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Abstract 

Tree branches provide multiple functions in tree growth. It is necessary to study the allometric patterns of 

branches in order to understand some quantitative perspectives in tree growth. In this study, branches of seven 

crape myrtle trees (Lagerstroemia indica) were studied to examine allometric relationships in different times. 

The results indicated that the total basal area of branches at one order was far more than it at the next lower order 

(branches far from trunks). The scaling exponents of frequency distribution in both branch length and diameter 

decreased from above 1.0 in May to 0.1 in November as branches grew. The entropy of branch length and 

diameter both decreased at the beginning and then increased for all trees during the growing season. The 

observed entropy was always less than the maximum entropy. The average slenderness of branches was close to 

20 for all trees. There were higher fluctuations in the slenderness within small or short branches (diameter less 

than 10 mm or length less than 100 cm). The scaling exponents between branch radius and length were 

concentrated at 1.0 for most trees. The correlation between the branch diameters of 1st order and the number of 

branches at 2nd order was not significant. The general trend and deviations in allometric relationships may help to 

understand the complexity in tree branch development. 
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1. Introduction 

Studying the patterns of branch growth is important to understand tree growth. Changes to tree morphology, such 

as changes with age and crowding, have been previously studied in forestry with an emphasis on timber (Raulier 

et al., 1996). Tree branches provide multiple functions during tree growth, such as light interception, canopy 

photosynthesis, water and nutrient transportation, space filling, and biomechanical tolerance of wind or rain 

(snow) loading (Küppers, 1989; Skatter & Kucera, 2000; Nishimura 2005). Tree branching is influenced by 

many biological and environmental processes in trees, such as photosynthesis and drought. Analysis of branch 

development is an essential procedure for improving our knowledge of tree survival and growth strategies. 

Multiple parameters including branch diameter, length, intensity, angle, and age have been incorporated into 

analyses of branch growth because they all affect branch growth and branching patterns (Remphrey & Powell, 

1984; Remphrey & Davidson, 1992; Takenaka, 2000; Taugourdeau et al., 2012). 

The quantitative relationship in tree branching, which means allometric patterns of branches, is one important 

aspect in studying tree branching because it can help to understand tree growth and make prediction in the 

similar species (or groups). For example, the sum of the cross sections of branches at next level (or branch order) 

is the same as that of the parent branches which are close to trunks (Richter, 1970); fractal geometry (Mandelbrot, 

1978) could be used to describe iterative branching systems or the similarity of branching patterns. It was 

suggested that branches of each tree-shape organism (e.g., trees, heart systems and etc) follow a power law with 

an invariant exponent (e.g., 3/4) because all tree species share an optimal design of the vascular system which is 

related to plant physiology (Enquist et al., 1999, West et al., 1999). Sperry et al. (2008) indicated that tree crowns 

do not exhibit the most efficient hydraulic architecture due to the limitations of mechanical safety. Allometric 

relationships that describe branch growth are often studied through log–log relationship. There are three similar 

models that describe growth patterns in trees as power law functions ( baRL  , here L is branch length, R is 

branch or stem radius). When the b values are close to 1.0, 0.67, or 0.5, the power function is called geometric 

similarity model, elastic similarity model and static stress similarity model, respectively (McMahon, 1975). 

Previous researchers have found different outcomes for allometric patterns in different tree species (e.g., 

McMahon, 1975; King, 1986; Niklas, 1995; Osunkoya et al., 2007). Chen & Burton (2010) found that loblolly 
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pines and sugar maples followed the same power law in individual trees and also at species level. Most of the red 

maple individuals did not follow a power law although they followed a power law at the species level. There is a 

suggestion that an allometric relationship might change from the elastic model to the stress similarity model due 

to species and other factors (Niklas & Spatz, 2000). Smaller branches fit a curvilinear pattern in Quercus alba L. 

and Acer saccharinum L. until they reach approximately 3,000 mm where they are best modeled with elastic 

similarity model (McMahon & Kronauer, 1976). Bertram (1989) found that slenderness (branch length/branch 

basal radius) increased in small branches (radius  10 mm) while decreased in large branches (radius   10 

mm). Here a hypothesis could be derived that allometric relationships in branches may change with tree growth.  

Furthermore, all the branches of a tree are formed as a self-organized network. The tree branch network should 

follow the principle of maximum entropy (MaxEnt), which means the probability distribution of branches best 

represents the current state and reaches the largest entropy (e.g., Jaynes, 1957). MaxEnt has been frequently used 

in ecology (Harte, 2011). It could be assumed that tree branches follow MaxEnt during their growth. It is hard to 

test these hypotheses on large trees due to the difficulty of accessing and measuring branches. However, it is 

possible to measure all branches on crape myrtle in the southern region due to its unique management. Crape 

myrtle is usually coppiced in winter, allowing easy access to its branches. It is possible to use crape myrtle trees 

as a case study to test the above hypotheses related to allometric patterns of tree branches. The specific 

objectives include (i) whether the distribution of branch length and diameter follows similar power laws for 

individual trees; whether the scaling exponents of these power laws are the same; (ii) whether branch slenderness 

stays the same during the growth of individual trees; (iii) whether MaxEnt exists in branch length or diameter 

during a growing period. The results of this study will provide better understanding of tree growth, especially on 

the quantitative relationships of tree growth.  

2. Materials and Methods 

Crape myrtle (Lagerstroemia indica) is a popular ornamental plant in the south because of their showy flowers 

and aesthetic display. The species is most often found as a multiple-trunked tree or shrub. Usually all branches 

on crape myrtle are cut (pruned) in winter or early spring and bloom on new growth from the stems (Fig. 1). This 

is a common tree management activity in the southern region. Due to this unique practice where all branches are 

cut in winter, it provides convenience for us to measure each branch multiple times during the growing period. In 

this study, seven trees of crape myrtle at the same location on the campus of Alabama A & M University were 

selected. The trees at the same location were chosen because we want to limit the influence from environmental 

factors related to locations. Seven trees were selected because of the considerable amount of measurements in 

branches with tree growth. All branches were cut in the winter of 2015. The trunks were approximately 1.3 m in 

height. The tree branches started to grow near the end of April in 2016. The measurements, which include the 

branch length (cm) and diameter at branch base (mm), were conducted in May, July and October, 2016. The 

branch order (1st, 2nd, 3rd) for each branch was determined in October. The 1st order branches are those directly 

growing from trunks. 

 
Figure 1. Crape myrtle in early spring and summer 
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The lengths of all branches at each tree were sorted based on the length increase of every 20 cm. For example, 

branches with a maximal length of 120 cm have the following length categories: ≤ 20, ≤ 40, ≤ 60, …, ≤ 120. The 

number of branches within each length category was counted. For each tree, a table was made showing the 

cumulative percentage for the number of branches within each length based on a method provided by White et al. 

(2008). Finally, a figure with the logarithm of diameter and logarithm of accumulated frequency was used. 

Similar method was used for branch diameters. 

The exponent of branch length and diameter ( DL ) was estimated through log10-log10 transformation. A figure 

with the log10 of L and the log10 of D was produced for this study. To be consistent with current literature on the 

estimation of allometric relationships, a reduced major axis (RMA) of regression analysis Model Type II was 

used to determine scaling exponents (αRMA). ANOVA of SAS software (Cary, NC) was used to compare 

statistical difference at α=0.05 level. 

The entropy (E) of branch length or diameter was calculated as the followings: 

 ii ppE log  

where pi is the percentage of any one branch in the total length or diameter (branch length (diameter) of any one 

branch / total branch length (diameter)) for each tree at the measuring time i. It is also called information entropy. 

The MaxEnt was estimated with the assumption that all pi values are the same. 

3. Results 

The first tree (Tree ID 1) grew fast and the last tree (Tree ID 7) grew slowly based on the total branch length and 

basal area (Fig. 2). The total basal area of branches at one level were far more than it at the next lower level, 

even at each trunk, such as for Tree 1 and 2 (Table 1). The pipe model was not followed. 

 

 
Figure 2. Dynamics of total branch length (A) and basal area (B) for each tree 
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Table 1. Total basal area (cm2) of branches at different levels (orders) for some trees 

Tree ID Trunk # Trunk section area Level 1 Level 2 Level 3 Level 4 

1 

 

 

 

 

I 29.4 14.7 6.1 4.1 0.7 

II 24.0 9.6 3.6 1.2 0.1 

III 36.0 28.2 20.4 17.8 0.8 

IV 33.7 20.8 11.4 7.2 1.1 

V 28.8 13.3 6.9 4.6 0.8 

2 

 

 

 

 

I 21.2 10.6 4.1 1.8 0 

II 21.5 7.5 2.9 0.6 0 

III 25.3 12.0 5.8 1.9 0.5 

IV 15.7 7.0 1.3 0.4 0 

V 19.4 5.0 3.6 1.4 0 

The scaling exponents of the frequency distribution for branch length in each tree decreased with branch growth 

from above 1.0 in May to 0.1 in November (Table 2). The scaling exponents of the frequency distribution for 

branch diameter decreased with branch growth for Tree 2 and 3 (Table 2), but some trees (Tree 1, 4, 5 and 6) the 

scaling exponents increased in July and then decreased in November. 

 

Table 2. Scaling exponents of the frequency distribution for branch length and diameter at different times in 

seven trees 

Tree ID May July November 

Length Diameter Length Diameter Length Diameter 

1 1.1066 1.0327 1.1045 1.1813 0.0891 0.0893 

2 1.3045 0.9378 0.5960 0.4982 0.1378 0.1327 

3 1.2697 1.0207 0.7273 0.8201 0.1215 0.1231 

4 1.1520 0.4334 0.7741 0.7414 0.1956 0.6151 

5 1.4699 0.7725 0.5224 1.3403 0.1285 0.6497 

6 1.1277 0.8198 0.9408 1.0611 0.3434 0.4838 

7 1.0570 1.0179 0.7129 0.6033 0.1677 0.7626 

The entropy of branch length was very similar with the entropy of branch diameter for each tree (Table 3). Both 

entropy values decreased in July and increased in November for all trees. At each time the entropy values of 

branch length and diameter were less than the MaxEnt.  

 

Table 3. Entropy of branch length and diameter at different times for seven trees 

Tree ID May, 2016 July, 2016 November, 2016 

Length Diameter MaxEnt Length Diameter MaxEnt Length Diameter MaxEnt 

1 2.36 2.37 2.41 1.99 2.00 2.07 2.94 2.99 3.20 

2 2.22 2.22 2.26 2.04 2.03 2.14 2.43 2.46 2.67 

3 2.39 2.30 2.34 1.92 1.94 2.04 2.69 2.41 2.93 

4 2.26 2.25 2.44 2.11 1.97 2.04 2.56 2.60 2.71 

5 2.17 2.17 2.20 1.80 1.85 1.91 2.42 2.45 2.68 

6 2.19 2.08 2.24 1.97 1.99 2.05 1.89 1.92 2.06 

7 2.21 2.15 2.26 1.99 2.00 2.09 2.34 2.41 2.56 

The average slenderness of branches was always close to 20 with tree growth for each tree. There was no 

significant difference in average slenderness among trees due to variances (Fig. 3). Generally there were higher 

fluctuations in slenderness for the small branches (diameter less than 10 mm) than the bigger ones (Fig. 4A). 

Similar results were observed for the slenderness along branch length (Fig 4B). There were higher fluctuations in 

slenderness for the short branches (length less than 100 cm) in comparison to the longer branches. 
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Figure 3. Dynamics of branch slenderness for each tree (vertical lines indicate standard deviation) 

 

 
Figure 4. Slenderness changed with branch diameter (A) and length (B). 
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The scaling between branch radius and length (logR – logL) indicated that the scaling exponents were 

concentrated around 1.0 (p<0.05) (Table 4), but for some trees (such as for Tree 2 and 5) the exponents changed 

significantly with branch growth (p<0.05).  

Table 4. Scaling exponents between branch radius and length for each tree along time (The correlations were 

significant at  <0.05 for all except for the indicated ones by £) 

Tree ID May, 2016 July, 2016 November, 2016 

Exponent R2 Exponent R2 Exponent R2 

1 0.88 0.6693 1.01 0.8083 1.15 0.6984 

2 0.73£ 0.5863 1.02 0.8056 1.05 0.8278 

3 1.01 0.7158 1.13 0.8202 1.09 0.8773 

4 0.94 0.7793 1.05 0.7298 0.99 0.7957 

5 0.77£ 0.5405 0.98 0.6613 1.21 0.8553 

6 0.82 0.6992 0.93 0.7412 1.12 0.8342 

7 1.02 0.6335 0.92 0.7499 1.16 0.8387 

 

The correlation between the branch diameters of 1st order and the branch number of 2nd order was not significant, 

such as for Tree 1 (Fig. 5A). Same as the correlation between the branch diameters of 1st order and the branch 

number at all next orders, such as for Tree 1 (Fig. 5B). The correlation between the branch length of the 1st order 

and the number of branches at all next orders was also not significant (Fig. 5C). This means that the large 

branches did not necessary have more branches at the next lower orders.  
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Figure 5. Correlation between the branch diameters of 1st level (order) and the branch number at 2nd level (A), 

and the branch number at all next levels (B); the correlation between the branch lengths of 1st level and the 

branch number at all next levels (C) 

 

4. Discussion 

The pipe model theory assumed that the cross-section areas in branches should be equal to stem areas of a tree 

(Shinozaki et al., 1964), which means the basal area of branches at one level (order) should be equal to the 

branch basal area at the next level (order). The results in this study did not support this assumption. Mäkelä 
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(2002) suggested that the pipe model theory should be modified to include the transitional, inactive sapwood 

zone because active pipes may not always be identified with the entire sapwood area. The dependence of pipe 

model may also be affected by numerous other factors such as site, stand closure, and social class of the tree 

position in the stand (Whitehead, 1978; Thompson, 1989). 

It was expected that the distribution of branches in each individual tree would follow a similar power law 

because the branches are connected as a network. Tree branches, like other networks in nature, are considered to 

follow a similar power law with a fixed scaling exponent (e.g., 3/4) (Brown et al., 2002). It was found in this 

study that the scaling exponents of frequency distribution for both branch length and diameter changed with time 

in seven trees. Differences also existed among individual trees. The scaling exponents were not a fixed number. 

This was supported by the previous result (e.g., Chen & Burton, 2010). This study showed the dynamics of the 

scaling exponents within one growing season.  

Entropy is used to reflect the information on branch length and diameter. The entropy was very consistent for 

branch length and diameter among trees. This means that these tree branches were very well organized networks. 

Also there were dynamics in entropy during tree growth. The decreased entropy in July might be related to quick 

growth during the summer time or some branches were broken down during measuring. The increased entropy in 

November indicated tree canopy is a self-organized network. However, at the end of the growing season of 2016, 

the entropy of neither branch length nor diameter reached the maximum entropy (MaxEnt). The MaxEnt could 

overestimate the information entropy in ecological systems (Chen et al., 2016). Previous studies found that 

MaxEnt is not correct when characterizing the size-density relationship and intraspecific distribution of body 

size (Xiao et al., 2015). It is possible that a tree’s canopy may not reach the MaxEnt status in its branch 

distribution. 

Slenderness could be used to characterize a branch’s form. The change in slenderness reflected the relative 

growth rate of length to radius. In this study, the average slenderness for branches of seven trees was about 20, 

but some trees could reach a slenderness of 28 during their growth. There existed high variations within small 

branches which were less than 10 mm in diameter or less than 100 cm in length. These numbers may be unique 

to crape myrtle, because other tree species could reach a slenderness around 260 (Bertram, 1989). Dahle & 

Grabosky (2010) found that slenderness of Acer platanoides L. (Norway maple) peaked near 300 and appeared 

to shift at the branch length of 300 cm. These thresholds might mean that branches approach potential instability 

when they were transitioning from a primary role of flexible branch to a stiffer structural branch. Quantifying 

slenderness may be a useful tool in predicting branch form and instability.  

For the scaling relationship between branch length and diameter, the results from this study showed that the 

scaling exponents were close to 0.67 for some individual trees (Tree 2, 5 and 6) in May, but the scaling 

exponents were close to 1.0 in July and November. This means that the branches of crape myrtle followed the 

geometric similarity model most of the time. McMahon & Kronauer (1976) studied several whole tree crowns 

and concluded that branch length scales as 0.67, as predicted by their elastic similarity model. The elastic 

similarity model simulates branch growth through the process of secondary growth, not primary growth (Niklas, 

1994). The scaling exponents could change for individual trees at same location within a growing season. 

Although the scaling exponent has been assumed to be constant within an individual (Mäkelä, 1986) or even for 

different tree species (Enquist et al., 1999), it may vary to reflect the different stages in growth of branches 

(Bertram, 1989). 

Allometric scaling was also related to the correlation between the diameters of 1st order branches and the number 

of branches at the 2nd order or next orders. The change in the relationship could affect energy investment in 

branch elongation. In this study the results indicated that the large branches of crape myrtle did not necessary 

have more branches at next lower orders. But for another species, Norway maple, a significant quadratic 

regression existed between the number of 2nd order and the 1st order branch length (Dahle & Grabosky, 2010). 

This indicates that when primary branch length slows, investment of photosynthetic product in elongation would 

likely turn towards the lateral branches.  

In conclusion, after studying the allometric properties of branches in crape myrtle during one growing season, 

there were some general trends in dynamics (e.g., entropy and scaling exponents) but divergence also existed in 

allometric scaling relationships for each tree and among trees. Any fixed number in allometric scaling exponents 

may not reflect the real situation. The knowledge from this study may help to understand the dynamics of branch 

development in crape myrtles to form canopy in individual trees. 
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