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Abstract 
The topic of appropriate technology for the conversion of waste biomass into valuable products has often been 
overlooked in Sub-Saharan Africa. The influence of the type of technology, biomass type, and operating 
parameters such as; temperature, moisture content, etc. on the conversion process, is a barely known. This 
contribution aimed at studying pyrolysis of wood residues, and the specific objectives were; (1) characterisation 
of organic products (wood vinegar and tar) of pyrolysis of wood residues, (2) investigation of the effect of 
temperature and feedstock type on the yield of products and (3) to carry out an energy balance of the pyrolysis 
reactor system. Wood residues were pyrolysed in a cylindrical batch reactor at temperatures 300-350, 400-450 
and 500-5500C and the organic were characterised using a gas chromatograph (GC) fitted with a flame ionisation 
detector (FID). The most notable compounds in the wood vinegar and tar were; alcohols, acids, furans, phenols, 
aldehydes, and ketones. The yield of vinegar, tar and char reduced significantly with an increase in temperature 
and the maximums were produced at 300-3500C whereas the yield of non-condensable gases increased with an 
increase in temperature. The type of feedstock used had no significant effect on the yield and distribution of 
products. The energy balance of the system revealed that the process was 78% efficient. The presence of the 
oxygenated aliphatic and aromatic hydrocarbons makes the wood vinegar and tar potential sources of chemicals 
and engine fuels. Preliminary trials with wood vinegar were lethal to black ants that are predominantly a menace 
to farmers in Sub-Saharan Africa. 

Keywords: Sub-Saharan Africa, appropriate technology, pyrolysis, biomass, wood residues, wood vinegar, tar, 
characterisation, energy balance 

1. Introduction 
Over the past decade, biomass has been identified as a renewable source of energy with the great potential to 
replace petrochemicals (Ucar & Ozkan, 2008). This has motivated a lot of research into biomass and bioenergy 
(Bridgwater, 2012; Mohamed, Kim, Ellis, & Bi, 2016; Mourant et al., 2013; Paré, Bernier, Thiffault, & Titus, 
2011). According to Demirbas (2009), the biggest portion (64%) of global biomass is produced by wood and 
wood waste. The processing of wood generates waste biomass in the form of wood sawdust, offcuts, bark and 
chips, which amount to over 45-55% of the entire input mass (Ogunwusi, 2014). In Sub-Saharan Africa, wood 
wastes are under-utilised leaving them to rot at the sawmills and this poses environmental and health issues such 
as pollution, greenhouse gas emissions, the formation of leachates, and blockage of sewer systems, watercourses 
and channels (Aiyeloja, Oladele, & Furo, 2013; Owoyemi, Zakariya, & Elegbede, 2016). Uganda, like other 
countries in Sub-Saharan Africa, South America and Asia is overwhelmed by excessive amounts of wood 
residues with no proper disposal and utilisation methods. Uganda approximately has an area of 241,551 sq. km 
of which, about 11% is currently under forestry and woodland coverage (UBOS, 2015). In 2013, Uganda 
produced 44.7 million tonnes of wood resources showing an increase of about 4.2% in productivity (UBOS, 
2015). According to MWE (2013), licensed pit-sawyers in Uganda produce about 100,000 m3 of sawn wood 
annually and if the timber that goes unrecorded is factored in, the amount produced becomes 300,000 m3. 
However, with the reported 20-35% sawmilling recovery (Kaboggoza, 2011), more than 405,000 m3 of 
sawmilling waste is produced of which, less than 10% is utilised in briquette making by local companies such as 
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Kampala Jellitone Suppliers Limited, Green Bioenergy, and Green Resources among others, leaving the rest to 
waste (Okello, Pindozzi, Faugno, & Boccia, 2013). 

The environmental problems associated with wood residues have motivated research into alternative methods in 
which the residues can be utilised. One promising method is the conversion of these residues into useful and 
value-added fuels to curb down the energy gap and also reduce the problems associated with the use of 
petrochemicals. Although there are a number of technologies for biomass conversion into useful energy such as; 
gasification, fermentation, torrefaction, etc., pyrolysis is the most modern and profound (Kan, Strezov, & Evans, 
2016). Pyrolysis is the thermochemical decomposition of biomass in the absence of oxygen and halogens at 
elevated temperatures (Choi, Jung, Oh, & Kim, 2014; Mohan et al., 2014). Pyrolysis results into three products 
namely; solids (biochar), liquids (pyrolytic oil) and non-condensable gases (Rivilli, Alarcón, Isasmendi, & Pérez, 
2011; Theapparat, Chandumpai, Leelasuphakul, & Laemsuk, 2014). The process occurs in three steps: the first 
being the loss of moisture and some volatiles, the second being the conversion of the unreacted residues into 
gases, volatiles and biochar and lastly, the third one being the slow chemical rearrangement of the biochar 
(Jeguirim & Trouvé, 2009). Pyrolysis of waste wood biomass can ensure efficient utilisation of the natural 
resource and helps prevent environmental pollution caused by improper disposal. The utilisation of biofuels 
derived from pyrolysis of wood biomass has substantial environmental benefits such as; reduced fossil CO2 
emissions, decreased global warming impacts due to low nitrogen and sulphur content of wood biomass and 
reduced fossil fuel reliance (Yorgun & Yıldız, 2015).  

The quality and yield of the products of pyrolysis mainly depend upon the type of pyrolysis, operating 
parameters and biomass type. Pyrolysis operating parameters include; heating rate, temperature, type of 
feedstock, sweep gas flow rate, biomass moisture content, residence time, catalyst and mineral matter (Akhtar & 
Saidina Amin, 2012; Önal, Uzun, & Pütün, 2011; Xiu & Shahbazi, 2012). Depending on the predetermined set 
of operating parameters, pyrolysis can be divided into three classes; slow, fast and flash pyrolysis (Jahirul, Rasul, 
Chowdhury, & Ashwath, 2012). Slow pyrolysis occurs at slow heating rates of 0.1-10°C/s with a process 
temperature range of 300-500oC. It is characterised by longer residence time and produces char as the main 
product (Marshall, Wu, Mun, & Lalonde, 2014). On the contrary, fast pyrolysis occurs at relatively high heating 
rates (10-200°C/s), higher temperatures (450-650oC), less residence time of 5 to 9 seconds and generates liquids 
as the main products at a yield of about 40-75% in practice (Yanik, Kornmayer, Saglam, & Yüksel, 2007). Flash 
pyrolysis takes place at extremely high heating rates greater than 100oC/s and at shorter residence time than fast 
pyrolysis (Shuangning, Weiming, & Li, 2005). This produces more of the incondensable gases which are 
currently of less interest and it occurs at higher temperatures of up to 1000oC (Jahirul et al., 2012). If the purpose 
of biomass pyrolysis were to maximise the yield of liquid products, a high heating rate, low temperature, and 
short gas residence time process would be required whereas a low temperature and low heating rate would be 
chosen for a high char production. If the purpose were to maximise the yield of non-condensable gases, a low 
heating rate, long gas residence time and high-temperature process would be preferred (Demirbas, 2004). Over 
the past decade, several studies have been conducted to investigate the effect of different operating parameters 
on the quality and yield of products for different types of biomass. Some of the studies include; Mango seed 
waste (Lazzari et al., 2016), Banana wastes (Omulo et al., 2017), Spent Coffee Grounds (Bispo et al., 2016), 
Peach cores (Moraes et al., 2012), Pine shaving (Keiluweit, Nico, Johnson, & Kleber, 2010), Aquatic biomass 
(Muradov, Fidalgo, Gujar, & T-Raissi, 2010), Pine needles (B. Chen, Zhou, & Zhu, 2008), Eucalyptus sawdust 
(Faccini, Vecchia, Ribeiro, Zini, & Caramão, 2013), Peanut straw (Tong, Li, Yuan, & Xu, 2011), Poultry litter 
(Cantrell, Hunt, Uchimiya, Novak, & Ro, 2012), Pinewood (Liu, Zhang, & Wu, 2010), Coconut fibres (Almeida 
et al., 2013), Poplar wood (Kloss et al., 2012) all with different types of pyrolysis reactors and operating 
parameters. 

Presently, there is no comprehensive research about the pyrolysis of biomass in Sub-Saharan Africa and 
influence of operating parameters is unknown. Furthermore, the pyrolysis reactor used in this study was 
specifically designed as an Appropriate Technology for developing regions (Joshi & Seay, 2016) and has not 
been used elsewhere. Omulo et al. (2017) did preliminary work on the reactor in which they pyrolysed banana 
wastes and characterised the organic products. There is a need to study other forms of biomass, operating 
parameters, and characterisation of the reactor. Therefore, the main objectives of this study were; (1) to 
characterise the organic products of pyrolysis of wood residues, (2) to investigate the effect of temperature and 
tree species on the yield and distribution of products and (3) to carry out an energy balance of the reactor system. 

Residues of pine and eucalyptus were considered in this study because they are the most commonly grown and 
harvested exotic tree species in Uganda for saw log and plywood production (Kaboggoza, 2011). Pine dominates 
government plantations to a margin of more than 80% (Kaboggoza, 2011). Although eucalyptus has been 
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traditionally used for pole and firewood, it is also currently recognised as a reliable source of timber used for 
heavy and light construction projects. Private plantations are mostly made up of pine at 54% followed by 
eucalyptus at 17% (Kaboggoza, 2011). 

2. Materials and Methods 
2.1 Study Area and Experimental Materials 

The study was conducted at Makerere University Agricultural Research Institute Kabanyolo (MUARIK) which 
is located at latitude 0.45° and longitude 32.62° about 21 km north of Kampala city. The wood residues used in 
the study were obtained from Bwaise sawmills, the second largest market for sawn wood in Kampala after 
Ndeeba producing over 3750 m3 of sawn wood per year (WWF, 2012). The residues were collected at the time 
of milling to ensure purely one species per sample is obtained. The age of the trees was not important in the 
study because commercial tree species are always harvested at a specific uniform age. 

2.2 Initial Characterisation of Biomass 

Proximate and elemental analyses were carried out according to standard procedures i.e. ASTM E 872 for the 
volatile matter, ASTM E871 for moisture content, ASTM D1102 ash content and fixed carbon by difference 
using a Thermostep thermogravimetric analyser (TGA) made by ELTRA. For elemental analysis, the standard 
methods according to ASTM E 777 for carbon and hydrogen, ASTM E778 for nitrogen and ASTM E775 for 
sulphur. Oxygen was determined as a difference from 100. An elemental analyser model CHS 580 also made by 
ELTRA was used. 

2.3 Pyrolysis Process and Experiments 

A cylindrical batch reactor with a volume of 37.6 litres designed and fabricated for developing regions by the 
University of Kentucky Appropriate Technology and Sustainability (UKATS) Research group at University of 
Kentucky was used for pyrolysis experiments (Joshi & Seay, 2016). The reactor used was powered by a rocket 
stove that utilises wood fuel as an energy source. The energy losses from the system were reduced by insulating 
the rocket stove with an outside layer packed with vermiculite. The pyrolysis system had a two-stage 
condensation system, the first one for removal of heavy components of pyrolysis vapors (tar) and the second one 
(a car radiator) for removal of volatile vapors (vinegar). The system had two storage containers, one for 
collecting tar and the second one for collecting vinegar as shown in Figure 1. The non-condensable vapors 
(NCGs) were vented through a pipe outside of the workshop and no sampling was done. 
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2.4 Characterisation of Wood Vinegar and Tar 

Every after each run, wood vinegar and tar were weighed and stored for analysis and characterisation. The 
remaining solid (biochar) was removed from the reactor and weighed. The gas yield was determined by a mass 
balance of the reactor. The tar and wood vinegar from the different types of feedstock i.e. pine residues, 
eucalyptus residues and the 1:1 blend of pine and eucalyptus were labelled as shown in Table 1 and then taken 
for analysis. A gas chromatograph (GC) model 7820A from Agilent Technologies was used to characterise the 
wood vinegar and tar. Characterisation experiments were conducted using an Agilent DB-624 UI column with a 
length of 30 m, a diameter of 0.250 mm, and a film thickness of 1.40 µm. The GC was equipped with a flame 
ionisation detector (FID). The temperature program began with an initial temperature of 35°C, held for 1 minute, 
and then helium was used to carry the gas ramped at 120°C /minute to 26°C and held for 10 minutes, for a total 
run time of 34 minutes. 

 

Table 1. Labels for the organic products of pyrolysis of different types of feedstock 

Product Label 

Pine vinegar PV 

Pine tar PT 

Eucalyptus vinegar EV 

Eucalyptus tar ET 

The mixture of Pine and Eucalyptus vinegar PEV 

The mixture of Pine and Eucalyptus tar PET 

 

Peak identification was done by matching the retention times of the chromatographic column samples with 
standard chromatograms made at UKATS. The peak area normalisation method was used to determine each 
compound’s percentage content (Omulo et al., 2017). The pH values for all the wood vinegar and tar samples 
were determined using a pH meter model HI 2215 pH/ORP whereas densities were estimated by determining the 
masses of the samples and then divide by their respective volumes. 

2.5 The Energy Balance of the Reactor 

The energy balance of the reactor was carried out based on both the energy input and energy output of the 
reactor and the efficiency was estimated using Equation 1 

ݕ݃ݎ݁݊ܧ  ݕ݂݂ܿ݊݁݅ܿ݅ܧ = ௢ܧ ௜ൗܧ  
(1) 

Where; ܧ௜ = the input energy and ܧ଴ = the total output energy 

The amount of wood fuel consumed by the rocket stove per run was determined by weighing using a spring 
balance and then Equation 2 was used to estimate the energy input into the rocket stove. 

௜ܧ  = ிܯ × ܪܪ ிܸ (2) 

Where;	ܯி= amount wood fuel consumed per a given run and ܪܪ ிܸ = HHV for the firewood used. 

The energy output of the reactor was estimated by summing up the energy stored in the biochar, tar and wood 
vinegar and the NCGs. Wood vinegar and tar were combined as it was done by (Pattiya, 2011) and considered as 
one product referred to as bio-oil for the energy balance calculations. The energy stored in the biochar, bio-oil, 
and NCGs was estimated using Equations 3, 4 and 5 respectively;  

஻ܧ  = ஻ܯ × ܪܪ ஻ܸ (3) 

௅ܧ  = ௅ܯ × ܪܪ ௅ܸ (4) 

ீܧ  = ீܯ × ܪܪ ௚ܸ (5) 

Where; ܧ஻= energy stored in the produced biochar, ܯ஻= mass of the produced biochar for a given run, ܪܪ ஻ܸ= 

HHV for the biochar, ܧ௅= energy stored in the bio-oil, ܯ௅= mass of the produced bio-oil (tar + vinegar) for a 

given run, ܪܪ ௅ܸ= HHV for the produced bio-oil, ீܧ= energy stored in the NCG, ீܯ= mass of the produced 

NCGs, ீܸܪܪ = HHV for the NCGs 
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The higher heating values (HHV) for biomass (pine and eucalyptus residues), biochar and bio-oil were 
determined using a bomb calorimeter model IKA C2000 basic according to standard procedures ASTM E711-87 
for biomass and biochar and DIN 51900-1 for bio-oil. The HHV for NCGs was estimated using Equation 6 
(Raveendran & Ganesh, 1996). 

ܾܪ  ≈ ௖ܪ × ௖ܻ + ௟ܪ × ௟ܻ + ௚ܪ × ௚ܻ (6) 

Where; ܪ௕= HHV for biomass, ܪ௖= HHV for biochar, ܪ௟= HHV for bio-oil, ܪ௚= HHV for NCGs, ௖ܻ= Yield 

of biochar, ௟ܻ= Yield of bio-oil, ௚ܻ= Yield of NCGs 

2.6 Preliminary Trials of Vinegar on Black Ants 

The trials of vinegar on black ants were conducted at Makerere University Agricultural Research Institute 
(MUARIK). Active black ants were treated with freshly prepared vinegar and then observed for 20 minutes. 
Figure 2 shows the team of researchers from Makerere University and University of Kentucky observing the 
black ants after a treatment with vinegar at MUARIK. 

 

Figure 2. A team of researchers from Makerere University and University of Kentucky observing black ants after 
a treatment with freshly prepared vinegar 

 

3. Results and Discussions 
3.1 Initial Characterisation of the Biomass Feedstocks 

Results of proximate and elemental analysis for both pine and eucalyptus wood residues are presented in Table 2. 
Analysis of variance indicated significant difference (p<0.05) in the chemical composition of eucalyptus and 
pine residues for the volatile matter, fixed carbon, moisture content, ash content, elemental carbon and oxygen. 
This variation in the chemical composition has a great effect on the thermal utilisation of biomass and therefore 
has an effect on the quality and quantity of pyrolysis products (Obernberger, Brunner, & Bärnthaler, 2006). A 
high fixed carbon and ash content can result in increased biochar yield from the pyrolysis process whereas a high 
content of volatiles can result in increased bio-oil yield from the pyrolysis process (Lazzari et al., 2016). There 
was no significant difference (p>0.05) for the composition of hydrogen and nitrogen. 

 

Table 2. Proximate and elemental analysis results of pine and eucalyptus mill residues 

 Ma VMb FCb Ab C H N S Oc 

Pine 28 83.2 16.5 0.3 52.1 6.0 0.2 0.02 41.68 

Eucalyptus 30 74.0 21.9 4.1 73.28 3.2 0.22 0.05 23.25 

Note.; a as received basis; b on dry ash free basis, c by difference 

 

The values of proximate and elemental analysis obtained in this study are not so much different from those 
obtained in other studies. According to Cuiping, Chuangzhi, Yanyongjie, and Haitao (2004), the volatile matter 
of forestry biomass lies in the range of 61–76%. The moisture content of the pine and eucalyptus was much 
higher than that used in other studies. Biomass with lower moisture content is recommended for thermochemical 
conversion processes. Therefore, pine and wood residues required drying to lower moisture contents before it 
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and aromatic hydrocarbons in the organic products (Y. Lee et al., 2013; Sanna, Li, Linforth, Smart, & Andrésen, 
2011; Yorgun & Yıldız, 2015). It can be concluded from this chemical composition that the organic products 
cannot only be used as an engine fuel but also a source of different chemicals such as phenols, aldehydes, 
alcohols, and acids among others.  

3.3 The Relative Composition of the Compounds in the Produced Tar and Vinegar 

Figure 3 shows the relative chemical compositions of vinegar and tar produced from the different feedstock. The 
percentages are based on the retention times of the compounds in the gas column and the peak area of the signal 
under the chromatogram. It is quite clear that the most abundant compounds were; acetic acid (50.6%) in 
eucalyptus tar, acetaldehyde (27.0%) in eucalyptus vinegar, MPK (20.7%) in pine tar and furfural (16.0%) in 
eucalyptus vinegar all percentages on measured on water free basis. Generally, tar had a higher concentration of 
acetic acid and MPK than vinegar whereas vinegar had a higher concentration of furfural, acetaldehyde. 
Eucalyptus tar had the highest concentration of acetic acid followed by pine-eucalyptus blend tar and then pine 
tar. Tar contained no ethanol and methanol whereas vinegar contained no guaiacol. This is due to the fact that 
ethanol and methanol have a low molecular weight and can only be collected during the second condensation 
stage. Guaiacol has a very high molecular weight and therefore could not go beyond the first condensation stage. 

 

Note.; PV = Pine Vinegar, EV = Eucalyptus Vinegar, PEV = Pine-Eucalyptus blend Vinegar, PT = Pine Tar, ET = 
Eucalyptus Tar, PET = Pine-Eucalyptus blend Tar. 

Figure 3. Relative compositions of compounds found in the vinegar and tar from pine and eucalyptus wood 
residues 

 

It is more realistic to treat the identified compounds as mixtures of a few groups with similar properties rather 
than different individual organic compounds (Vispute & Huber, 2009). Groups identified for pine and eucalyptus 
vinegar and tar were alcohols, furans, ketones, acids, phenols, and aldehydes. Figure 4 shows the relative 
percentage of these groups of compounds. Eucalyptus products had a higher percentage of acids, aldehydes, and 
furfurals whereas those of pine had higher ketones, alcohols, and phenols. This might be due to the difference in 
the chemical composition of pine and eucalyptus residues as depicted by proximate and elemental analysis. 
Generally, vinegar had a higher concentration of furfurals, aldehydes while tar contained mainly acids and 
ketones. Due to their low molecular weight and volatility, no alcohols were detected in tars which imply they 
were only collected during the second condensation stage i.e. in vinegar. Phenols were only detected in tars i.e. 
first condensation stage and not in vinegar due to their high molecular weight. 
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Note.; PV = Pine Vinegar, EV = Eucalyptus Vinegar, PEV = Pine-Eucalyptus blend Vinegar, PT = Pine Tar, ET = 
Eucalyptus Tar, PET = Pine-Eucalyptus blend Tar. 

Figure 4. Different classes of compounds found in vinegar and tar produced from pine and eucalyptus wood 
residues 

 

Acids and ketones were the most abundant compounds in the products while alcohols, aldehydes, phenols, and 
furans were the least abundant. The same results were obtained by Wu et al. (2015) during his study on wood 
vinegar obtained from fir and bamboo wood residues. He found out that the components with lower content were 
aldehydes and alcohols and they were not affected by the pyrolysis temperature. Another form of grouping 
organic compounds is by combining aliphatics, aromatic and polar compounds. The organic products of 
pyrolysis are highly oxygenated multifaceted mixtures of hundreds of individual chemicals that can be grouped 
into many various classes of compounds (Pütün, Önal, Uzun, & Özbay, 2007). The relative percentage of 
aliphatic and aromatic in the organic products was 33% and 23.4% respectively making approximately a total of 
56% of aliphatic and aromatic sub-fractions. Consequently, this makes the tar and vinegar seem to be appropriate 
raw materials for the production of hydrocarbons and chemicals. 

3.4 Physiochemical Properties of the Products 

Table 3 shows the physiochemical properties of the organic products of pyrolysis of pine and eucalyptus wood 
residues. The properties studied were only pH and density due to resource constraints. It is very important to 
understand the physiochemical properties of pyrolysis oils in order to identify the appropriate applications and 
methods of upgradation. PH and density values for pine vinegar, eucalyptus vinegar, pine-eucalyptus vinegar, 
pine tar, eucalyptus tar, and pine-eucalyptus tar are presented. Generally, tars were slightly more acidic than 
vinegar. Eucalyptus tar was observed to be the most acidic product whereas pine vinegar was the least. 

 

Table 3. Physiochemical properties of organic products of pyrolysis of different feedstock 

Product Yield (wt%) Density/ kgm-3 pH 

Pine Vinegar 9.23 1078.84 4.2 

Eucalyptus Vinegar 9.12 1151.95 3.8 

Pine-Eucalyptus blend Vinegar 8.14 1361.53 3.3 

Pine Tar 14.31 1069.32 3.2 

Eucalyptus Tar 10.77 1232.27 2.5 

Pine-Eucalyptus blend Tar 10.43 1312.05 3.0 
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effect is a decrease in the volatile fuel production and a decreased yield of biochar as cellulose is converted to 
levoglucosan at temperatures above 3500C (Demirbas, 2004).  

Like char, the yield of tar and vinegar was observed to decrease slightly as the temperature increased. The 
findings of this study are in agreement with those in some of the existing literature (Heidari et al., 2014; Wu et 
al., 2015; Yanik et al., 2007) who reported higher yields and quality of bio-oil at lower temperatures. (Wu et al., 
2015) reported that the optimum temperature for the preparation of wood vinegar by slow pyrolysis is 3500C. 
The decrease in the liquid yield may due to the secondary cracking of some ingredients contained in the liquid 
product and pyrolysis vapours with rising temperatures because they are thermally unstable products (Demiral & 
Ayan, 2011; Park et al., 2008; Pattiya, 2011; Pattiya & Suttibak, 2012). However, some researchers have 
reported an increase in the yield of tar and vinegar with an increase in temperature (Ateş & Işıkdağ, 2009; 
González et al., 2005). The difference between the results obtained in this study and those by other researchers is 
due to the difference in pyrolysis systems used and feedstock. For example, Ateş and Işıkdağ (2009) used a fixed 
bed reactor and corncob as feedstock and also the temperature range studied was between 300-8000C whereas, 
González et al. (2005) studied pyrolysis of almond shells in a fixed bed reactor. From this study, it can be 
concluded that the optimum temperature for production of the liquid products of pyrolysis from wood residues is 
300-3500C. 

Unlike biochar, tar, and vinegar, the yield of NCGs increased with increase in temperature. Similar results have 
been observed by several other researchers (Heidari et al., 2014; Wei et al., 2006; Zheng, 2008). The increase of 
gas yields with increasing temperature is possibly due to a combination of secondary thermal cracking of the 
evolved pyrolysis vapours and the char secondary decomposition (Gerçel, 2011; Park et al., 2008; Pattiya, 2011; 
Pattiya & Suttibak, 2012; Yanik et al., 2007). It may be concluded that secondary reactions of the volatile liquid 
product and further decomposition of the char particles proceeded in the reactor with increasing pyrolysis 
temperature (Uzun & Sarioğlu, 2009). The pyrolysis process can be adjusted to favour biochar, pyrolytic oil, gas, 
or methanol production with 95.5% fuel to feed efficiency (Demirbas, 2004). Basing on the results from this 
study, it can be concluded that the production of NCGs can be optimised at higher temperatures.  

3.6 Effect of Feedstock on the Yield and Distribution of Products 

Figure 6 shows the yield and distribution of biochar, tar, vinegar and NCG for different sets of feedstocks i.e. 
pine, eucalyptus, and pine-eucalyptus blend. Analysis of variance indicated no significant difference in the yield 
and distribution of products for different types of feedstock. Though pine and eucalyptus had a different 
chemical composition as depicted by proximate and elemental analysis, it didn't have any significant effect on 
the yield and distribution of products. Yanik et al. (2007) reported similar results during his study on pyrolysis of 
corncob, straw and oregnum stalks. However, several other researchers have reported contrary observations (G. 
Chen, Andries, Luo, & Spliethoff, 2003; Mullen et al., 2010; Tsai et al., 2006). The differences between the 
results are due to differences between reactor types used, residence times and types of pyrolysis. For example, 
Tsai et al. (2006) did experiments on fast pyrolysis which normally produces different results from those of slow 
pyrolysis which was done in the current study. In addition, they applied induction heating which produces 
shorter residence times than wood fuel used in the current study. More still, Mullen et al. (2010) fast pyrolysed 
corn stover and corn cobs in a pilot scale fluidised bed reactor and this, might have caused the difference in 
results since it is known that different types of reactors can produce results.  



jsd.ccsenet.

 

 

3.7 Potent

Over the 
pyrolysis (
in the ch
anti-germi
(KIARIE-M
above stud
preliminar
predomina
minutes af
conclude t
However, 
pyrolysis w
promises t
transportat

3.8 The En

Table 4 sh
respective 
(27.2 MJ/k
eucalyptus
whereas N
obtained in
obtained b
in the rang
results of t
water cont
(Demirbas
feedstocks
application

org 

Figure 

tial Application

past decades, 
(Cao et al., 20
emical, pharm
inating agents
MAKARA, Y
dies attributed 
ry trials indica
antly a menace
fter exposure t
the optimal le
it can be con

which are leth
the application
tion fuels (Laz

nergy Balance 

hows the high
energy conten

kg) and lastly
s HHV and th

NCGs had the 
n some studies

by others such 
ge of 15- 20 M
this study and
tent of both th
s, 2004) when 
s, at different 
ns as substitute

6. Effect of fee

ns of the Wood

several studi
11; Mohan et 

maceutical and
s (Hagner, 20

YOON, & LEE
the vast appli

ated that pine 
e to farmers in
to the freshly 
ethal concentra
ncluded that t
hal to black an
n of the organi
zzari et al., 201

of the Pyrolys

her heating va
nts. For the pr

y NCGs (3.22 
herefore the a
lowest. The H

s such as (Uca
as (Demirbas, 

MJ/kg which is 
d some of the p
he feedstock an

he summarise
heating rates 

es for coal (Ah

Journal of Su

edstock on the

d Vinegar and 

ies have indic
al., 2007). Wo
d agricultural 
013), (2) used
E, 2010) and h
cations of vine
and eucalyptu

n the Sub-Saha
prepared woo
ation of either
the pine and e
nts. Also, the 
ic products of 
16; Yorgun & Y

sis Reactor Sys

alues of biom
roducts, bioch
MJ/kg). Ther

average value 
HHV for bio-o
ar & Ozkan, 20

2007). Accord
only 40-50% 

previous studie
nd the produce
d the elementa
and temperatu

hmad et al., 20

ustainable Devel

123 

e yield and dist

Tar 

cated the pote
ood vinegar ha

industries w
d as repellent
houseflies (Pan
egar to the pre
us wood vineg

aran Africa. Th
d vinegar. Bas
r pine or euca
eucalyptus wo
presence of o
pine and euca
Yıldız, 2015). 

stem 

mass, wood fu
ar had the hig

re was no sign
was reported

oil obtained in
008) and (Yorg
ding to Demirb
of the conven
es is due to th
ed bio-oil. The
al composition
ures. The high

014).  

lopment

tribution of py

ential applicati
as been found 

which include;
t for; mollus
ngnakorn, Kan

esence of aceti
gar and tar w

he black ants w
sing on the av
alyptus wood 
ood residues p
oxygenated ali
alyptus wood r

 

uel, biochar, b
ghest HHV (28
nificant differe
d. Wood fuel 
n the study wa
gun & Yıldız, 
bas (2007), the

ntional fossil fu
he differences 
e HHV of bioc
n of biochars fr
her HHV mak

yrolysis produc

ions of the or
to have a num
 (1) fungicid
cs (Hagner, 2
nlaya, & Kun
ic acid. During

were lethal to b
were observed 
vailable data, i
vinegar for sp

produce vineg
iphatic and aro
residues’ pyro

bio-oil, and th
8.53 MJ/kg), f
ence (p>0.05) 
had the highe

as slightly low
2015) but also

e HHV of the b
uels. The diffe
in the chemica
char fell in the
from pyrolysis 
kes chars attra

Vol. 12, No. 5;

 
cts 

rganic produc
mber of applica
des, pesticides
2013), mosqu
tha, 2012). Al
g the present s
black ants tha
to die in abou

it is not possib
praying black 
ar and tar thr
omatic compo
lysis in engine

he NCGs and 
followed by bi

between pine
est energy co

wer than the v
o higher than t
bio-oils is typi
rences betwee
al composition
e range reporte
of several bio

active in some

2019 

ts of 
ations 

and 
uitoes 
ll the 
tudy, 

at are 
ut 2-5 
ble to 
ants. 

rough 
ounds 
e and 

their 
io-oil 
e and 
ntent 
alues 
those 
ically 
n the 

n and 
ed by 
mass 

e fuel 



jsd.ccsenet.org Journal of Sustainable Development Vol. 12, No. 5; 2019 

124 
 

Table 4. Higher heating values and energy content for the feedstock and the products of the pyrolysis reactor 
system 

Material  HHV (MJ/kg) Energy content (MJ) 

Biomass feedstock in the reactor 19.79 79.16 

Biochar 28.53 54.87 

Wood fuel 25.20 101.38 

Bio-oil 27.20 19.94 

NCG 3.22 4.34 

 

The HHV for NCGs was relatively low as compared to other products. Several other researchers have obtained 
similar results and they attributed the low HHV of NCGs to high percentages of carbon dioxide (K.-H. Lee, 
Kang, Park, & Kim, 2005; Luo et al., 2004; Piskorz et al., 1998). The typical LHVs of the pyrolytic gases range 
from 10 to 20 MJ/Nm3, depending on their practical composition (Kan et al., 2016). NCG had the lowest energy 
content due to its low calorific value whereas biochar had the highest due to its high calorific value and high 
yield. Although the NCGs had a relatively low energy content, they can provide some part of the energy 
requirements of the pyrolysis plant (Yanik et al., 2007). This can tremendously improve the efficiency of the 
pyrolysis process and system.  

 

Table 5. Normalised energy values for the pyrolysis reactor input and output materials 

Material Normalised energy content values (MJ/kg of biomass 
pyrolysed) 

Wood fuel 25.35 

Biomass feedstock 19.79 

Biochar 13.72 

Bio-oil 4.99 

NCG 1.09 

Total energy output (biochar +bio-oil +NCG) 19.80 

Total input energy (wood fuel +biomass feedstock) 45.14 

Input energy for the reactor system (wood fuel energy) 25.35 

Input energy for the pyrolysis process (biomass 
feedstock energy) 

19.79 

The efficiency of the pyrolysis reactor system 78.00 

 

Energy content values for all the materials involved in the energy balance calculations were normalised on per 
kg of biomass pyrolysed basis and the results are presented in Table 5. Total input and output energies of the 
reactor system per kg biomass pyrolysed are presented i.e. 45.14 and 19.8 MJ respectively.  
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