affects the 
taste. This is predominantly happening because of the increased demand of the fruit in urban areas as reported by 
(Nakintu et al., 2019).  

Since jackfruits are highly perishable, they are usually exported as whole fruits and close to half of it consists of 
inedible waste materials making it less cost effective. Due to its inconsistence of the size and shape, designing 
jackfruit packaging materials is complicated while the thick skin and latex makes its preparation difficult. Also, 
the separation of jackfruit edible bulbs from jackfruit rind is a difficult and a quite labour intensive task making it 
unattractive to urban population with a busy lifestyle. The intense flavor of the flesh jackfruit makes it unacceptable 
to some consumers with a widespread belief that excessive consumption of it can lead to problems of digestion 
(Shrinath, Ramachandrayya, Haniadka, Dsouza, & Bhat, 2011). The other issue is with the seeds whose moisture 
content is 55% making it hard to keep them if not properly dried (Mahanta & Kalita, 2015). Despite the potential 
of jackfruit, few research works have been done to make use of its abundant waste (Ranasinghe & Maduwanthi, 
2019) creating research gaps that need to be filled. 

2.2 Major Parts of a Jackfruits 

Jackfruit has three main parts (Ranasinghe Maduwanthi, & Maduwanthi, 2019): the fruit axis, the perianth and the 
bulbs. The axis contains the core, latex and the arils (Figure 1). Jackfruit has lactiferous cells which are responsible 
for production of latex (Ranasinghe & Maduwanthi, 2019) which is sap that sticky in nature. The perianth contains 
the rind and the rags, the bulbs contain the edible part and the seeds (Figure 1). The inedible parts of jackfruit 
include prickly rind, non-edible perianth and a central core (Xu et al., 2018). All these inedible jackfruit parts are 
potential raw materials for bioenergy and biochar production.  

 

Figure 1. Parts of jackfruit (Swami, Ratnagiri, & Kalse, 2018) 
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3. Potential of Jackfruit Waste for Biogas, Briquette and Biochar Production 

3.1 Jackfruit Waste as Substrate for Anaerobically Producing Biogas 

Jackfruit contains sugars (Waghmare et al., 2019) and hence its waste can be anaerobically converted into biogas 
(Chakravarty, 2016). Likewise jackfruit seeds also contain non-reducing sugars which makes them suitable biogas 
substrates (Ranasinghe & Maduwanthi, 2019). Jackfruit also contains digestible starch (Waghmare et al., 2019) 
which can hydrolyze into sugars (Ranasinghe & Marapana, 2019). Specifically, jackfruit seeds are rich in digestible 
starch, protein and minerals (Akter & Haque, 2019) which are required for producing biogas. Research has 
indicated that jackfruit fruit sugar content varies with the maturity stage with the minimum sugar content being in 
the immature stage and the maximum being in the over ripened jackfruit (Ranasinghe & Marapana, 2019; Tiwari 
& Vidyarthi, 2019). The sugar content increases during ripening, corresponding to a decline of the starch content 
because of hydrolysis of starch during ripening (Goswami et al., 2011). According to Li et al. (2017), it was also 
confirmed that during fruit ripening, there is increased starch hydrolysis and decreased respiration which results 
in increased sugar content. Therefore, for optimum sugar content, jackfruit should be used when fully ripened. 
However, the current trend of harvesting premature jackfruit and ripening them near markets in Uganda is likely 
going to affect biogas production from jackfruit waste although no detailed study has been done to quantity this 
effect. According to Goswami et al. (2011), other than the stage of ripening, variety also influences the total sugar 
content of jackfruit where two jackfruit varieties considered at full ripening showed values ranging from 11.29% 
to 17.89%.  

3.1.1 Anaerobic Digestion of Jackfruit Waste for Biogas Production 

Anaerobic digestion is a process through which biogas is produced via microbiological breakdown of organic 
waste in absence of oxygen (Morales-polo, Cledera, & Soria, 2018). This biological process takes place by 
different bacteria (Sebola, Tesfagiorgis, & Muzenda, 2014). The by-product of this process, known as digestate is 
a potential agricultural fertilizer (Lošák et al., 2011; Walsh, Jiones, & Williams, 2018; Clements, Salter, Banks, & 
Poppy, 2012; Alburquerque et al., 2012) and hence can be used to improve crop production in nutrient deficient 
soils. Compared to the decomposing organic waste, the digestate does not smell and has less disease causing 
microorganisms with plant nutrients (Linville, Shen, Wu, & Urgun-demirtas, 2015). Compared to aerobic 
treatment, the anaerobic process saves the energy for aeration, generates much less sludge (almost 50 time less) 
and also produces energy-rich biogas (Boileau and & Merlin, 2015). 

3.1.2 Stages of Anaerobic Digestion 

Anaerobic digestion has four major stages (Menya, Alokore, & Ebangu, 2013); hydrolysis, acidogenesis, 
acetogenesis and methanogenesis. The succession of this process depends on the interactions between the different 
microorganisms in the four stages (Meegoda, Li, Patel, & Wang, 2018).  

During the hydrolysis stage of producing biogas, undissolved compounds such as polysaccharides, proteins and 
fats are degraded into their monomers such as sugars, amino acids and fatty acids (Teghammar, 2013) which are 
potential biogas substrates. The second stage is the acidogenesis where acidogenic microorganisms absorb the 
products from hydrolysis and use it to produce intermediate volatile fatty acids (VFAs) and other products (Shabih 
et al., 2018) which include alcohols, hydrogen, ammonia and carbon dioxide (Teghammar, 2013). 

 The third stage is acetogenesis where volatile fatty acids longer than two carbon atoms, alcohols longer than one 
carbon atom and brunched chained and aromatic fatty acids are broken down further into acetic acid, hydrogen 
and carbon dioxide (Teghammar, 2013). The last stage is the methanogenesis. Under this stage, the end products 
of acetogenesis are used as raw materials to produce methane and carbon dioxide by the methanogenic 
microorganisms (Aboderheeba, 2013). Methanogenic microorganisms are the most sensitive to oxygen among the 
known bacteria and therefore, they are mostly anaerobic. 

3.1.3 Factors That Affect Biogas Production from Jackfruit Waste 

For optimum biogas production from jackfruit waste, some factors must be maintained within acceptable ranges. 
The first one is temperature with different microorganisms having different intervals, where their growth is optimal 
(Wang, Guo, & Wen, 2019). Three temperature ranges are defined by (Teghammar, 2013) as psychrophilic (10 0C), 
methophilic (37 0C) and thermophilic (50 0C).  

The substrates pH under digestion is an important factor and should be monitored for success and stability of the 
digestion process. A falling pH points towards acid accumulation (VFAs) and digester instability. Different 
microorganisms within the digester require different pH values but important to these are methanogens. These 
microorganisms quickly respond to pH change in the reaction. When the pH deviates from the optimum range for 
them, there will be a greater decrease in the methanogenic activity, which leads to a build-up of acetogenesis end 
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products (Aboderheeba, 2013). Anaerobic processes are preferably run at a pH range of 7.0-8.5 (Teghammar, 2013), 
outside this range, the process faces imbalances. 

The carbon-nitrogen ratio also affects biogas production from jackfruit waste. A high Carbon-Nitrogen ratio means 
methanogens are using more nitrogen than carbon and it results into less gas production (Rabii, Aldin, Dahman, 
& Elbeshbishy, 2019). A low Carbon-Nitrogen ratio increases the concentration of ammonia and pH values up to 
8.5, which is not favorable to methanogens (Pavithran, Kannan, Jayasingh, & Karthikeyan, 2015). Optimum 
Carbon-Nitrogen ratios are between 20-30 to ensure maximum gas production (Aboderheeba, 2013). To maintain 
the Carbon-Nitrogen in the recommended range, low Carbon-Nitrogen substrates ratio like animal manure should 
be mixed with high Carbon-Nitrogen ratio substrates like organic waste. 

Nutrient substrate content also affects biogas production since nutrients such as protein, fats and carbohydrates 
provide the energy required by the microorganisms (Teghammar, 2013) during anaerobic digestion. The nutrients 
needed for growth of microorganisms are carbon, nitrogen, hydrogen, phosphorus, potassium, Sulphur and iron.  

3.1.4 Some of the Earlier Studies of Biogas Production from Jackfruit Waste 

Even though jackfruit waste has sugars and starch required for biogas production, less research has been conducted 
to produce biogas from it compared to other fruits and vegetables like pineapples, mangoes and others. This has 
created a research gap that can be to be filled. Some of the studies conducted on jackfruit waste as a substrate in 
relation to biogas production and the possible research gaps are highlighted below.  

Using mesophilic conditions, pineapples, oranges, jackfruit and bananas were co-digested with cow dung to 
produce biogas (Chakravarty, 2016). According to the results, co-substrates digestion produced the highest amount 
of biogas at 3 weeks followed by the cow dung which was a control substrate at a temperature of 36 0C. This 
temperature disagreed with the temperature used in the earlier study by Pavithran et al. (2015) under the same 
mesophilic conditions. They maintained a temperature of 38 0C when studying the factors influencing biogas 
production using jackfruit as a substrate. Therefore, this is a knowledge gap that should be researched to ascertain 
the temperature at which optimum biogas production from jackfruit waste can be obtained.  

According to Umeghalu, Okwonko, Ngini and Okoye (2015) and Pavithran et al. (2015), jackfruit waste was co-
digested jackfruit with chicken droppings and cow dung to enhance biogas production. However, both studies 
disagreed on the pretreatment method used. The study by Pavithran et al. (2015) pretreated jackfruit waste by 
reducing the substrate particle sizes and addition of tungsten as a catalyst and sodium hydrogen carbonate to control 
the pH. The study by Umeghalu et al. (2015) also pretreated jackfruit waste by reducing the substrate particle sizes 
but after soaked it for 20 days before anaerobic digestion. Other researchers like (Amin et al., 2017) have proved 
that sodium hydroxide improves the digestibility of substrates and increase methane yield. However, no single 
study has evaluated these different pretreatment methods to find out which one works best with jackfruit waste. 
There is therefore a knowledge gap that should be researched to find out the best pretreatment method for jackfruit 
waste.  

The studies conducted by Pavithran et al. (2015), Chakravarty (2016), Umeghalu et al. (2015), Victor, Shajin, 
Roshni, and Asha (2014) and Vijayaraghavan, Ahmad, and Ibrahim (2006) all concluded that jackfruit waste can 
anaerobically be digested to produce biogas. However, none of these studies further conducted experiments to find 
out if the jackfruit-based digestate could be used as potential organic fertilizer for growth of crops. This has created 
another gap in knowledge hence a need conduct field experiments with selected crops to ascertain if the jackfruit-
based digestate can enhance crop growth as an organic fertilizer.  

According to Kougias and Angelidaki (2018), improved monitoring of key parameters affecting biogas production 
will provide better utilization of different substrates. For example monitoring the pH helps to control unacceptable 
increase in VFAs since the more VFAs accumulate, the lower the pH gets (Rai, Tassew, Parajuli, & Shah, 2016). 
Many of the jackfruit-based biogas experiments done in the laboratory are batch in nature. Such experimental 
setups don’t permit periodical monitoring of key parameters like pH that highly affects the production of biogas. 
This creates a knowledge gap and hence more research works can be directed towards designing digester setups 
that that allow periodical monitoring of key parameters like pH for optimum biogas. 

A study conducted by Victor et al. (2014) on augmentative invention of producing biogas from agronomic wastes 
using E. coli and Lactobacillus and jackfruit wastes, vegetable wastes and cow dung also produced biogas from 
jackfruit waste. The study observed that biogas production was more enhanced by the E. coli and Lactobacillus. 
The study also observed that lactobacillus is a better enhancer for more biogas production with short term period 
compared with the control condition although E. coli also acted as a modest range enhancer of producing biogas. 
Hence utilizing these two bacterial strains might tremendously enhance biogas production. 
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3.1.5 Enhancing Biogas Production from Jackfruit Waste by Pretreatment and Co-Digestion 

Pretreatment of jackfruit waste 

As pointed out by Victor et al. (2014), Deepanraj, Velmurugan and Jayaraj (2013), Montgomery and Bochmann 
(2014),  Tsapekos (2017), Karuppiah and Azariah (2018) and Westerholm, Castillo, Andersson, Nilsen, and 
Schnürer (2019), pretreatment of substrates enhances biogas production. Lignocellulosic materials derived from 
biological origin like jackfruit waste contain lignin, cellulose and hemicellulose (Raj & Ranganathan, 2018) with 
greater percentage being cellulose (Sundarraj & Ranganathan, 2017). This jackfruit composition requires 
pretreatment to optimize the volume of anaerobically produced biogas (Figure 2). An effective pretreatment 
method should be cost-effective and produce fewer inhibitors (Tayyab et al., 2018). Pretreatment is needed to alter 
structural and compositional hindrances to the hydrolysis process and subsequent degradation processes to enhance 
digestibility, improve enzyme hydrolysis and increase biogas yields (Aboderheeba, 2013). Substrate pretreatment 
methods include physical, chemical and biological methods (Kamusoko, Jingura, Parawira, & Sanyika, 2019).  

Physical pretreatment is employed first to break down the biomass size and crystallinity (Brodeur et al., 2011). It 
is done by shredding, grinding and milling (Tayyab et al., 2018). Milling as a pretreatment method does not produce 
compounds that are harmful to human beings hence a good choice for initial pretreatment of different 
lignocellulosic feedstock. 

 
Figure 2. Schematic diagram showing pretreatment methods (Amin et al., 2017) 

 

Chemical pretreatment was successfully used by Pavithran et al. (2015) to enhance biogas production from 
jackfruit waste. Acidic or alkaline solution are normally used for pretreatment of the biomass. However, although 
acid pretreatment can assist with the decomposition of substrates and to reduce the digestion time, its cost renders 
it financially ineffective compared to alkaline pretreatment (Meegoda et al., 2018). Alkaline pretreatment which 
mainly include ammonia and hydroxide compounds that don’t cause corrosion of surfaces like acidic pretreatment 
and they work well at ambient temperatures (Meegoda et al., 2018). Alkaline pretreatment works on the principle 
that fibers will swell altering the structure of lignin and uncovering the substrate to microorganisms (Chen, Stevens, 
Zhu, Holmes, & Xu, 2013). As anaerobic digestion usually requires use of alkaline solutions to balance the pH, 
alkaline pretreatments are preferred to acidic pretreatment. 

The last pretreatment method is the biological method. The method employs natural microorganisms possessing 
enzymes (bacteria, brown-white and soft rot fungi) which are capable of cell wall decomposition (Tayyab et al., 
2018). Additionally, high pressure, acids, alkali, high temperature or any reactive species are not compulsory for 
this pretreatment method (Zhang et al., 2011). The method has been successfully used by Victor et al. (2014).  

Co-digestion of jackfruit waste.  
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Studies conducted by Chakravarty (2016), Umeghalu et al. (2015), Rabii et al. (2019), Elniski, Chatterjee, Mondal 
and Doelle (2019) and (Nansubuga et al. (2015) concluded that co-digestion of substrates enhances biogas 
production compared to mono-digestion. Co-digestion is the combination of different substrates for improved 
biogas production (Attri, Sohpal, & Dewan, 2016). However, it’s important to note that when co-digesting 
substrates, the cost of transporting the co-substrates from the generation point to the biodigester should be put into 
consideration. Feedstocks with higher Carbon-Nitrogen ratios can be co-digested with lower Carbon-Nitrogen 
ratios substrates to achieve a nutrient balance and to avoid low biogas production due to unsuitable C/N ratios 
(Hagos, Zong, Li, Liu, & Lu, 2017; Alqaralleh, Kennedy, Delatolla, & Sartaj, 2017).  

3.1.6 Jackfruit Waste Digestate as a Potential Fertilizer 

Other than biogas, anaerobic digestion produces semi-liquid by-product. This by-product is termed as the digestate. 
The digestate contains all the nutrients in the original feedstock and hence a potential organic fertilizer (Walsh et 
al., 2018; Notaris, Sørensen, Bjarne, Radziah, & Eriksen, 2018). Jackfruit waste contains essential plant nutrients 
like nitrogen, phosphorus and potassium according to Waghmare et al. (2019). Hence its digestate could be 
potential fertilizer for crops production. This nutrient-rich fertilizer can either be applied manually through 
overflow outlet or through pretreatment for example drying before application (Phung, Roubik, Mazancova, Van, 
& Banout, 2018). Safe recycling of the digestate does not only require it to have the required plant nutrients, but 
also uncontaminated by undesirable materials (Teodorita et al., 2013). The digestate can as well be separated into 
solid and liquid parts. The solid part which is about 20% of the total digestate under goes compositing and applied 
to nutrient-deficient soils as a fertilizer (Kizito, Luo, Wu, Ajmal, & Lv, 2017). The liquid fraction is about 80% of 
digestate produced after mechanical separation is nutrients-rich and hence can be applied as a liquid fertilizer to 
various crops (Chadwick et al., 2015). Despite its potential, no studies have been done to explore the possibilities 
of using jackfruit waste -based digestate as a fertilizer hence a research gap. 

3.2 Jackfruit Waste as a Briquette Production Raw Material 

A briquette often refers to block of highly flammable solid material used as fuel to start and maintain a fire (Zubairu 
& Gana, 2014). Briquetting is a process of densification of biomass to produce homogeneous, uniformly sized 
solid pieces of high bulky density achieved using a binder (Kathuria, Maninder, & Grover, 2012). Briquettes are 
mostly biomass and charcoal briquettes. These briquettes have proved to be effective in generating energy from 
agricultural waste (Onukak, Mohammed-dabo, Ameh, Okoduwa, & Fasanya, 2017). Many briquette raw material 
sources have been used and newer ones are under investigations with a desire of using locally available materials 
for briquette production. Jackfruit waste is an organic waste from which briquettes have been produced (Waluyo, 
Pratiwi, & Sukmawati, 2017; Pratiwi, Waluyo, Wigyawidura, & Aridito, 2019) on addition to other agricultural 
wastes. 

A study conducted by Pratiwi et al. (2019) with the aim of examining the potential of jackfruit waste to produce 
bio-energy in form of briquettes showed that particle size impacts on higher and lower heating values of charcoal 
briquettes. This observation was similar to what Sutrisno, Anggono, Suprianto, Kasrun and Siahaan (2017) 
observed. However, their findings disagree with the findings of Tembe, Azeh and Ekhumelo (2017) and Huko, 
Kamau and Ogola (2015) who found that the difference in the heating values of the three particle size briquettes 
was not significant. Therefore, this is a gap in knowledge that needs to be researched to find out how particle size 
affects the calorific values of jackfruit-based briquettes.  

3.2.1 Characterization of Jackfruit-Based Briquettes 

Briquettes are normally characterized by their moisture content, ash content, volatile matter, fixed carbon and the 
calorific values (Sukarta, Sastrawidana, Putu, & Ayuni, 2018). 

According to SNI standards, it is recommended that briquettes are kept at a moisture content below 8% (Waluyo 
& Pratiwi, 2018). Low moisture content makes the briquette combustion easier and storage life longer while higher 
moisture content can cause mould growth during storage (Ishii & Furuichi, 2014). According to  Josephat and 
David (2017), the calorific value reduces with an increase in moisture content while density, ignition and burning 
time increase with an increase in moisture content. The study by Mkini & Bakari (2015) categorized the briquettes 
into high and low moisture content briquettes with average values of 29% (wet basis) and 12% (dry basis).  

The ash content is that part of a solid that do not burn (Pathak, Mandavgane, & Kulkarni, 2017) and the lower the 
ash content, the better the briquette in terms of combustion (Efomah & Gbabo, 2015). Ash contains 50% silica 
(Kraszkiewicz, Kachel-jakubowska, & Niedziolka, 2017) which affects the heat production (Hasan et al., 2017) 
and the other composition contains clay, calcium and magnesium oxide. Ash affects how heat is transferred to the 
surface of a fuel (Akowuah, Kemausuor, & Mitchual, 2012) and also increases dust emissions.  
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Volatile matter content is the quantity of substance that evaporates due to decomposition of compounds still present 
in a solid other than water (Waluyo & Pratiwi, 2018). High percentage of volatile matter indicates that the substance 
can easily ignite and burn although the combustion is fast and difficult to control (Pathak et al., 2017). However, 
when its value is low, it means the briquettes cannot easily ignite, but also once ignited, they will burn smoothly 
(Falemara, Joshua, Aina, & Nuhu, 2018). The study by Waluyo and Pratiwi (2018) concluded that that the more 
the volatile matter, the more the smoke when the briquettes are turned on. Carbonization of the briquettes is advised 
in cases of high volatile matter content. During carbonization, organic matter is heated to temperatures of 425 0C 
(Carnaje et al., 2018) in a low-oxygen environment (Quartey, 2014).  

Fixed carbon is the carbon that remains after volatile matter, is released after burning (Sukarta et al., 2018). This 
value is different from the ultimate carbon since a given amount of carbon is released as hydrocarbons in volatile 
matter (Tamilvanan, 2015). Fixed carbon shows the fraction of char that remains after the devitalization phase and 
these carbons combine with oxygen to release heat. Fixed carbon present in the substance enhances the heat value 
since the amount of fixed carbon acts as a major generator of hear during combustion (Suryaningsih, Nurhilal, 
Yuliah, & Mulyana, 2017).  

The last briquette characterization parameter is the calorific value. According to Sofyan and Subiyanto (2014), 
Antwi-Boasiako and Acheampong (2016) and Arellano, Kato and Bacani (2015), calorific value is the main 
parameter for measurement of biomass fuel quality from different agricultural wastes. The study by Obi, Akubuo 
and Okwonkwo (2013) also concluded that the heating value is a very crucial combustion property because it 
shows the quantity of fuel required to generate a specific amount of energy. Determination of calorific values is 
experimentally done by the bomb calorimeter (Srivastava, Narnaware, Makwana, Singh, & Vahora, 2014; Idah 
and Mopah 2013). The bomb calorimeter ensures precise combustion of biomass samples in the defined conditions 
(Kabenge et al., 2018). 

Like any other agricultural waste, jackfruit waste can be put together with other agricultural residues for production 
of composite briquettes. According to Musa (2012), composite briquettes have enhanced carbon and hydrogen 
contents and heating values making them better alternatives to fossil fuels which anyway need to be abandoned 
due to their negative effect on the climate. Banana and jackfruit leaves with higher calorific values than jackfruit 
waste (Phichai, Pragrobpondee, Khumpart, & Hirunpraditkoon, 2013) can be put together with jackfruit waste to 
produce composite briquettes with better characteristics. However, no single study has considered mixing jackfruit 
waste with banana and jackfruit leaves. Therefore, this is a gap in knowledge that requires to be filled by producing 
such briquettes and determining their characteristics. As far as jackfruit-based briquettes are concerned, their 
emissions in form of GHGs, toxic compounds and particulate matter also has to be considered. This still is another 
research gap, and most probably reduces the appropriateness of these briquettes for renewable energy production. 

3.2.2 Possible Binder for Jackfruit-Based Briquettes 

The binders are materials used for strengthening the briquettes and they are either combustible or non-combustible 
binders (Raju , Jyothi, Satya, & Praveena, 2014). Tapioca starch is an example of combustible binders that used in 
the production of jackfruit-based briquettes (Zubair & Gana, 2014; Tembe, Otache and Ekhuemelo, 2014) because 
its readily available. However, the study by Muazu and Stegemann (2015) noted that it is important to explore 
alternative binder sources to be used in biomass densification. Use of a binder can improve briquette properties 
like calorific values (Helwani, Fatra, Arifin, Othman, & Syapsan, 2018).  

Other forms of binders for jackfruit-based briquettes are cow dung, wheat flour and paper pulps (Shyamalee, 
Amarasinghe, & Senanayaka, 2015). Other authors like  Kaliyan and Morey (2010), Lumadue, Cannon and 
Brown (2012) and Hardianto, Pambudi and Irhamna (2018) have suggested use of natural binders like lignin at 
temperatures of 164 0C. These binders are rarely used with many studies using starch as a binder, creating a 
knowledge gap that can be filled by researching on the possibilities of using it as a briquette binder for jackfruit-
based briquettes. 

3.3 Jackfruit Waste for Biochar Production through Pyrolysis 

Other than biogas and briquette production, jackfruit waste is a potential raw material for production of biochar 
through pyrolysis (Smetanová, Dotterweich, Diehl, Ulrich, & Fohrer, 2012) given its carbon captured by jackfruit 
plants during photosynthesis (Sohi, 2012). Pyrolysis is the decomposition of biomass thermal-chemically under 
limited supply of oxygen at elevated temperatures for production of different products such as biochar, charcoal 
and biodiesel depending operating conditions (Nsubuga, Banadda, & Kiggundu, 2019). One of the great 
advantages of this process is that many types of raw materials can be used for example organic materials like 
jackfruit waste (Omulo et al., 2017) and inorganic materials like plastics (Owusu, Banadda, Zziwa, Seay, & 
Kiggundu, 2017). Pyrolysis process can be broken into separate categories which predict yields based on 
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temperature, heating rate and residual time (Cuthbertson, 2018). These categories include slow pyrolysis (350-550 
0C) according to (Kiggundu & Sittamukyoto, 2019), fast pyrolysis (600-1000 0C) and flash pyrolysis (800-1100 
0C) according to (Cuthbertson, 2018). Biochar production is favoured by lower heating rates and long residence 
times where components in the vapour phase continue to react with each other leading to formation of biochar 
(Jahirul, Rasul, Chowdhury, & Ashwath, 2012). Given its low heating rate and long residence time, slow pyrolysis 
is therefore recommended for biochar production (Cuthbertson, 2018). 

Conversion of biomass to biochar can greatly contribute towards achieving of soil amendments and long-term 
carbon sequestration (Kiggundu & Sittamukyoto, 2019). Soil carbon sequestration is a major means of reducing 
CO2 in the atmosphere and it is getting more interest of both scientific and civil sector because of its potential 
mitigating role against negative climate change effects (Doughty et al., 2013). Soil sequestration implies 
transferring atmospheric CO2 in pools and storing it in soil as a CO2 sink for long term to mitigate the negative 
climate change effects (Kumar, Kumar, Kakraliya and Jangir, 2017). Soil carbon sequestration can be achieved 
through biochar addition to the soil among other methods. Over the years, soil studies have attracted researchers 
as a sink for the atmospheric CO2 (Singh et al., 2018). Biochar can be incorporated into the soil using either power 
tiller or ox-plough without affecting its performance (Ndhlovu, Kiggundu, Wanyama, & Banadda, 2017).  

The use biochar application for soil amendment and carbon sequestration is not new. It has been found in areas of 
the fertile terra preta soils of the central Amazon basin in South America, the plaggen soils of North-West Europe 
and the ancient agricultural soils of the Andes (Downie, Zwieten, Smernik, Morris & Munroe, 2011). The terra 
preta soils in the Amazon have higher levels of soil organic matter, improved nutrients holding capacity, higher 
pH and higher moisture holding capacity compared to the surrounding soils. These soils have a clear anthropogenic 
origin involving the addition of charred organics (biochar), the remnants from earthed ovens used for cooking and 
firing pottery by the inhabitants to the surrounding soils (Downie et al., 2011). Thus, carbon stocks have remained 
high in these soils up to today, many years after abandonment. This has provided a basis for benefits of adding 
biochar to soils both in terms of carbon sequestration and soil amendment (Stoyle, 2011).  

However, it should be noted that the way biochar effects soils and crop productivity cannot be generalized since it 
depends on raw material used, crops being tested and site where biochar is applied (Lorenz & Rattan, 2014). At 
the moment, no study has been reported on the potential of jackfruit waste as raw material for biochar production 
to improve soil properties and mitigating the negative climate change impacts hence a research gap. The studies 
done so far have utilized jackfruit waste-based biochar for briquette production (Waluyo et al., 2017; Pratiwi et al., 
2019) and adsorption of heavy metals from water (Abid, Ibrahim, & Zulkifli, 2019; Ibrahim et al., 2020). Results 
from such a study will support the outcomes of United Nations COP 21 conference which advocated for the 
increase of organic soil carbon stocks to improve food security and mitigate the negative climate change impacts 
(Demenois, 2018). 

4. Conclusion 

The review concluded that given its starch, sugar and nutrient content, jackfruit waste can be anaerobically digested 
to produce biogas with higher gas volumes achieved through pretreatment and co-digestion of the substrate. 
However, little attention has been given to the potential of the jackfruit waste-based digestate for further utilization 
yet anaerobic digestion can produce large volumes of this digestate hence need for a detailed study to suggest ways 
of utilizing it. It was further concluded that jackfruit waste can also be used for production of briquettes given its 
higher heating values although different researchers have disagreed on the particle size effect on the briquette 
higher and lower heating values hence a research gap that need to be filled. The review also concluded that jackfruit 
waste is a potential raw material for biochar production through pyrolysis given its carbon content and that this 
biochar can be used for production of briquettes, adsoption of heavy metals in water and for soil amendment 
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