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Abstract 
Rift Valley Fever disease has been recognized as being among permanent threats for the sustainability of 
livestock production in Ethiopia, owing to shared boarders with RVF endemic countries in East Africa. 
Above-normal and widespread rainfall have outweighed as immediate risk factor that facilitated historical 
outbreaks of the disease in the East Africa. The objective of the present study, thus, was to develop prospective 
localized seasonal rainfall anomaly prediction models, and assess their skills as early indicators to map high risk 
localized rift valley fever disease outbreak areas (hotspots) over the southern and southeastern part of Ethiopia. 
21 years of daily rainfall data; for five meteorological stations, was employed in diagnosing existences of any 
anomalous patterns of rainfall, along with a cumulative rainfall analysis to determine if there were ideal 
conditions for potential flooding. The results indicated that rainfall in the region is highly variable; with 
non-significant trends, and attributed to be the results of the effects of large-scale climatic-teleconnection. The 
moderate to strong positive correlations found between the regional average rainfall and large scale 
teleconnection variables (r ≥ 0.48), indicated some potentials for early prediction of seasonal patterns of rainfall. 
Accordingly, models developed, based on the regional average rainfall and emerging developments of El 
Niño/Southern Oscillation and other regional climate forcings, showed maximum skills (ROC scores ≥ 0.7) and 
moderate reliability. Deterministically, most of the positive rainfall anomaly patterns, corresponding to El Niño 
years, were portrayed with some skills. The study demonstrated that localized climate prediction models are 
invaluable as early indicators to skillfully map climatically potential RVF hotspot areas.  
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1. Introduction 
The burdens from vector-borne infectious diseases are affecting the least developed countries in Africa 
disproportionally (LaBeaud, 2008; Hotez & Kamath, 2009). Rift Valley Fever (RVF) is among such 
mosquito-borne viral zoonotic diseases. Its outbreaks had inflicted pronounced health and economic impacts in 
much of the countries in sub-Saharan Africa (Anyamba et al., 2010; Rich & Wanyoike, 2007). Since its first 
isolation in Kenya in 1930 (Daubney & Hudson, 1931), RVF outbreaks have been recorded in many countries in 
the region (Davies, 2010), and, recently, it has emerged in new geographical areas, with outbreaks reported in 
Yemen and Saudi Arabia in 2000 (Balkhy & Memish, 2003). 

Despite the long perceived high risk for the disease, many countries in Africa, including Ethiopia, have not 
reported RVF disease. One reason is because most RVF viral activity is cryptic and at a low level and not 
associated with detectable disease in humans and animals (Davies, 2008). Another reason could be the lack of 
systematic surveillance activities for such epidemic diseases or, if exists, because they are not necessarily 
optimal in many of these countries (Davies, 2010). As a result, most of them remain unaware of the circulation 
of the virus within their territories, which can be validated based on the fact that many African countries have 
found significant seroprevalence in sheep, goats and cattle for the RVF virus, yet without any clinical signs being 
reported in humans or animals (Davies, 2008).  

Ethiopia is not an exception to that, with RVF virus reported in 1995, following positive serological tests with no 
clinical disease, suggesting that the virus has been circulating in the country (Bouna, 2015; Teshome, Kasye, 



jsd.ccsenet.org Journal of Sustainable Development Vol. 11, No. 5; 2018 

103 
 

Abiye, and Eshetu, 2016). During the 1997/98 RVF epizootic period in the Horn of Africa (HoA) region, heavy 
rain fall and floods affected the southern and southeastern parts of Ethiopia, bordering Somalia and Kenya. Later 
on, in 1998, veterinarian field investigations carried out in Somali region and the Borena zone in Ethiopia, have 
observed high level of abortion among livestock in the areas (Wondosen, 2003). Furthermore, Aedes vexans 
arabiensis, belonging to the same subspecies of Aedes vexans and the chief enzootic vector of RVF virus, was 
recorded in Ethiopia (Bouna, 2015; Teshome et al., 2016; MoARD, 2008). It has, further, been noted that 
circumstances that allow occurrences of RVF epizootics in RVF endemic countries often prevail, simultaneously, 
throughout a large part of the African continent (Davies, 2010; Davies, Linthicum, and James, 1985).  

Ethiopia, being among the largest countries in Africa, has high population of domestic ruminants, sheep, goats, 
and camels. The total livestock population in the country has reached more than 88 million in head count, and is 
the largest in Africa, with the livestock sub-sector’s contribution estimated at 14% of the country’s total GDP and 
over 45% of the agricultural GDP. Hence, the critical role the livestock sector plays in the country’s economy 
means that any negative shocks to the sector can have adverse effects on the livelihoods of millions of 
households and the performance of the wider economy (Gelan, Engida, Caria, and Karugia, 2012). In such 
regard, widely prevalent livestock diseases have been major constraints to livestock exports, with RVF being the 
most important disease that has affected the export of live animals and meat to prime markets in Middle East 
countries. For instance, Since 1997/98 Ethiopia has faced a total of three export bans as a result of RVF epidemic 
situations in neighboring countries (Teshome et al., 2016).  

Outbreaks of several vector-borne diseases have been correlated with anomalous weather patterns and associated 
Extreme Weather Events (EWEs) (Davies, Linthicum, and James, 1985; LaBeaud, Ochiai, Peters, Muchiri, and 
King, 2007; Linthicum et.al., 1999; Patz, Epstein, Burke, and Balbus, 1996; Anyamba, et.al., 2009). The same is 
true for RVF, with its outbreak being episodic and closely linked to climate variability (Davies et al., 1985; 
Linthicum et.al., 1999). Historically, anomalously above-normal patterns of rainfall, usually associated with El 
Niño/Southern Oscillation (ENSO), have preceded most of the major RVF outbreaks in the region; as such, 
ambient climatic situations outweighed as immediate causes that facilitated the spread and transmission of the 
RVFV in the Horn of Africa (HoA) region (MoARD, 2008; Davies et al., 1985; Linthicum et.al., 1999; 
Reliefweb, 2010). ENSO is a well-known climate fluctuation that is associated with extremes in the global 
climate system. It is manifested as episodic anomalous warming and cooling of sea-surface temperatures (SSTs) 
in the equatorial eastern and central Pacific regions. At global scale, the El Niño phase of ENSO causes distinct 
and simultaneous patterns of flooding and drought, with a tendency for wetter-than-normal conditions and floods 
over Eastern Africa, particularly, when coincided with the short rainy season (from October to December). 
Generally speaking, the co-occurrence of anomalies over the east equatorial pacific and Indian Oceans (Black, 
Slingo, and Sperber, 2003), and the Zonal Dipole Mode over the Indian Ocean (IOD) (Saji, Goswami, 
Vinayachandran, and Yamagata, 1999) are known to affect the short season’s rains over the equatorial east 
African region. Hence, the observed strong link between the anomalously above-normal and widespread rainfall 
and episodic RVF outbreaks in the HoA region has explicitly confirmed some skills in the predictability of a high 
potential for RVF outbreaks, based on possible early predictions of seasonal patterns of rainfall .  

Such RVF outbreaks forecasting models and early warning systems were attempted and made available at the 
continental level and proved to be efficient in raising alerts before onsets of potential RVF epidemics in the HoA 
region (Anyamba et al., 2010; Anyamba, et.al., 2009). Early Warning (EW) messages for RVF outbreaks have 
often been given by international institutions such as the Emergency Prevention System (EMPRES-i), the 
National Aeronautics and Space Administration (NASA) and the World Health Organization (WHO) (Gikungu, 
et al., 2016). The RVF risk prediction systems employed by such institutions have mainly been based on 
interpretations, in the context of the ENSO, of the leading global scale climatic and ecological indicators that 
would lead to conditions for emergence of RVF vectors and, subsequently, to the disease epizootics/epidemics 
over time. 

However, despite the proven potentials of such systems in identifying continental- and regional- scale 
eco-climatic conditions associated with potential vector-borne disease outbreaks (Linthicum et.al., 1999; 
Anyamba, et.al., 2009), there are some discrepancies between the spatial accuracy required by policy makers and 
actors at local levels and what has been being delivered, mainly because such monitoring and prediction systems 
have been based on interpretations of remotely sensed proxy variables as a substitution for leading RVF indicator 
elements; such as the Normalized Diffrence Vegetation Index (NDVI) as a proxy for regional rainfall. 
Furthermore, several factors, at local levels, including topography, closeness to surrounding water bodies, etc., 
determine how patterns of rainfall at such smaller spatial scales would evolve. Hence, such approaches might 
open a window for overestimation or underestimation of the leading RVF outbreak indicator variables. For 
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example, if NDVI is employed, as proxy for rainfall, specifically, in areas maintained with irrigation or where 
there have been unprecedented changes in land use it may be misleading (Gikungu, et al., 2016). There is, 
therefore, a real need to further improve the spatial and temporal accuracies of forecasts of the leading RVF 
indicator variables, and subsequently our skills in predicting RVF outbreaks. The use of high spatial resolution 
mapping to identify flooded regions in RVF endemic areas at risk or even the use of radar data has been 
suggested as possible approaches to improve such discrepancies (Anyamba et al., 2010).  

Ethiopia has started providing emphasis to RVF disease following a serious of outbreaks of the disease in the 
neighboring countries. The country has developed RVF Contingency and Preparedness Plan since June 2008, and 
set active RVF surveillances in place over high risk areas bordering RVF endemic countries. The plan underlines 
the importance of RVF specific Early Warning (EW) programmes and early outbreak prediction models in 
mounting appropriate, timely, and cost-effective responses against the disease, based on early predictions for 
potential above normal seasonal rainfall over high risk areas (MoARD, 2008). However, to date, no single effort, 
that the author is aware of, were made in an attempt to analyze and explain the coupling between patterns of 
local climatic variability with risks for potential establishment and spread of the RVFV, let alone an attempt to 
develop locally relevant RVF prediction models based on any of the leading RVF outbreak indicator variables.  

Apart from that, several studies have previously investigated the influence of ENSO and other regional forcings 
on the patterns of rainfall in Ethiopia. Most of these studies, however, have focused on variability and 
predictability of the June to September rainfall season, and, merely, for areas over the central and northern half 
of the country (National Meteorological Service Agency (NMSA), 1996; Bekele, 1997; Shanko, & Camberlin, 
1998; Korecha & Barnston, 2007; Gissila, Black, Grimes, and Slingo, 2004). Paradoxically, there are no 
previous studies, except one by Degefu, Rowell, and Bewket (2017), regarding the influence of such large scale 
teleconnections on patterns of rainfall for the (September) October – December ((S)OND) season in Ethiopia, 
which is known as the short rainy season for areas over the southern and southeastern parts of the country. 
Despite such limitations, the findings of Degefu et al., (2017) depicted statistically significant positive 
correlations between Sea Surface Temperature (SST) and patterns of the short rainy season’s rainfall over the 
southern and southeastern parts of the country. Furthermore it has been indicated that there are skills in inferring 
patterns of seasonal rainfall in the country based on those large scale teleconnection variables (NMSA, 1996; 
Bekele, 1997; Shanko, & Camberlin, 1998; Korecha & Barnston, 2007; Gissila et al., 2004; Degefu et al., 2017). 
Recognizing such a possibility, the NMA of Ethiopia has started, recently, to provide seasonal rainfall 
predictions based on such teleconnection patterns, though its importance continues to be somewhat 
underweighted (Degefu et al., 2017).  

Hence, in responding to the quest for better capability for predicting the seasonal pattern of rainfall for areas 
characterized as having high risk for RVF disease outbreaks in Ethiopia, and for improved early and rapid 
detection of possible RVF outbreaks at the local levels (MoARD, 2008), this particular study argues and shows 
that simple empirical prediction models can be efficiently used. The approach can be one way to identify local 
scale ‘rainfall hotspots’ (rainfall hotspots, in this study, are defined as areas for which an anomalously above 
normal and wide spread seasonal rainfall is forecasted for), which can serve as early indicators for areas with 
high potential risks of RVF outbreaks. Such local scale rainfall prediction models could enhance the efficiency in 
targeting zones, districts, or provinces to deploy resources, in time, and strengthen efforts for active surveillance, 
detection, and control of RVF disease. Furthermore, predicting the pattern of rainfall at such finer-local scale, at 
a reasonable lead-time preceding potential RVF outbreak periods in neighboring countries, could help to 
prioritize targeted surveillance and mosquito control activities, in accordance with available resources.  

The paper begins with a short description of the study area, the data employed, and the methods used in the 
analysis, followed by the results and discussion section that elaborates on, in order of appearance, results of the 
quality control process, seasonal and annual trends in the rainfall series, daily and monthly cumulative rainfall 
totals, and patterns and strengths of seasonal correlations of rainfall with large scale teleconnection indices. The 
results of subsequent analyses on predictability of the pattern of the regional rainfall are also presented. Finally it 
ends with the main conclusions drawn from the study. 

2. Materials and Methods  
2.1 Description of the Study Areas 

The study areas are purposefully selected, for this particular study, based on their geographical proximity and 
climatic similarity to RVF endemic countries in the HoA region (Keneya and Somalia), and the nature of 
cross-border livestock movement (trade or seasonal migration). Accordingly five districts were selected; 
Deghabur and Kebridhar (from the Somali regional state), Dire, Moyalle and Yabello (from the Borena zone of 
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development (Gonzalez-Rouco, Luis, Quesada, and Valero, 2001; Štěpánek, Zahradníček, and Fardaet, 2013). 
Outliers (suspicious data) are observation values very distant from a threshold value of a specific time series data 
that can be due to measurement errors or to extreme meteorological events (Gonzalez-Hidalgo, Lopez-Bustins, 
Stepanek, Martin-Vide, and De-Luis, 2009; Göktürk, Bozkurt, Sen, and Karaca, 2008). Several approaches that 
focus on temporal and/or spatial variability can be applied in order to identify outliers and diagnose whether they 
are erroneous or not (Barnett & Lewis, 1994; Peterson et al., 1998). In this particular study, the Tukey fence 
outlined in (Ngongondo, Yu-Xu, Gottschalk, and Alemaw, 2011) was used to censor outliers in the rainfall 
datasets.  

The primary objective of outliers trimming is to reduce the size of the distribution tails in order to make a safer 
use of the nonresistant homogenization techniques used later (Štěpánek et al., 2013). Hence, rather than rejecting 
extreme values in the data (suspicious data values) they were replaced by some threshold value that kept the 
information of an extreme event and yet did not have such an important influence on the nonresistant statistical 
techniques employed latter in this research. 

The Turkey fence is the data range: ሾQଵ − 1.5 ∗ IQR, Qଷ + 1.5 ∗ IQRሿ (1)

Where Q1 and Q3 are respectively the lower and upper quartile points, 1.5 are standard deviations from the mean, 
and IQR is the interquartile range.  

In this study values beyond these limits were considered as suspicious data points and subjected to further 
evaluations to check if the trimmed values carried any physical meaning and, hence, for suppression of false 
alarms. If no plausible interpretations were found, outliers were set to a limit value corresponding to ±1.5×IQR, 
otherwise, to keep the information from extreme events, suspicious outlier values of each monthly precipitation 
series were identified as those values trespassing a maximum threshold for each time series (Trenberth, & 
Paolino, 1980; Peterson, Vose, Schmoyer, and Razuvaev, 1998), defined as: P୭୳୲ = Qଷ + 3IQR (2)

Where, Q3 is the third quartile and IQR the interquartile range. Subsequently, suspicious values were replaced by 
the corresponding unique Pout values (Gonzalez-Rouco et al., 2001; Göktürk et al., 2008). The original values of 
the outliers were restored, latter, for specific studies concerning extreme values (e.g. potential flooding). This 
method has more resistance against outliers because quartiles are used in this method (Gonzalez-Rouco et al., 
2001). 

Homogeneity tests: The second step of the quality control process involved homogeneity tests. A homogeneous 
climate series is defined as one where variations are caused only by changes in weather and climate (Conrad & 
Pollak, 1950). The presence of in-homogeneities is a common problem in climate time series. These 
irregularities in climate data can deceive the actual results and lead to some wrong conclusions (Vicente-Serrano, 
Beguería, Lopez-Moreno, García-Verac, and Stepanek, 2010). Thus, to assess some meaningful climate analysis, 
the climate data must be homogeneous (Stepanek, Zahradnicek, and Skalak, 2009). Although several techniques 
have been developed for detection of irregularities on a site and their adjustment, no single procedure is 
explicitly recommended.  

In this particular study, due to their lower demands in application and interpretation as well as because the 
stations are randomly distributed, with poor correlations among the stations, three homogeneity tests; Pettitt test, 
Buishand Range (BR) test, and Standard Normal Homogeneity Test (SNHT), were used for absolute testing of 
homogeneity (using stations own data) of the rainfall series. For each of the daily rainfall series, two testing 
variables, annual mean and annual maximum values, were considered. The following sections outline in detail 
the methodology for performing these tests. 

Pettitt’s test: This test is a nonparametric test, which is useful for evaluating the occurrences of abrupt changes in 
climatic records (Yesilırmak, Akçay, Dagdelen, Gürbüz, and Sezgin, 2008). One of the reasons for using this test 
is that it is more sensitive to breaks in the middle of the time series (Wijngaard, KleinTank, Können, 2003). The 
statistic used for the Pettitt’s test is computed as follows: 

ܷ௞ = 2෍݉௜ − ݇(݊ + 1)௡
௜ୀ଴  (3)

Where mi is the rank of the ith observation when the values X1, X2 ….. Xn in the series are arranged in ascending 
order. The statistical break point test (SBP) is as follows: 
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K = maxଵஸ୩ஸ୬|U୩| (4)

When Uk attains maximum value of K in a series then a change point will occur in the series. The value is then 
compared with the critical value given by Pettitt (1979). 

Buishand Range (BR) test: Buishand, (1982) noted that tests for homogeneity can be based on the adjusted 
partial sums or cumulative deviations from the mean and it is given as follows: 

S଴∗ = 0	and	S୩∗ = ෍(y୧ − yത),୩
୲ୀଵ k = 1, 2, … , n (5)

The term Sk
* is the partial sum of the given series. If there is no significant change in the mean, the difference 

between yi and yത will fluctuate around zero. The significance of the change in the mean is calculated with 
‘rescaled adjusted range’, R, which is the difference between the maximum and the minimum of the Sk

* values 
scaled by the sample standard deviation (SD) as: R = (max଴ஸ୩ஸ୬ S୩∗ − min଴ஸ୩ஸ୬ S୩∗ SD⁄ ) (6)

The critical value for R/ n is calculated by Buishand (1982). 

Standard Normal Homogeneity Test (SNHT): A statistic T(y) is used to compare the mean of the first y years with 
the last of (n - y) years and can be written as below: T୷ 	= 	yZ1 + (n − y) Zଶ, y = 1,2, … , n (7)

Where, Zଵതതത = 	 ଵ୷	∑ (ଢ଼౟ିଢ଼ഥ)ୗ୬୧ୀଵ   and  Zଶതതത = ଵ୬ି୷ ∑ (ଢ଼౟ିଢ଼ഥ)ୗ୬୧ୀ୷ାଵ  (8)

The year ‘y’ consisted of a break if the value of Ty is a maximum. To reject null hypothesis, the test statistic, T0, 
should be greater than the critical value, which depends on the sample size. The test statistic, T0, is given as: T଴ = maxଵஸ୷ஸ୬ T୷ (9)

Classification of the results of the homogeneity tests: After testing the homogeneity of all the selected stations, 
for the testing rainfall variables, the results of all the three tests were evaluated. The results were classified 
following (Schonwiese & Rapp, 1997; Amit & Mohammed, 2013). This classification was based on number of 
tests rejecting the null hypothesis. Three categories were identified: Class1: ‘useful’- one or zero of the tests 
rejected the null hypothesis; Class 2: ‘doubtful’- two tests rejected the null hypothesis; and Class 3: ‘suspect’- all 
the three tests consistently rejected the null hypothesis.  

The qualitative interpretations of the categories are as follows: 

Class1: ‘useful’- No clear signal of an inhomogeneity in the series is apparent. The series seem to be sufficiently 
homogeneous for trend analysis and variability analysis.  

Class 2: ‘doubtful’- Indications are present of an inhomogeneity of a magnitude that exceeds the level expressed 
by the inter-annual standard deviation of testing variable series. The results of trend analysis and variability 
analysis should be regarded very critically from perspective of the existence of possible inhomogeneities. 

Class 3: ‘suspect’- It is likely that an inhomogeneity is present that exceeds the level expressed by the 
inter-annual standard deviation of testing variable series. Marginal results of trend and variability analysis should 
be regarded as spurious. Only very large trends may be related to a climatic signal. Hence, series falling in class 
3 labeled ‘suspect’ could not be taken as reliable and removed from subsequent statistical analysis. 

Randomness and persistence analysis: One of the problems in the analysis and interpretation of trends in 
hydroclimatic data is the confounding effect of serial dependence (Partal & Kahya, 2006). The existence of a 
positive serial correlation in a time series could signify a significant trend, while in fact, due to random effects of 
the data series. A negative serial correlation, on the other hand, could cause an underestimation of the probability 
of a significant trend (Yu, Yang, and Kuo, 2006). Thus, time series data required for trend analysis should be 
random and/or non-persistent (Ngongondo et al., 2011). 
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Hence, before proceeding to trend analysis, the rainfall time series data were tested for randomness and 
independence using the autocorrelation function (r1) as described in (Box & Jenkins, 1976) in the following 
manner: rଵ 	= ∑ (x୧ − xത)(x୧ାଵ − xത)୬ିଵ୧ୀଵ∑ (x୧ − xത)ଶ୬୧ୀଵ  (10)

Where xi is an observation, xi+1 is the following observation, xത is the mean of the time series, and n is the 
number of data.  

The autocorrelation coefficient provides a measure of temporal correlation between the data points in a series, 
for different time lags (Brockwell & Davis, 1996). In this study, serial correlation of rainfall series, for all 
individual stations as well as for the regional average rainfall series, with time, was employed to see the 
tendency for the series to remain in the same state from one observation to the next or not. Whenever significant 
serial correlation appeared within a given time series, the data series had been ‘pre-whitened’, prior to applying 
the subsequent trend test, following the procedure described in Box & Jenkins (1976). The corrected data series 
is, thus, obtained as: (xଶ −	rଵxଵ, xଷ − rଵxଶ, … , x୬ − rଵx୬ିଵ) (11)
2.3.2 Trend Analysis 

The Mann–Kendall test: is a rank-based method (Mann, 1945; Kendall, 1975) that has been applied widely to 
identify significant trends in hydroclimatic variables (Yenigun, Gumus, and Bulut, 2008). The test checks the 
null hypothesis of no trend versus the alternative hypothesis of the existence of increasing or decreasing trend. 
Furthermore, it is a non-parametric method, which is less sensitive to outliers (temper values of time series) and 
test for a trend in a time series without specifying whether the trend is linear or nonlinear (Partal & Kahya, 2006; 
Yenigun, Gumus, and Bulut, 2008).  

The Mann-Kendall’s test statistic is given as: 

S = ෍ ෍ Sgn୒
୨ୀ୧ାଵ

୒ିଵ
୧ୀଵ (x୨ − x୧) (12)

Where S is the Mann-Kendal’s test statistics; xi and xj are the sequential data values of the time series in the 
years i and j (j > i), and N is the length of the time series. A positive S value indicates an increasing trend and a 
negative value indicates a decreasing trend in the data series. 

The sign of the function is given as: 

Sgn൫x୨ − x୧൯ = ൞+1 if ൫x୨ − x୧൯ > 00 if ൫x୨ − x୧൯ = 0−1 if ൫x୨ − x୧൯ < 0 (13)

This statistics represents the number of positive differences minus the number of negative differences for all the 
differences considered. For large samples (N > 10), the test is conducted using a normal distribution, with the 
mean and the variance as follows: EሾSሿ = 0var(s) = 	N(N − 1)(2N + 5) − ∑ t୩(t୩ − 1)(2t୩ + 5)୬୩ୀଵ18  (14)

Where n is the number of tied (zero difference between compared values) groups and tk the number of data 
points in the kth tied group. For n larger than 10, ZMK approximates the standard normal distribution (Partal & 
Kahya, 2006; Yenigun, Gumus, and Bulut, 2008) and the standard normal deviate (Z-statistics) is then computed 
as follows: 

Z୑୏ = 	 ۔ۖەۖ
ۓ s − 1ඥVar (s) , ifs > 00,																						ifs	 = 0s + 1ඥVar (s) , ifs < 0 (15)
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The presence of a statistically significant trend was evaluated using the ZMK value. In a two-sided test for trend, 
the null hypothesis Ho should be accepted if /ZMK/ < Z1-α/2 at a given level of significance. Z1-α/2 is the critical 
value of ZMK from the standard normal table. E.g. for 5% significance level, the value of Z1-α/2 is 1.96. All the 
trend results in this paper have been evaluated at the 5% level of significance to ensure an effective exploration 
of the trend characteristics within the study areas. 

The Sen’s estimator of slope: Sen’s estimator (Sen, 1968) has been widely used for determining the magnitude of 
trend in hydro-meteorological time series, depicting the quantification of changes per unit time (Hadegu, Tesfaye, 
Mamo, and Kassa, 2013). In the method, the slopes (Ti) of all data pairs are first calculated as: T୧ = 	 x୨ − x୨j − k for i = 1, 2, … , N (16)

Where, xj and xk are data values at time j and k (j > k), respectively. The median of these N values of Ti is Sen’s 
estimator of slope which is calculated as: 

β = ൞ T୒ାଵଶ , N is odd12 (T୒ଶ , N is even (17)

A positive value of β indicates an upward (increasing) trend and a negative value indicates a downward 
(decreasing) trend in the time series.  

2.3.3 Cumulative Rainfall Analysis 

Since Rift Valley fever outbreaks are known to follow periods of anomalously extended above-normal rainfall 
and associated potential flooding conditions, cumulative monthly and daily rainfall anomalies, corresponding to 
the short rainy seasons (OND) of two of the recent RVF outbreak periods (1996/97 and 2006/07), were 
calculated and plotted. The periods were purposefully selected to encompass the short rainy season for equatorial 
eastern Africa, which historically preceded or be followed by outbreaks of RVF epidemics.  

The cumulative rainfall anomaly index is calculated as: 

C୬ = ෍R୧ − ෍M୧୬
୧ୀଵ

୬
୧ୀଵ  (18)

where Cn is the cumulative rainfall anomaly value for time steps 1to n, Σ is the summation function, Ri was total 
rainfall at time step i of the series, and Mi is the average total rainfall for time step i.  

It has been known that the chances for flooding are enhanced if an ElNiño event coincided with the short rainy 
season for East Africa (October–December) (De-Luı´s, Gonza´lez-Hidalgo, Raventos, Sanchez, and Cortina, 
1999). This study illustrated the occurrences of potential flooding conditions by analyzing whether the calculated 
Cn values, for the periods preceding and including the first reported RVF outbreak month for east Africa- 
(December) were consistently positive or not. Accordingly, consistent positive Cn values, for consecutive two to 
three months, were considered as indicators for potential flooding situations.  

2.3.4 Precipitation Concentration Index (PCI) 

The monthly Precipitation Concentration Index (PCI) was analyzed following De-Luı´s et al., (1999), which is 
the modified version of the one given by Oliver (1980). The PCI values are calculated as: 

PCI = ෍P୧ଶ୬
୧ୀଵ ൭෍P୧୬

୧ୀଵ ൱ଶ൙  (19)

Where, Pi is the rainfall amount of the ith month. Based on the scale defined in De-Luı´s et al., (1999), PCI values 
below 10 indicate uniform monthly rainfall distribution; values between 11 and 20 indicate high concentrations 
of monthly rainfall distribution; and values of 21 and above indicate very high concentration of monthly rainfall 
distribution. Subsequently the results from the cumulative rainfall analysis and the calculated PCI values were 
interpreted together. The larger the values of the calculated PCI and the more consistent and positive the Cn 
values, then the more will be the potential for flooding condition. 

2.3.5 Seasonal Teleconnection Patterns and Strengths 

Correlation analyses were employed to investigate if the pattern of rainfall in the southern and southeastern 
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Ethiopia had significant correlations with large scale global and regional teleconnection indices. The correlation 
tests were set for the two to three months period corresponding to the RVF pre-epidemic and epidemic periods 
for east Africa. The analyses were based on the regional average SON rainfall totals, calculated as the average of 
SON rainfall totals for all the five rainfall stations selected from the southern and southeastern Ethiopia, and the 
two teleconnection indices, the Niño3.4 SST and the Indian Ocean Dipole mode (MDI), which are known to 
affect the pattern of seasonal rainfall in Ethiopia (Ogallo, 1988). Both positive and negative correlation values 
equal to and greater than 4.5 (r ≥ 4.5) were considered as indicatives for moderate to strong relationships. 

2.3.6 Predictability of Seasonal Rainfall Patterns 

To determine whether the regional average SON rainfall pattern could be predicted with a purely simple 
statistical model, based on the large scale SSTs data, Multiple Linear Regression (MLR) models were developed 
and their skills in predicting the regional average SON rainfall anomaly patterns investigated. Model equations 
were developed by using the MLR option in the Climate Predictability Tool (CPT) of the IRI 
(http://iri.columbia.edu). The selection of predictor variables for the models was based on the linear strength of 
the correlations between historical records of Niño-3.4 SST and DMI values and the regional rainfall total 
anomaly, averaged for the SON period. Both cross validation (Michaelsen, 1987) and retroactive (Barnston et al., 
1994) approaches have been widely used in studies involving climate prediction (Korecha & Barnston, 2007; 
Gissila et al., 2004; Thiaw, Barnston, and Kumar, 1999). In cross validation, a model is developed using all years 
but excluding each single year, in turn, which is predicted and verified in each case. The retroactive method 
involves partitioning the time series data into a training period and an independent verification period. Both 
forecasting approaches are described in-detail in the IRI website (http://iri.columbia.edu). In this study, the 
retroactive calculation option in the CPT was used to fit a MLR model to an initial subset of the overall model 
training period, with the models first trained with information from 1987/88 and leading up to and including 
1996/97, which resulted in a first training set of 10 years long. The seasonal rainfall of the next year (1997/98) 
was subsequently predicted using the trained models. This procedure had continued until the 2006/07 regional 
SON rainfall anomaly was predicted, using the models trained with data from 1987/88 to 2006/07, which 
resulted in 10 years (1997/98–2006/07) of independent forecast data. All the models, developed for regional 
average SON rainfall anomaly forecasts, were cross validated (5-years-out window) over the 20 years period 
from 1987/88 to 2006/07. 

2.3.7 Forecast Verifications 

In estimating skills of the models in predicting the regional average SON rainfall total anomaly over S- & SE- 
Ethiopia, the observed and predicted fields were separated into three categories defining above-normal, 
near-normal, and below-normal rainfall total anomalies. The three-category design employed in this study was 
based on threshold values as defined by the 33rd (below-normal) and 67th (above- normal) percentile values of 
the climatological record.  

Seasonal climate is inherently probabilistic, hence two attributes of interest for probabilistic forecasts were 
considered, i.e., discrimination (can the forecasts successfully distinguish different outcomes?) and reliability (is 
the confidence communicated in the forecast appropriate?) (Landman, Beraki, DeWitt, and Lötter, 2014). These 
two attributes were analyzed by using two of the outputs of the CPT MLR model fitting procedure as forecast 
verification measures, the Relative Operating Characteristic (ROC) (Mason & Graham, 2002) and the Reliability 
Diagram (Hamill & Colucci, 1997; Wilks, 2006). The ROC indicates how frequently the forecasts can 
successfully distinguish different below-normal from normal and above- normal, or above-normal from normal 
and below-normal. Specific to this study, it can also be translated as whether the forecasted probability for wetter 
condition, for the average SON period, was higher when an El Niño occurs, compared to when it did not occur. 
ROC scores for the three rainfall categories (above normal (AN), normal (N), and below normal (BN)) represent 
the respective areas beneath the ROC curve that are produced by plotting the forecast hit rates against the false 
alarm rates. If the area is ≤0.5, the forecasts have no skills, and for a maximum ROC score of 1.0, perfect 
discrimination has been obtained (Landman et al., 2014). The forecasts are considered reliable if there is 
consistency between the predicted probabilities of the defined rainfall categories and the observed relative 
frequencies of the observed rainfall being assigned to these categories. 

3. Results and Discussion 
3.1 Quality Control 

Outliers Identified: The results of the outlier trimming process are given in Table 1, in which Pout values and 
periods of extreme data values corrected for each station are tabulated. The result of the outlier identification 
depicts that the seasons that reach maximum values correspond to the rainy seasons of the respective sites in the 
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eastern and southeastern parts of the country. The number of outliers identified has a clear periodic cycle. For all 
of the observing stations, a higher number of outliers were detected for the respective months in the ‘MAM’ and 
‘OND’ seasons, while only three extreme data value were detected during the ‘JJAS’ season for Deghabur (1992) 
and Kebridhar (1992 & 1993). Furthermore, almost all of the months for which outliers were detected coincided 
with an El Niño episode; none has occurred during a La Niña episode. Such coincidences of anomalous data 
points with ENSO is not a matter of arbitrary chance, as the ENSO state is known to modulate the seasonal 
pattern of rainfall in some regions, particularly in the Tropics (Hastenrath, 1995). Specifically, for East Africa, it 
has been well known that an El Niño episode during the OND period is associated with an above-normal rainfall, 
with chances for flooding. The effects of ENSO on the SOND seasonal rainfall in the study areas is assessed 
more quantitatively latter.  

Thus, in the background of such mechanisms as a possible explanation for possibilities of anomalous weather 
patterns, specifically during the SOND periods; the overall agreement of the temporal distribution and seasonal 
characteristics of the rainfall and timing of outliers, with extreme data points occurring concurrent with ENSO 
episodes, supports the idea of the existence of a plausible physical mechanism, which can be attributed as a 
cause for the detected anomalous data, rather than taking such outliers as, merely, human-induced errors. Hence, 
in this particular study, outliers’ adjustments have been carried out by trimming only very extreme data points 
(values > Pout), with the aim of reducing large distribution tails, as a means of preprocessing previous to testing 
the rainfall series for homogeneity and subsequent corrections, if any.  

 

Table 1. Results of the outlier trimming process 

Stations Name Periods, for which, outlier values replaced by Pout 

JJAS OND 

Aug Pout (mm) Sept Pout (mm) Oct Pout (mm) Nov Pout (mm) Dec Pout (mm)

Deghabur 1992 19.2   -  1997 46 2006 0 

Kebridhar - - 1992/ 93 14.0 - - 1997 151.7 - - 

Moyale - - 2006 43.8 1997 396.6 - - - - 

Yabello - -   - - 1997 188.5 2002 111.3 

Mega - -   -  - - - - 
* Pout = UQ + 3IQR, where UQ is the upper quartile and IQR is the inter quartile range 

 

Despite great care was taken to conserve as much information as possible about the extreme events, by removing 
data points that are only greater than the corresponding Pout values, the process followed might inflict the 
possibility of dismissing interesting climatological information about extreme events. Hence, in the background 
of a plausible physical mechanism as a possible explanation for such anomalous extreme events, as explained 
above, and considering the basic objective of the study, i.e., identifying RVF hotspots (areas with anomalously 
high rainfall), the original values of the extreme data points were restored, latter, and employed in specific 
studies concerning extreme values, as for example in cumulative monthly and daily rainfall analysis. 

Homogeneity of rainfall series: Previous studies outlined that because of the inherent noise in a given time series, 
statistical homogeneity tests render results with some degree of uncertainty (Cheung, Senay, and Singh, 2008). 
However, the use of various statistical tests (Buishand Range, Pettitt’s, and SNHT tests) and different testing 
variables (annual rainfall total and annual maximum rainfall total) employed, under the current study, enabled to 
assess the homogeneity more reliably. Table 2 lists the results of the homogeneity tests for rainfall series and 
comparative test statistics calculated by the three techniques. It is clear from the table that out of the five stations 
analyzed for homogeneity, for annual mean and maximum rainfall series, not a single station was categorized as 
class 2 and/or class 3. Accordingly, the rainfall data series of all the stations were deemed sufficiently 
homogeneous for subsequent analysis, trend analysis.  
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Table 2. Comparison of results of the various homogeneity tests 

Variable Station 

Buishand Range 
(BR) test 

Pettitt’s test 
Standard Normal 
Homogeneity Test 

Classification
P 

value 
Break 
Point 

P 
value

Break 
Point 

P value Break Point 

Mean Annual 
Rainfall Total 

Deghabur 0.201 1989* 0.238 1989* 0.280 1987* Class 1 

Kebridahar 0.538 1997* 0.799 1992* 0.724 1997* Class 1 

Moyale 0.185 1988* 0.107 1990* 0.133 1988* Class 1 

Mega 0.749 1997* 0.443 1993* 0.770 1990* Class 1 

Yabello 0.868 1990* 0.674 1997* 0.920 1990* Class 1 

Annual Max 
Rainfall Total 

Deghabur 0.087 1994* 0.174 1989* 0.246 1994* Class 1 

Kebridahar 0.395 1997* 0.376 1997* 0.476 1987* Class 1 

Moyale 0.266 1989* 0.307 1989* 0.307 1988* Class 1 

Mega 0.193 1990* 0.262 1990* 0.016 1988** Class 1 

Yabello 0.391 1999* 0.385 1999* 0.312 1989* Class 1 
*Indicates non- significant change points at 0.05 significance level; **indicates significant change points at 0.05 
significance level 

 

Autocorrelation and persistence: For all the autocorrelations fallen within 95% confidence limits and standard 
errors of 0.1 (Figure 2) there was no apparent pattern observed (such as a sequence of positive autocorrelations 
followed by a sequence of negative autocorrelations). This means that there was no associative ability to infer 
from a current value of the time series to the next value. Such non-association was the essence of randomness; in 
that adjacent observations did not “correlate”, and that no dependency and periodicity apparently existed in the 
time series from one year to the next.  

3.2 Trends 

Annual and seasonal rainfall trends: The Mann–Kendall trend test shows that there was no significant trend 
towards wetter or drier conditions in in the southern and southeastern part of the country, for more than two 
decades, either for the annual or seasonal rainfall totals. This might be due to large inter-annual fluctuation of 
rainfall in the region. However, while interpreting the results of trend analysis, it is well noted that trends are real, 
yet insignificant, with, for example, a decreasing trend of annual rainfall depicted in most of the stations. In 
regard to the main rainy season in the region (‘MAM’ season), a notable observation was depicted with a 
decreasing trend in the rainfall totals for, almost, all of the stations studied, with the exception that an 
insignificant increasing trend was noted at Kebridahar station. Another interesting observation from the trend 
analysis was the consistent increasing trends of rainfall portrayed for the small rainy season (OND) for all of the 
stations studied (Table 3).  

Despite the fact that the trends are insignificant, the results indicated a general increase in the OND rainfall total 
over the southern and southeastern part of the country, with the OND rainfall at the stations of Deghabur, 
Kebridahar, Mega, Moyale and Yabello had increased by 41.54, 41.78, 54.42, 25.90, and 73.31 mm, respectively, 
for over the last two decades. 
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Figure 2. Autocorrelation of long-term annual rainfall totals for (a) Deghabur (b) Kebridahar (c) Mega (d) 
Moyale (e) Yabello 

 

Monthly rainfall trends: Considering rainfall during months of the small rainy season, encompassing the two 
months prior to the outbreaks of the RVF in eastern Africa (October and November) and the first two months of 
the RVF epidemic periods (December and January), an increasing trends were observed at most of the stations in 
the region, for all the months, except for November, for which a decreasing trend were depicted for Moyale and 
Mega stations, and December, with decreasing trend observed at Kebridahar station (Table 4).  

 

Table 3. Trends of annual and seasonal rainfall totals in southern and southeastern Ethiopia for the period 
1987-2007 

Stations Annual Belg (JFMAM) Kiremt (JJAS) Bega (OND) 

ZMK Slope ZMK Slope ZMK Slope ZMK Slope 

Deghabur -0.26 -0.79 -1.43 -3.72 1.00 1.21 1.43 1.81 

Kebridahar 0.63 2.25 0.03 0.23 -0.69 -0.02 0.97 1.74 

Moyale -1.41 -5.72 -1.61 -6.43 0.07 0.02 0.27 1.08 

Mega -1.18 -4.62 -1.42 -5.48 -0.57 -0.60 0.45 2.27 

Yabello -0.36 -2.11 -0.82 -3.80 -1.30 -1.80 1.60 3.49 
*ZMK is Mann–Kendall trend test; slope (Sen’s slope) is the change (mm)/year; bold values indicate statistical 
significance at 95% confidence level according to the Mann–Kendall test 

 

Table 4. Trends of monthly rainfall totals and mean PCI values for selected five stations for the period 
1987-2007 

Stations October November December January PCI 

ZMK Slope ZMK Slope ZMK Slope ZMK Slope 

Deghabur 0.96 1.37 0.73 0.0 0.39 0.0 0.08 0.0 30 

Kebridahar 0.78 1.61 0.49 0.53 -0.58 0.0 1.04 0.0 34 

Moyale 0.29 0.61 -0.55 -0.99 0.62 0.28 1.40 0.0 1.2 

Mega 0.69 1.62 -1.06 -1.45 1.00 1.45 -0.51 -0.07 1 

Yabello 1.09 0.83 1.60 1.36 0.0 0.0 -0.24 -0.14 20 
*ZMK is Mann–Kendall trend test; slope (Sen’s slope) is the change (mm)/year; bold values indicate statistical 
significance at 95% confidence level according to the Mann–Kendall test 
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Despite the very little variability of the stations with regard to the magnitude and direction of trends, increasing 
trends, yet insignificant, of rainfall were observed for all stations and for all the months preceding and concurrent 
with the reported RVF outbreak months for East Africa.  

In general, there was a positive trend in rainfall of the small rainy season over the southern and southeastern part 
of the country. However, neither of the trends was statistically significant. This result agrees with previous 
findings regarding the trends and spatial distribution of annual and seasonal rainfall in Ethiopia (NMSA, 1996; 
Cheung, Senay, and Singh, 2008). Cheung et al., (2008) argued that there are no significant changes or trends in 
annual rainfall at the national level in Ethiopia. It has also been confirmed that, between 1951 and 2006, no 
statistically significant trend in mean annual rainfall was observed in any season in the country (NMSA, 1996). 
However, several previous time-series studies of rainfall patterns in Ethiopia carried out at various spatial (e.g., 
national, regional, local) and temporal (e.g. annual, seasonal, monthly) scales have depicted many contradictions 
regarding their findings on annual and seasonal rainfall trends and climate extremes in the country. Both Seleshi 
& Zanke, (2004) and Verdin, Funk, Senay, and Choularton, (2005) have reported a decline in trend of annual 
rainfall totals in southern and southeastern Ethiopia. Seleshi & Zanke, (2004) have, further, indicated a decline in 
Kiremt rainfall in those areas. Despite such contrasting reports, on larger spatially aggregated scales, the result of 
rainfall trend analyses in the current study were found to be quite consistent and in agreement with most of 
previous similar studies that have concluded that there is no significant trend in annual and seasonal rainfall 
totals over the country. 

3.3 Monthly and Daily Cumulative Rainfall Totals 

Historically, for East Africa, the first reported case of Rift Valley fever disease outbreaks paralleled with or 
followed the short-rainy season (October–December). Such patterns were attributed to the influence of ENSO 
and other large scale teleconnections that is found to consistently result in anomalously above normal rainfall 
and flooding in the region, creating conducive climatic conditions for the vectors that carry or transmit the RVFV. 
In this study, for all the stations studied, similar pattern of consistent and above-normal rainfall is depicted in the 
monthly and daily rainfalls accumulated over the three-months period (OND) of the recent RVF outbreak periods 
in East Africa (1997/98 and 2006/07) as well, which indicates ideal ecological conditions for Rift Valley fever 
mosquito vectors emergence and survival. The daily and monthly rainfall totals accumulated over the three 
months (September - November), preceding the reported outbreak period of the RVF activity for east Africa 
(outbreaks in December 1997/98 and 2006/07), and including the actual outbreak month (December, 1997/98 
and 2006/07) were shown in Figure 3, for Deghabur, Mega, Yabello, and Moyale stations.  

 

Figure 3. Daily cumulative SOND rainfall totals (mm) for 1997/98 (dark black line) and 2006/07 (deep red line); 
(a) Deghabur (b) Mega station (c) Moyale station (d) Yabello 
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Figure 3 further indicated that rainfall during both the 1997/98 and 2006/07 short rainy season (SOND) was 
poorly distributed in the study areas, with high concentration of the rains close to the actual reported RVF 
outbreak month (December) for the HoA region. The cumulative rainfall for September and early October were 
very much low (less than 150 mm), depicting the previously drier conditions prevailed in the region. The 
increase above 200 mm cumulative rainfall had only occurred closer to the month of December.  

The ten-day cumulative rainfall anomaly for each of the months from October- to- December 1996/97 and 
2006/07 (Figure 4) also depicted that the OND seasonal rainfall was anomalously high, and that most of the 
individual months had received anomalously above normal rainfall. Moreover, the results for the Precipitation 
Concentration Index (PCI) analyses for Deghabur, Kebridhar, and Yabello depicted a high to very high 
concentration of the monthly rainfall distribution (PCI > 20%), in agreement with the findings of the cumulative 
rainfall analyses. However the PCI values for the remaining two stations, Mega and Yabello, indicated uniform 
monthly distribution of rainfall in the areas. The calculated mean PCI values, for all stations, are portrayed in 
Table 4.  

 

Figure 4. Cumulative ten-day rainfall anomaly for the 1996/97 and 2006/07 OND short rainy season a) Deghabur 
b) Kebridahar c) Mega d) Moyale e) Yabello stations, respectively. Black bars indicate 10days cumulative 

rainfall anomaly for each ten-day period of the Oct. to Dec. months and deep red bars indicate the cumulative 
seasonal (OND) rainfall total anomalies for the years 1996/97 and 2006/07, respectively, in order of appearances 

within the figures 

 

Thus, the persisted tendency for wetter-than-normal conditions during the 1997/98 and 2006/07 small rainy 
seasons (ONDJ) were an ideal condition for potential flooding in the region. Furthermore, the probability of 
persistence of RVF virus in the study areas, owing to the perceived high risk for the RVFV infection to enter into 
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the greater mosquito vector population of these areas was, thus, much higher owing to the conducive climatic 
conditions depicted in the findings of this study. Hence, had the infection entered in the grater mosquito 
population of the study areas, a significant risk of transmission of the diseases to livestock raised along 
communal grazing lands and to those which are kept in areas close to the over flooded areas would have been 
evident. 

3.4 Seasonal Teleconnection Patterns and Strengths 

The seasonal rainfall variability for the selected study areas in the S-and SE- Ethiopia, and the associated modes 
of SSTs (Niño3.4 and IOD), are shown in Figure 5, depicting a similar pattern of variability in the seasonal 
(SON) average regional rainfall as that of the equatorial east Pacific SST anomaly and the Indian Ocean Dipole 
(IOD) mode index (MDI). The strengths of linear relationship between the regional average rainfall total and the 
Niño-3.4 SST anomaly index and the Indian Ocean MDI, for all individual months and for the average of the 
SON period, are also shown in Table 5 and 6, respectively.  

 
Figure 5. Time series plots of standardized regional rainfall total and SSTs anomalies for (a) Deghabur (b) Mega 
(c) Moyale, and (d) Yabello. The figure depicts time series plots of the regional rainfall total anomaly (dark black 

line), Niño3.4 SST anomaly (deep red lines), and Indian Ocean Dipole Mode Index (deep purple lines), all 
averaged for the SON season and for the period 1994–2006; The SST indices are computed for the same period 

as the rainfall indices 

 

Table 5. Correlations between regional average SON rainfall total anomaly and the Niño-3.4 SST index for 
individual months from January to December, and for average SON SST 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SON

-0.35 -0.33 -0.30 -0.13 0.08 0.24 0.37 0.52* 0.57* 0.50* 0.51* 0.49* 0.53*

 *Values in bold are significant at significant level of 0.05 

 

Table 6. Correlations between regional average SON rainfall total anomaly and the Indian Ocean Dipole mode 
index (DMI) for individual months from January to December, and for average SON DMI 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SON

-0.28 -0.08 0.23 0.01 -0.12 -0.04 0.51* 0.48* 0.60* 0.72* 0.84* 0.50* 0.77*

*Values in bold are significant at significant level of 0.05 

 

The physical mechanisms through which the large scale teleconnection signals from the Pacific Ocean, or from 
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any other location, arrive in Ethiopia and subsequently influence the spatial and temporal pattern of rainfall in 
the country is outside the scope of this paper. As depicted in Table 5 and 6, the association of the regional 
average SON rainfall totals with both ENSO and IOD modes, in early months (January–July), is weak, and 
increases progressively as the time of the ENSO and IOD states approaches the beginning of the small rainy 
season (OND) in the southern and southeastern Ethiopia. The correlations are moderate, 0.57 and 0.52 for 
August and September ENSO modes and 0.51, 0.48, and 0.60 for the July, August, and September Indian oceans’ 
DMI, respectively, suggestive of some predictability of the average regional rainfall patterns two to three months 
in advance of the month for the first reported case of RVF in East Africa (December), based, solely, on the 
ENSO and IOD states of the respective individual months. In a similar manner the moderate positive correlations 
(> 0.5) between the regional average SON rainfall totals and the Nina3.4 SST and the Indian Oceans mode 
indices, happening simultaneously for the respective months (SON), also indicated the possibility for predicting 
the pattern of the average regional rainfall for SON, corresponding to the period preceding the reported RVF 
epidemic month (December) in East Africa, given that the large scale ENSO and MDI indices for the respective 
SON months are predicted and made available two to three months in advance. The correlation results for 
individual stations also indicated a persistent and statistically significant positive correlation (significant level= 
0.05) among the average SON rainfall total anomalies for each of the individual stations and the average of the 
ENSO (Table 7) and IOD (Table 8) modes occurring nearly simultaneously (in SON). The stronger correlation 
for the regional average SON rainfall totals than the correlations for any of the individual stations could be due 
to the filtering effects of spatial aggregation with respect to the random variability present in single location 
rainfall.  

The stronger patterns of relations between the small rainy seasons’ rainfall in the southern and southeastern 
Ethiopia and global SST indices (both ENSO and IOD) depicted in this study were similar with the findings of 
Degefu et al., (2017), except for the length of the season considered. Degefu et al., (2017) indicated that rainfall 
variations during October and November depicted similar statistically significant patterns of positive correlation 
between the Niño3.4 and IOD indices and gridded rainfall over southern Ethiopia. It is also in agreement with 
the findings of similar studies reported for equatorial east Africa, mainly for Kenya and Tanzania (Black et al., 
2003; Saji et al., 1999).  

 

Table 7. Correlations between average SON rainfall total anomalies and Niño-3.4 SST index for the study areas, 
for the period 1987-2007 

Stations Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec SON 

Deghabur -0.10 0.18 0.25 0.08 -0.07 -0.13 0.17 0.18 0.56* 0.51* 0.63* 0.24 0.651*
Mega -0.44 0.06 0.24 -0.07 -0.27 -0.15 0.55* 0.41* 0.41* 0.58* 0.65* 0.44* 0.766*

Moyale -0.22 -0.25 0.14 0.07 0.02 0.18 0.57* 0.59* 0.67* 0.77* 0.89* 0.49* 0.829*
Yabello -0.25 -0.05 0.18 -0.08 -0.30 -0.23 0.28 0.25 0.46* 0.53* 0.66* 0.47* 0.723*

*Values in bold are significant at significant level of 0.05 

 

Table 8. Correlations between average SON rainfall total anomalies and the Indian Ocean Dipole Mode Index 
(DMI) for the study areas, for the period 1987-2007 

Stations Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec SON 

Deghabur -0.49 -0.44 -0.43 -0.25 -0.05 0.14 0.24 0.39* 0.45* 0.38* 0.38* 0.35* 0.563*
Mega -0.27 -0.26 -0.23 -0.14 0.01 0.15 0.30 0.39* 0.43* 0.39* 0.40* 0.40* 0.828*

Moyale -0.19 -0.18 -0.15 0.01 0.18 0.30 0.38 0.53* 0.60* 0.54* 0.55* 0.54* 0.565*
Yabello -0.35 -0.34 -0.37 -0.27 -0.07 0.11 0.26 0.40* 0.44* 0.38* 0.39* 0.39* 0.787*

*Values in bold are significant at significant level of 0.05 

 

3.5 Predictability of the Regional Average SON Rainfall Total Anomaly  

Predictive models developed: Different models are fitted for the regional-average SON rainfall total anomaly. 
For example, the first model regresses the regional average SON rainfall total anomaly over both the Niño-3.4 
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SSTs anomaly index and the Indian Ocean MDI, averaged for the same period (SON), while the fifth model 
diagnose the predictability of the regional SON rainfall anomaly by fitting a MLR model with Niño3.4 SST 
anomalies and the Indian Ocean MDI, with different monthly lags, expressed as combinations of atmospheric 
and oceanic predictors whose values are available upon completion of the September month to predict the 
regional average SON rainfall total anomaly. In general, the predictability of the regional average SON rainfall 
total anomaly is investigated by using either of the Niño3.4 SST and MDI, independently, or in combination of 
both as potential predictors. 

Historical records for the Niño-3.4 SST and Indian Ocean MDI indices over 1987-2006, which showed moderate 
to stronger correlation (r ≥ 0.4) with the regional average SON rainfall total anomaly (Table 5 and 6), were 
included in the respective models, as predictors. The retroactive calculation procedure, employed in this study, 
resulted in 10 years (1997/98–2006/07) of independent forecast data. The MLR fitting procedure also provided 
stable estimates for the coefficients of the resulting model equations, for both the cross validation and the 
retroactive hindicasts.  

The performances of the models over the 20 years period are presented, here, in terms of the Kendall rank 
correlation coefficients, which is commonly referred to as Kendall’s tau (Thiaw, Barnston, and Kumar, 1999). 
Kendall’s tau is a measure of rank correlation, and is considered a robust (to deviation from linearity) and 
resistant (to outliers), alternative to Pearson’s or “ordinary” correlation. Kendall’s correlation measures the 
discrimination skills of the respective models (do the forecasts increase and decrease as the observations increase 
and decrease?). The model equations are presented in Table 9, along with the respective Kendall’s tau correlation 
coefficients. As depicted in the table, the discrimination skills of the models improved from the first (Model#1) 
to the last model (Model#5), in response to addition or removal of the large scale predictor variables. 

3.6 Forecast Verifications  

Retroactive forecast skills: The findings of the forecast verification process, over the 10 years retroactive period, 
from 1997/98 to 2006/07, using the ‘verification’ option in the IRI’s CPT, are outlined in the following sections. 

 

Table 9. Model equations and the corresponding performance scores for each of the models 

Models Predictors employed Model Equation Kendall’s 
tau 

Model#1 Sept_DMI & 
Avg_SON_DMI 

Regional_SON_Rainfall_Anomaly = 0.04671 – 
0.8813Sep-DMI + 1.7135AvgSONDMI 

0.347 

Model#2 Avg_SON_DMI Regional_SON_Rainfall_Anomaly = -0.00552 + 
1.00256AvgSON_DMI 

0.347 

Model#3 Sept_DMI Regional_SON_Rainfall_Anomaly = -0.0377 + 
0.601Sep-DMI 

0.284 

Model#4 Avg_SON_DMI & 
Avg_SON_ Niño3.4 SST 

Regional_SON_Rainfall_Anomaly = -0.00049 + 
1.05414Avg_SON_DMI -0.05640Avg_SON_ Niño3.4 SST 

0.189 

Mode#5 Sept_DMI & Sept_ 
Niño3.4 SST 

Regional_SON_Rainfall_Anomaly = -0.0564 + 
0.4067Sept_DMI + 0.360446207985Sept_ Niño3.4 SST 

0.074 

+ The coefficients and the overall “goodness of fit” of the models are statistically significant at the 95% level 

 

Relative operating characteristics: All the models showed maximum skills (ROC scores > 0.7) in successfully 
distinguishing the above normal and below normal rainfall categories as opposed to the normal category, for the 
SON period, as shown in the Relative Operating Characteristic (ROC) diagrams for the categorical forecast 
measures (Figure 6). Figure 6 also presented the ROC scores (in the right bottom panels in the diagrams) 
obtained by retroactively predicting the regional average SON rainfall total anomaly for the S- and SE- Ethiopia 
over the 10 years retroactive period from 1997/98 to 2006/07. The ROC scores for the normal category are less 
or around 0.5 for all models, except for the second model, which employed the average SON DMI as the only 
predictor of the regional average SON rainfall total anomaly.  
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Figure 6. ROC diagrams and scores obtained by retroactively predicting the regional average SON rainfall total 
anomaly for (a) Model#1; (b) Model#2; (c) Model#3; (d) Model#4; and (e) Model#5 

 

Reliability: Among the five models constructed to forecast the regional average SON rainfall total anomaly over 
the S- and SE- Ethiopia, the highest ROC scores were obtained for Model#1. This section, thus, elaborates on 
verifying how reliably this specific model could discern the pattern of the SON rainfall anomaly in the region. 
Figure7 shows the reliability diagrams for forecasts of the regional average SON rainfall total anomalies 
produced by Model#1.  

 
Figure 7. Reliability diagrams and frequency histograms for the regional average SON rainfall total anomaly 

forecasts; (a) for above-normal (>67th percentile) and (b) for below-normal (<33rd percentile) categories. The 
predictors are the Indian Ocean MDI index for the month of September and for the seasonal (SON) average. The 
thick Red curves represent the observed relative frequencies for the above- and below- normal categories and the 

thin red line is the weighted least squares regression line for respective reliability curves 

 

The figure presented the reliability curves for the above and below normal categories along with weighted least 
squares regression lines for the two categories. The weighting is relative to how frequently forecasts are issued at 
a given confidence level (Landman, DeWitt, Lee, Beraki, and Lötter, 2012). Regression lines along the diagonal 
of the reliability diagram imply perfect reliability, while regression lines above (below) the diagonal imply that 
observed wet (dry) SON rainfall season tend to occur more (less) frequently than predicted. Furthermore, 
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histograms plotted within the reliability diagrams outlined the frequencies with which the two categorical 
forecasts occurred and revealed how strongly and frequently the issued forecast probabilities departed from the 
climatological probabilities.  

Deterministic skills: The previous section presented verification statistics for the probabilistic forecasts using the 
models developed. Similar to the discussion for reliability, the deterministic forecast performance for the model 
which showed the highest ROC score (i.e., Model#1) is presented here. 

Figure 8 shows the plot of observed regional average SON rainfall anomaly index and the retroactive and 
cross-validated predictions for the regional average rainfall anomaly, for the same period, obtained by regressing 
the observed regional average SON rainfall anomaly with the Indian Ocean Dipole MDI values over the 10 years 
retroactive period, from 1997/98 to 2006/07. The model performed well in portraying most of the positive 
anomalous rainfall pattern (wettest condition) for the SON period corresponding to the three El Niño years 
(1997/98, 2002/03, and 2006/07), and the driest condition for the 1999/00 La Niña event, with the signs of the 
predicted rainfall anomaly during these years captured by the forecasts, emphasizing the already demonstrated 
strong positive correlation between the average regional SON rainfall total anomaly and the teleconnection 
anomalies. These findings are also in agreement with the results of the correlation analyses presented, which 
outlined that the rainfall anomaly in the region is highly correlated with a positive Indian Ocean Dipole mode 
(Table 6). The results from both hindcasting techniques are depicted in Figure 8. 

 

Figure 8. Observed and model predicted standardized regional average SON rainfall total anomalies; (a) 
Retroactive hindicast technique and (b) Cross-validated hindicast technique 

 

The short-term (SON) rainfall anomaly prediction captured the signs of the rainfall anomaly for 8 out of the 10 
years of the retroactive prediction period, corresponding to a “hit rate” of 80%. However, despite the skills of the 
model in predicting the sign of the SON rainfall anomaly correctly during both the El Niño and La Niña events, 
the model underestimated the observed severity of the anomaly, especially for the 1997/98 SON period. 
Moreover, the amount of the overall variance of the regional average SON rainfall total anomaly pattern 
explained by the model depicted a moderate skill; with R2 values of 0.423 (R = 0.651) and 0.39 (R = 0.621), for 
the retroactive design and the cross-validation approach, respectively.  

One interesting observation is noted when fitting the relationship between SSTs and regional rainfall anomaly 
concurrently in time. When the average SON MDI is employed as a predictor, independently, the resulting MLR 
model (Model #2) explained 35.3% (r=0.59) and 26.4% (r=0.51) of the overall variance of the regional average 
SON rainfall anomaly for the cross-validated and retroactive approaches, respectively—far more than the other 
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candidate predictor taken alone, Niño-3.4 SSTs. Hence a simple regression, with the average SON MDI as the 
only predictor could also be sufficient (Figure 9).  

Notwithstanding large amount of the overall variances of the average SON rainfall pattern in the region remained 
unexplained, overall, the fitted models could be taken for granted, specifically in view of the primary objective 
of this particular study, which is discriminating the anomalous pattern of rainfall during the three months period 
preceding the reported outbreak of RVF epidemics for East Africa, for which the model depicted higher skills. 

 

Figure 9. Observed and model predicted standardized regional average SON rainfall anomalies. Dark black line 
(observed); deep red line (cross-validated forecast); deep blue line (retroactive forecast). The predictor is average 

SON MDI that is fitted to the regional average SON rainfall anomaly by simple linear regression 

 

4. Conclusions 
This paper documents a potential operational prediction of ‘rainfall hotspot’ areas at finer spatial scale, which 
can serve as early indicators of high risks for outbreaks of RVF epidemics. Diagnosis of the pattern of the short 
rainy season (SOND) over the southern and southeastern Ethiopia confirmed stronger correlations among the 
regional rainfall total anomaly, the convergence of ENSO conditions in the eastern Pacific, and the concurrent 
warming of SSTs in the western equatorial Indian Ocean region, similar to the rest of RVF endemic countries 
over the equatorial east Africa region. Examination of trends in annual and seasonal rainfall shows an absence of 
any systematic patterns of changes in the long term rainfall trend across the region. Thus, yet insignificant, the 
observed seasonal rainfall trends over the study areas are, thus, attributed to be the result of the large scale 
teleconnections and the associated atmospheric and oceanic driving forces. Analysis of the regional rainfall 
anomaly pattern, concurrent with the late 1997/ 2006- and early 1998/ 2007 outbreak periods in the HoA region, 
indicated that a similar RVF conducive climatic situation had been persisted over the southern and southeastern 
lowland parts of the country. Accordingly, had the RVFV been entered into the greater mosquito vector 
populations in this part of the country, it would have taken no longer before the establishment, spread, and the 
occurrence of RVF disease at an epidemic proportions. 

The moderate to high correlations between the regional average rainfall anomaly and the large scale 
teleconnection variables suggested some predictability skills two to three months preceding outbreaks in 
neighboring RVF endemic countries. The study demonstrates the capacity of a simple localized climate 
prediction models in skillfully mapping climatically suitable RVF (rainfall) hotspot areas, based on emerging 
developments of ENSO and other regional climate indicators. Thus localized climate prediction models are 
invaluable as early indicators for areas having high risk for RVF potential outbreaks and could be taken as an 
important and integral part of the disease surveillance. Such models deemed critical in mounting effective 
localized response against the disease, in accordance with available local resources, and help reduce the impact 
of outbreaks of vector-borne diseases such as RVF. 
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Appendix A  
Table A1. Environmental and climate data sets used in the study: Sources, lengths of data period, and their 
specific purposes in the study 

Data Source and Description Period Purpose(s) 

Observed 
Rainfall 
Data 

National Meteorology Agency (NMA) 1987- 
2006 

Teleconnection, & 
input for prediction 
models development

Nino3.4 
SST 
anomaly 
index 

NOAA_CPC (http://www.cpc.noaa.gov/data/indices/) 

NINO3.4 SST: is one of the four SST regions used by the National Oceanographic and 
Atmospheric Administration’s/ Climate Prediction Centre (NOAA/CPC) to monitor 
the phase, amplitude and propagation of ENSO events [34]. 

URL: 
http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/nino_regions.shtml 

1987- 
2006 

Teleconnection, & 
input for prediction 
models development

Indian 
Ocean 
Dipole 
Mode 
(DMI) 

Frontier Research Center for Global Change (FRCGC) (FRCGC) 

The Indian Ocean Dipole (IOD): is a coupled ocean-atmosphere phenomenon in the 
Indian Ocean. It is normally characterized by anomalous cooling of SST in the south 
eastern equatorial Indian Ocean and anomalous warming of SST in the western 
equatorial Indian Ocean. Associated with these changes the normal convection situated 
over the eastern Indian Ocean warm pool shifts to the west and brings heavy rainfall 
over the east Africa and severe droughts/forest fires over the Indonesian region. 

1987- 
2006 

Teleconnection, & 
input for prediction 
models development

 

Copyrights 
Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 


