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Abstract 
TlBr is promising for γ- and x- radiation detection, but suffers from rapid performance degradation under the 
operating external electric fields. To enable molecular dynamics (MD) studies of this degradation, we have 
developed a Stillinger-Weber type of TlBr interatomic potential. During this process, we have also addressed two 
problems of wider interests. First, the conventional Stillinger-Weber potential format is only applicable for 
tetrahedral structures (e.g., diamond-cubic, zinc-blende, or wurtzite). Here we have modified the analytical 
functions of the Stillinger-Weber potential so that it can now be used for other crystal structures. Second, past 
modifications of interatomic potentials cannot always be applied by a broad community because any new 
analytical functions of the potential would require corresponding changes in the molecular dynamics codes. Here 
we have developed a polymorphic potential model that simultaneously incorporates Stillinger-Weber, Tersoff, 
embedded-atom method, and any variations (i.e., modified functions) of these potentials. We have implemented 
this polymorphic model in MD code LAMMPS, and demonstrated that our TlBr potential enables stable MD 
simulations under external electric fields.  

Keywords: interatomic potential, molecular dynamics, TlBr crystal, structure evolution, radiation detection 
semiconductor 

1. Introduction 
Thallium bromide (TlBr) has emerged to be one of the most promising semiconductors for γ- and x- radiation 
detection in recent years, achieving resolution as high as 1% at 662 keV (Shorohov et al., 2009; Hitomi, 
Matsumoto, Muroi, Shoji, & Hiratate, 2002). To collect the charges created during the radiation events, the 
material must be subject to an external electric field. Unfortunately, the performance of TlBr degrades under 
external electric fields after operation times as short as a few hours to a few weeks (Hitomi, Kikuchi, Shoji, & Ishii, 
2009). It is unclear if this degradation comes from the structure evolution due to the ionic conduction under the 
electric fields. As ionic conduction may be affected by defective structures such as the open channels of edge 
dislocations, molecular dynamics (MD) that allows extended defects to be included in simulated crystals becomes 
a useful method to study the ionic conduction induced structure evolution of TlBr. Such MD simulations are not 
yet possible due to the lack of an interatomic potential for the Tl-Br system that has a CsCl type of crystal structure.  

Past MD simulations (Zheng-Johansson & McGreevy, 1996; Zheng-Johansson, Ebbsjö, & McGreevy, 1995; 
Huang, Wei, Chen, & Chen, 2011; Tung, Chang, Hsiung, Chiang, & Li, 2010; Yamamura, Kawasaki, & Sakai, 
1999; Chung, & De Leeuw, 2004; Beckers, Van Der Bent, & De Leeuw, 2000; Lindan & Gillan, 1993) mainly 
focused on ionic conductivity, but not the structural evolution under external electric fields. As a result, these 
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studies typically do not apply external electric fields. Instead, the system is simply annealed at a sufficiently high 
temperature to cause thermally activated diffusion of ions. The trajectories of ions are then used to calculate 
diffusion coefficients of ions. These diffusion coefficients are in turn used to calculate ionic conductivity through 
Nernst-Einstein relation. Our interest is to understand the structural evolution under external electric fields. Hence, 
we will apply an external electric field to accelerate the ionic motion, therefore leading to sufficient structural 
changes needed for the analysis within the short time scale of MD simulations. This, however, requires a robust 
interatomic potential that can at least maintain the crystal structure at a large external field. 

While relatively complex many-body potential (Marrocchelli, Madden, Norberg, & Hull, 2011) can be applied, it 
is not uncommon to model ionic materials with simple force fields such as pair potentials (Zheng-Johansson, 
Ebbsjö, & McGreevy, 1995; Huang, Wei, Chen, & Chen, 2011; Tung, Chang, Hsiung, Chiang, & Li, 2010; 
Yamamura, Kawasaki, & Sakai, 1999), or pair potentials plus angular energy penalty interactions (Chung, & De 
Leeuw, 2004; Beckers, Van Der Bent, & De Leeuw, 2000). The angular energy penalty approach is very similar 
to the widely-used Stillinger-Weber (SW) potential (Stillinger & Weber, 1985), and has the advantage to stabilize 
relatively complex crystal structures that the pair potentials cannot. For example, SW potentials use a parabolic 
energy penalty term to penalize non-tetrahedral bond angles. As a result, SW potentials have been successfully 
applied to tetrahedral structures such as diamond-cubic, zinc-blende, and wurtziteNote 1. Depending on 
parameterization, SW potentials can also be used for fcc elements (Zhou et al., 2013; Zhou, Jones, Kimmer, Duda, 
& Hopkins, 2013; Zhou, Jones, Duda, & Hopkins, 2013). However, the conventional SW potentials have two 
limitations (Zhou et al., 2013; Zhou, Jones, Kimmer, Duda, & Hopkins, 2013; Zhou, Jones, Duda, & Hopkins, 
2013): (1) they significantly overestimate the elastic constants of closely packed (e.g., fcc) elements; and (2) they 
usually cannot be used for other (non-tetrahedral) structures such as sc elements, and NaCl and CsCl compounds. 
Note that although most elements do not exhibit the lowest energy for the sc crystal, the sc crystal can have a 
near-lowest energy that cannot be captured by SW potentials. Potentials capable of prescribing a low energy for 
the sc structure, therefore, improve upon SW potentials in terms of the general energy trends when a variety of 
configurations are considered (Zhou, Foster, Van Swol, Martin, & Wong, 2014). 

Many literature potentials are constructed using particular analytical functions. These potentials can be easily 
improved if alternative functions are used. For example, Rockett (Wang & Rockett, 1991) used alternative 
functions in the Tersoff (Tersoff, 1989; Albe, Nordlund, Nord, & Kuronen, 2002) potential format to better treat 
short- and long- range interactions in covalent systems, and we used alternative functions in the Tersoff potential 
to improve its prediction on thermal conductivity (Zhou & Jones, 2011). Although alternative functions do not 
change the potential format and should, therefore, be easily applied, such an approach has not been widely used 
because it does require new molecular dynamics codes to be developed for each modified function. 

With the recognition that the problems described above can limit the atomistic level studies of emerging important 
materials, the objective of the present work is fourfold: (1) modify the SW potential so that it can better describe 
elastic constants of elements and be applicable to a wide range of crystal structures including sc, NaCl, and CsCl; 
(2) develop a polymorphic potential model that incorporates simultaneously SW potential, modified SW potential, 
Tersoff potential (Tersoff, 1989; Albe, Nordlund, Nord, & Kuronen, 2002), modified Tersoff potential (Wang & 
Rockett, 1991), and embedded-atom method (EAM) potential (Daw & Baskes, 1984); (3) implement this 
polymorphic potential model in the public MD code LAMMPS (Plimpton, 1995) so that future development of 
any alternative functions for these types of potentials no longer requires modification of the molecular dynamics 
codes; and (4) parameterize the modified SW potential for TlBr system and demonstrate the utility of the resulting 
potential under external electric fields. 

2. Modified SW Potentials 
In SW potential (Stillinger & Weber, 1985), the total energy of a system of N atoms is expressed as 
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Comment: In Eqs. (1), (2), (3), (9), (15), ϕ should all be changed to φ 
where i1, i2, …, iN is a list of neighbors of atom i, θjik is the bond angle formed by atoms j and k at the site of atom 
i, φR,IJ(rij) and φA,IJ(rij) are, respectively, pairwise repulsive and attractive functions, uIJ(rij) is another pair function 
for the three-body term, gJIK(cosθjik) is an angular energy penalty function, and subscripts i,j,k and I,J,K indicate, 
respectively, the atoms and the species of the atoms (note that three bodies JIK and KIJ are equivalent). The 
original SW potentials significantly overestimate the elastic constants of elements because the φR,IJ(r) and φA,IJ(r) 
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functions used in these potentials do not allow independent adjustment of bond energy and its second derivative 
(Zhou et al., 2013). Here we propose to use modified Morse’s functions capable of independent change of bond 
energy and its second derivative (Zhou et al., 2013) to represent φR,IJ(r) and φA,IJ(r):  
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where Eb,IJ, r0,IJ, αIJ, and βIJ are four pair dependent parameters, and fc,IJ(rij) is a cutoff function. Note that the 
parameters introduced here have physical meanings: Eb,IJ and r0,IJ correspond respectively to the equilibrium bond 
energy and bond length, and αIJ >> βIJ control the curvature of the bond energy at the equilibrium bond length. The 
cutoff function fc,IJ(rij) is expressed as: 
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where rs,IJ and rc,IJ (rs,IJ << rc,IJ) are two independent pair parameters, and ζIJ and υIJ are two dependent pair 

parameters 
( ) ( )

( ), ,
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equals one at r ≤ rs,IJ and equals zero at r = rc,IJ (i.e., rc,IJ is the cutoff distance). Hence, multiplying any potential 
function with this cutoff function does not affect significantly the potential function at small distances but allows 
the potential function to be smoothly cut off at rc,IJ. Such a cutoff method is superior to the spline approach used by 
the Tersoff potential as the latter does not have continuous second and higher order derivatives. A general 
exponential decay function is used to represent the uIJ(r) function: 
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where γIJ is a pair parameter. 

For the angular function, SW potentials use a parabolic energy penalty to the non-tetrahedral angle gJIK(cosθjik) = 
(cosθjik-cosθ0,JIK)2 where the parameter cosθ0,JIK is fixed at the tetrahedral bond angle cosθ0,JIK = -1/3. This imposes 
two constraints: not only the favorable bond angle is fixed at the tetrahedral angle, but also the favorable bond 
angle does not depend on species I, J, and K. The gJIK(cosθjik) function can be made more general by treating 
cosθ0,JIK as fitting parameters that depend on I, J, and K. Even so, the resulting function is still not fully flexible, for 
instance, it does not have a scaling factor, and its second derivative with respect to cosθjik is fixed at 2. In addition, 
the function is symmetric at cosθjik = cosθ0,JIK, and the energy penalty does not saturate (i.e., the absolute slope 
increases when the angle deviates from cosθ0,JIK). These cause difficulties for capturing the angular function 
derived from quantum mechanical theories (Pettifor et al., 2004). Here we consider a new angular function 
gJIK(cosθjik) = λJIK·{1–exp[-ξ0,JIK ·(cosθjik-cosθ0,JIK)2]}, where λJIK is three-body dependent scaling factor and ξ0,JIK 
is another three-body dependent parameter. Note that for λJIK = 1, ξ0,JIK = 1 and cosθ0,JIK = -1/3, the modified 
energy penalty is equivalent to the parabolic function near cosθjik = -1/3 because the first term of the Taylor series 
of the modified function expanded at cosθjik = cosθ0,JIK is in fact the parabolic function. However, replacing the 
leading term with a full series does allow the energy penalty curvature to be adjusted through an added parameter 
ξ0,JIK and the value of function to be saturated (while retaining the “penalty” effect, i.e., the function minimizes at 
cosθjik = cosθ0,JIK and monotonically increases when cosθjik deviates from cosθ0,JIK). An even further flexible 
function will be to penalize the energy when the bond angle deviates from three independent values, which also 
results in asymmetric minimums. Based on this consideration, we propose a general angular function as: 
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where λJIK, ξ0,JIK, ξ1,JIK, ξ2,JIK, cosθ0,JIK, cosθ1,JIK, cosθ2,JIK, κ1,JIK, and κ2,JIK are all three-body dependent parameters. 
Note that when the parameters are given, the denominator in Equation (6) is essentially a normalization constant so 
that gJIK(cosθjik=1) = λJIK. It can be seen that when κ1,JIK = κ2,JIK = 0, Equation (6) penalizes the energy when the 
bond angle deviates from a single value cosθjik = cosθ0,JIK as in the conventional SW potential. Otherwise Equation 
(6) can penalize the energy when the bond angle deviates from three values cosθjik = cosθ0,JIK, cosθjik = cosθ1,JIK, 
cosθjik = cosθ2,JIK. Equations (1) – (6) fully define our modified SW (MSW) potential. 

3. Polymorphic Potential Model 
Any improved interatomic potentials will not be applied unless molecular dynamics codes are available to run 
them. To provide potential developers with a great flexibility for modifying the interatomic potentials without 
worrying about MD codes, we have constructed a polymorphic potential model. In this model, the energy of the 
system is expressed as 

 ( ) ( ) ( ) ( ) ( )
1 1

1
1 1

2

N N

ij IJ ij ij IJ ij IJ ij
i j

E U r F V rδ η
= =

 = − ⋅ − − ⋅ Χ ⋅   (7) 

where δij is Kronecker delta (i.e., δij = 1 when i = j and δij = 0 when i ≠ j), ηij is an indicator of the potential type that 
can be set to either ηij = δij or ηij = 1- δij, UIJ(rij) and VIJ(rij) are two pair functions, and FIJ(Xij) is a function of a local 
variable Xij that will be discussed below. It can be seen that when ηij = δij, the summation in equation (7) excludes 
the self-interaction term i = j and is therefore over all pairs of different atoms. When ηij = 1 - δij, the second  
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= Χ ⋅ , which can be used to incorporate the embedding energy of the  

embedded-atom method as will be clear later in this section. The variable Xij essentially accounts for the 
environment surrounding the ij bond, and is defined as 
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where PIJ(Δrjik) is a function of weighted difference between atomic spacing rij and rik, which is written as Δrjik = rij 
- ξIJ·rik with the weighting factor ξIJ being either 0 or 1 to include or exclude rik, WIK(rik) is another pair function, 
and GJIK(θjik) is a three-body function of bond angle θjik. It can be seen that this polymorphic interatomic potential 
model is fully defined when the indicators ηij and ξIJ, and the six functions UIJ(r), VIJ(r), PIJ(Δr), WIJ(r), FIJ(X), and 
GJIK(θ) (for all the species I, J, K = 1, 2, …) are given. Note that these six functions can all be supplied as 
one-dimensional tables and can therefore be implemented in MD codes using cubic spline interpolation and/or 
extrapolation. As a result, users can easily perform simulations using different potentials by tabulating these 
functions (in a MD read-in table file) accordingly. For instance, the polymorphic potential reduces to our MSW 
potential if we tabulate the functions according to: 
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where φR,IJ(r), φA,IJ(r), uIJ(r), and gJIK(cosθ) are defined by Equations (2), (3), (5) and (6). The polymorphic potential 
reduces to a conventional SW (Stillinger & Weber, 1985) potential if we tabulate the functions according to: 
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where AIJ, BIJ, εIJ, σIJ, λIJ, γIJ, aIJ, p, and q are the normal parameters for the SW potential as described above. The 
polymorphic model represents Tersoff types of potential (Tersoff, 1989; Albe, Nordlund, Nord, & Kuronen, 2002) 
if we set 
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where fc,IJ(rij) is a cutoff function defined as 
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and De,IJ, SIJ, re,IJ, βIJ, μIJ, γIJ, cIJ, dIJ, hIJ, rs,IJ and rc,IJ are all pairwise parameters. The polymorphic potential can also 
represent the Rockett-Tersoff potential (Wang & Rockett, 1991) if we set 
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where fc,1,IJ(r) is a cutoff function similar to equation (12) but operates at a different cutoff range: 
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and AIJ, BIJ, λ1,IJ, λ2,IJ, λ3,IJ, βIJ, nIJ, cIJ, dIJ, hIJ, rs,1,IJ, and rc,1,IJ are all pairwise parameters. To use the polymorphic 
model for the embedded-atom method potential (Daw & Baskes, 1984), we can simply set: 
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where φIJ(r) is a pair function, fJ(r) is an atomic electron density function, FI(X) is the embedding energy function, 
and X is used to represent electron density (X = ρ). We have implemented this polymorphic potential model in the 
public parallel MD code, LAMMPS (Plimpton, 1995). We plan to release the code in LAMMPS package after the 
present paper is published. Interested readers can contact us to get the code prior to the formal release of the code. 

4. Parameterization 
To enable structure evolution of ionic materials to be studied within the short time scales of MD simulations, we 
attempt to accelerate ionic migration by external electric fields. Such electric fields are approximated by applying 
opposite external forces to cations and anions. To ensure that the interatomic potential is robust enough to maintain 
the equilibrium crystal structure of TlBr when Tl+ and Br- ions are subject to large external forces, we require that 
the potential not only best captures the key experimental properties of the observed Tl, Br, and TlBr phases (e.g., 
Tl-hcp, TlBr-CsCl, etc.), but also predicts the crystalline growth of the ground state structures during MD 
simulations of growth (e.g., vapor deposition). Note that a potential is said to be incapable of crystalline growth 
simulations only when it predicts amorphous growth at all combinations of temperatures and growth rates possible 
with the MD simulations. At low temperatures and high growth rates where earlier adatoms are buried by later 
adatoms before the surface reaches a low energy configuration, amorphous growth is the correct prediction. The 
growth simulation tests are important because they sample a variety of configurations (at the growth surface) not 
considered a prior. If any of the random nuclei formed on the growth surface has a lower energy than the growth 
crystal, the simulations is likely to always give an amorphous growth regardless of temperature and growth rate. 
Hence, crystalline growth provides strong validation that the growth crystal has the lowest energy compared to any 
other configurations. When the equilibrium TlBr crystal has the lowest energy, large external forces can be applied 
to Tl+ and Br- ions without causing phase transformation. Hence, the growth simulation capability is essential for 
our applications. 

We proceed by parameterizing first the Tl and Br potentials, and then the TlBr potential at the known Tl and Br 
parameters. The observed room-temperature equilibrium phases are hcp for Tl (Donnay & Ondik, 1973), diatomic 
(Br2) liquid for Br, and CsCl for TlBr (Donnay & Ondik, 1973). Note that solid Br has an orthorhombic crystal 
structure; however, Br2 liquid is the stable room-temperature phase. Like many other potentials, our MSW model 
is not intended to capture the Br2 molecules (it is possible to capture the Br2 molecules, but this does not 
necessarily result in a better potential). On the other hand, our density function theory (DFT) calculations, 
employing the optB86b-vdW functional (see Appendix for computational details), indicated that the sc Br phase 
has a lower cohesive energy than dc, bcc, fcc, and hcp phases. Hence, we target sc as the lowest energy lattice 
phase for Br (at 0 K) while at the same time ensure that the stable Br phase at room temperature is liquid. Note that 
if a correct negative heat of formation of the TlBr compound is captured, elemental phases do not form in MD 
simulations under stoichiometric conditions. Because they do not form, particular elemental structures are not 
important for studying stoichiometric compounds.  
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Lattice constants, cohesive energies, and elastic constants for the model lowest energy lattices (Tl-hcp, Br-sc, and 
TlBr-CsCl) are fitted under the constraints that the energies of all the other phases (e.g., dc, bcc, fcc, NaCl, wz, etc.) 
are higher than the targeted lowest energy phases. For the experimentally observed structures such as Tl-hcp and 
TlBr-CsCl, the experimental lattice constants (Donnay & Ondik, 1973), cohesive energies (Barin, 1993), and 
elastic constants (Simmons, 1965; Morse & Lawson, 1967) are directly used as the target values for the fitting. 
For the phases that are not observed (e.g., Br-sc), the available experimental properties of other phases and DFT 
results are used to guide the selection of the target values. In particular, DFT results may be quite different from the 
experimental values. For example, the hcp Tl cohesive energy obtained from experiments and DFT calculations is 
-1.85 and -2.40 eV/atom respectively. As a result, we scale the DFT results so that for the observed structures, the 
scaled DFT results match the experiments. 

The software package Mathematica (Wolfram, 2004) is used to perform the parameterization. To promote global 
optimization, four different numerical optimization routines, namely a conjugate gradient method (Hestenes & 
Stiefel, 1952), the downhill simplex method of Nelder and Mead (Olsson & Nelson, 1975), a genetic algorithm 
(Storn & Price, 1997), and a biased random walk (simulated annealing) (Kirkpatrick, Gelatt, & Vecchi, 1983), are 
all used to determine the parameters that minimize the weighted mean-square deviation between the target and 
predicted properties. The goal to capture the crystalline growth is more challenging, requiring a highly iterative 
parameterization process. After each fitting iteration, the four sets of parameters from the four optimization 
routines are tested for vapor deposition simulations. If the potential does not pass these tests, the entire process is 
repeated with an appropriate adjustment of parameters bounds, target structures and target properties. The 
iterations continue until one of the four optimization routines results in a satisfactory set of potential parameters. 
The MSW potential thus determined are listed in Tables I and II for two-body, and three-body parameters 
respectively. 

 
Table 1. Two-body parameters of MSW potential (length in Å and energy in eV) 

IJ r0,IJ rs,IJ rc,IJ Eb,IJ α,IJ β,IJ γ,IJ 
TlTl 3.02409 3.97219 4.26900 -0.514663 5.60012 3.39397 1.94224 

BrBr 2.83451 3.60000 4.05800 -0.336014 7.00000 4.37500 3.00000 

TlBr 2.98521 3.90480 4.73600 -0.747107 6.20000 2.00000 2.20000 

 

Table 2. Three-body parameters of MSW potential (length in Å and energy in eV) 

IJK TlTlTl BrBrBr TlTlBr (=BrTlTl) TlBrBr (=BrBrTl) TlBrTl BrTlBr 

λJIK 0.05000 0.13144 0.11804 0.05733 2.38107 2.38107 

cosθ0,JIK 0.07257 -0.50000 -0.53735 -0.54059 -0.29333 -0.29333 

cosθ1,JIK -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 -1.00000 

cosθ2,JIK 0.60000 0.60000 0.53947 0.56717 0.29333 0.29333 

ξ0,JIK 3.50000 0.62340 1.44291 2.79355 0.25182 0.25182 

ξ1,JIK 0.18625 2.60000 0.70848 1.42550 0.24026 0.24026 

ξ2,JIK 0.00000 0.00000 1.72178 2.04092 0.46849 0.46849 

κ1,JIK 0.20957 0.96000 1.00000 0.75390 1.00000 1.00000 

κ2,JIK 0.00000 0.00000 0.00000 0.27602 0.94796 0.94796 

 

5. Evaluation of the Potential 
5.1 Lattice Constants and Cohesive Energies of Various Phases 

Our objective is to study the equilibrium TlBr crystal under the stoichiometric condition where no other phases 
occur, so that the critical properties are for the TlBr-CsCl crystal. With this in mind, calculations based on the 
polymorphic potential model are performed to evaluate our TlBr potential. First, lattice constants and cohesive 
energies of various Tl, Br, and TlBr lattices are calculated using energy minimization simulations. The results are 
summarized in Table III along with the available experimental data and our DFT values. 
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Table 3. Lattice constants a (for dimer, a refers to the dimer bond length) and c (Å), and cohesive energy Ec 
(eV/atom), obtained from the MSW potential, DFT calculations, and experiments for selected material structures 

material structure MSW DFT (HSE06) Exp. 

a c Ec a c Ec a (Donnay 
& Ondik, 

1973) 

c (Donnay 
& Ondik, 

1973) 

Ec

(Barin, 
1993) 

 

 

Tl 

dc 7.180 ----- -0.999 7.012 ---- -1.526 ----- ----- -----

sc 3.012 ----- -1.800 3.214 ---- -1.827 ----- ----- -----

bcc 3.854 ----- -1.805 3.971 ---- -1.828 ----- ----- -----

fcc 4.825 ----- -1.848 4.940 ---- -1.927 ----- ----- -----

hcp 3.408 5.582 -1.850 3.558 5.674 -1.874 3.450 5.520 -1.850

 

 

 

Br 

di (gas) ----- ----- ----- 2.272 ---- -1.132 ----- ----- -0.986

dc 6.591 ----- -0.731 7.078 ---- -0.405 ----- ----- -----

fcc 4.878 ----- -0.748 4.803 ---- -0.281 ----- ----- -----

bcc 3.847 ----- -0.780 3.822 ---- -0.361 ----- ----- -----

hcp 3.328 5.743 -0.787 2.919 ---- -0.840 ----- ----- -----

sc 3.004 ----- -0.827 3.174 ---- -0.459 ----- ----- -1.134*

 

 

TlBr 

wz 4.877 7.964 -1.657 4.994 8.371 -2.473 ----- ----- -----

zb 6.897 ----- -1.657 7.494 ---- -2.450 ----- ----- -----

NaCl 6.197 ----- -2.239 6.762 ---- -2.529 ----- ----- -----

CsCl 3.985 ----- -2.389 4.032 ---- -2.487 3.985 ----- -2.389
*: Br-sc is the lowest energy lattice in models. No experimental data is available for the metastable Br-sc phase. 
Instead, we list the experimental cohesive energy of the lowest energy phase (Br2-liquid) as a reference. 

Comment: In Tables 3 and A-I, use horizontal lines to separate Tl, Br, and TlBr data. In the present version, it is not 
clear which structures are for Tl, Br, and TlBr. 

Table III indicates that of the lattice structures explored, our MSW potential captures the Tl-hcp and TlBr-CsCl 
lattice crystals as the lowest energy phases, in agreement with experiments that Tl-hcp and TlBr-CsCl phases are 
observed at room temperature. Table III also indicates that our MSW potential captures the lowest energy for the 
Br-sc crystal, which is really the target of the MSW model. We cannot include the Br2 liquid observed in 
experiments in Table III. Instead, we will show below through growth simulations that our potential gives Br liquid 
as the most stable phase at room temperature. Here we can see that in addition to capturing appropriate lowest 
energy phases, our MSW model also reproduces the experimental cohesive energies of Tl-hcp and TlBr-CsCl. Our 
energy of -0.827 eV/atom for Br-sc is not unreasonable compared with the experimental cohesive energy of -1.134 
eV/atom for a more stable Br2-liquid, especially considering that this difference between MSW and experiments is 
not much more significant than that between DFT and experiments, not to mention that the elemental Br phase 
does not occur for our intended problem. Note that MSW model also accurately captures the experimental lattice 
constant of TlBr-CsCl. The lattice constants of Br-sc and Tl-hcp as determined by our MSW is not far off from the 
experimental or DFT values either (in case of Tl-hcp, for example, while the lattice constant a is slightly 
under-estimated, the lattice constant c is slightly over-estimated resulting in a good description of atomic volume). 

Capturing non-tetrahedral crystals (such as hcp, sc, CsCl) as the lowest energy phases proves that the MSW 
potential is more flexible than the conventional SW potentials. SW potentials are not designed for capturing 
property trends of a variety of metastable structures. The purpose of listing some selected metastable phases in 
Table III is to show that the equilibrium phases have lower energies than these metastable phases. Interestingly, 
however, our MSW potential reproduces the DFT order of Tl structures with increasing (more negative) cohesive 
energies as in dc → sc → bcc → fcc. Furthermore, our MSW model correctly captures the lowest energy for Tl-hcp 
whereas the DFT does not. This observation suggests that MSW potential can possess good transferability to a 
variety of other phases. Usually such transferability is only possible with more sophisticated potentials. Since our 
MSW is designed for studying the TlBr bulk, the transferability to many metastable phases is not relevant and so 
we do not exploit this further for the Br and TlBr phases which would necessarily sacrifice the properties of the 
equilibrium phases. 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 4, No. 3; 2015 

23 

Finally, we point out that Table III only explores limited number of phases and therefore does not prove that the 
predicted lowest energy phases indeed have the lowest energies as compared to any other configurations. As will 
be discussed below, we will prove this rigorously through vapor deposition simulations.  

5.2 Elastic Constants and Melting Temperature of the Observed Tl and TlBr Phases 

Elastic constants and melting temperature of the experimentally observed Tl-hcp and TlBr-CsCl phases are 
calculated, and the results are summarized in Table IV along with the experimental values. Here the melting 
temperature calculations follow the same method described previously (Zhou et al., 2013; Zhou, Foster, Van 
Swol, Martin, & Wong, 2014; Ward, Zhou, Wong, Doty, & Zimmerman, 2012; Ward, Zhou, Wong, Doty, & 
Zimmerman, 2012; Ward, Zhou, Wong, & Doty, 2013). It can be seen that our MSW model reproduces the 
experimental elastic constants for TlBr-CsCl. The model elastic constants for Tl-hcp are generally lower than the 
experimental values. Note that we could have fit exactly the experimental elastic constants for Tl-hcp. However, 
this would result in a melting temperature that is significantly above the experimental value. On the other hand, the 
conventional SW potentials tend to significantly overestimate elastic constants for closely packed elements and 
hence the ability to prescribe low elastic constants is significant for the MSW model.  

 

Table 4. Elastic constants C11, C12, C13, C33, C44, bulk modulus B (eV/Å3), and melting temperature Tm (K) of the 
observed Tl and TlBr crystalline phases, obtained from the MSW potential and experiments 

structure method C11 C12 C13 C33 C44 B Tm 

Tl 

(hcp) 

MSW 0.240 0.140 0.137 0.242 0.053 0.133 691

Exp.  

(Simmons, 1965; Afinogenov & Larionova, 1992)

0.277 0.235 0.187 0.376 0.055 0.239 577

TlBr 

(CsCl) 

MSW 0.275 0.104 0.104 0.275 0.067 0.161 1442

Exp.  

(Morse & Lawson, 1967; Kim et al., 2011) 

0.275 0.104 0.104 0.275 0.067 0.161 753

 

We get the melting temperature of Tl-hcp reasonably close to the experimental value. Despite a prolonged effort, 
our current parameterization of the MSW potential still significantly overestimates the melting temperature of 
TlBr-CsCl. We can better capture the melting temperature by reducing the elastic constants. Considering that our 
objective is to study the behavior of the TlBr-CsCl crystal at ambient temperature, we chose to capture exactly the 
elastic constants at the cost of overestimating the melting temperature. We feel that this problem cannot be 
resolved by parameterization alone, and further modifications of the MSW format are needed in future efforts in 
order to capture both elastic constants and melting temperature.  

D. Point Defects 

Native point defects in TlBr-CsCl, including Tl vacancy VTl, Br vacancy VBr, Tl at Br antisite TlBr, Br at Tl antisite 
BrTl, Tl interstitial between Tl sites Tli,1, Tl interstitial between Br sites Tli,2, Br interstitial between Tl sites Bri,1, 
and Br interstitial between Br sites Bri,2, are all studied. In particular, intrinsic defect energies '

DE  are calculated 
as (Zhang & Northrup, 1991; Northrup & Zhang, 1993) 

 ( ) ( ) ( )' 0.5D Tl Br TlBr Tl Br Tl BrE E N N E N N E E= − + ⋅ − ⋅ − ⋅ −  (16) 

where E, NTl, and NBr are total energy, number of Tl atoms, and number of Br atoms of the system containing the 
defect, and ETlBr, ETl, and EBr are cohesive energies (per atom unit) for the lowest energy phases of TlBr, Tl, and Br 
respectively. The results obtained from MSW and DFT calculations are summarized in Table V. It can be seen that 
MSW potential predicts a lower energy for Tl vacancy than for Br vacancy, a low energy for Br at Tl antisite than 
for Tl at Br antisite, and a lower energy for Bri,2 interstitial than for both Tl interstitials. All these are in good 
agreement with the DFT calculations. Our MSW potential indicates that the Bri,1 interstitial has a lower energy 
than both Tl interstitials, which differs from the DFT result that the Bri,1 interstitial energy is only lower than the 
Tli,2 interstitial energy. Again here we only compare the trends, and do not make conclusions on the absolute 
values due to the lack of experimental data. 
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Table 5. Intrinsic defect energy '
DE  (eV) obtained from different models for TlBr-CsCl. The DFT results were 

determined using the HSE06 functional based on the optB86b-vdW optimized geometries (see Appendix for 
details) 

method VTl VBr TlBr BrTl Tli,1 Tli,2 Bri,1 Bri,2 

MSW 1.04 1.29 2.75 1.05 2.93 3.03 2.00 2.00 

DFT 1.24 1.81 3.59 3.02 1.85 2.82 2.69 1.74 

 

6. Molecular Dynamics Vapor Deposition Verifications 
As mentioned above, only when a potential captures the crystalline growth during MD vapor deposition 
simulations will it capture the lowest energy phase and be robust enough to allow applications of high external 
electric fields. Here we perform vapor deposition simulations to validate that our TlBr MSW potential captures the 
crystalline growth of the lowest energy Tl-hcp and TlBr-CsCl crystals. In addition, we will demonstrate that our 
potential gives the crystalline growth of Br-sc at a low temperature (this is the lowest energy “model” phase as 
opposed to the orthorhombic experimental lowest energy phase) but gives a liquid Br structure as the stable phase 
at room temperature. 

6.1 Tl-hcp Growth 

For Tl-hcp growth, an initial substrate of an hcp crystal containing 1008 Tl atoms with 28 ( )2110  layers in the x 
direction, 9 ( )0002  layers in the y direction, and 8 ( )0 110  layers in the z direction is used. Here layers refer to 
crystallographic planes so that one (0001) layer is equivalent n (000n) layers etc. The substrate temperature is set at 
T = 300 K by assigning velocities to atoms according to the Boltzmann distribution. During simulations, the 
bottom (-y) 2 (0002) layers are held fixed to prevent crystal shift upon adatom impact on the top surface. The next 
3 (0002) layers are isothermally controlled at the substrate temperature. This leaves the top 4 layers free where the 
motion of atoms is solely determined by Newton’s law. Injection of Tl adatoms from random locations far above 
the surface simulates the growth. All adatoms have an initial far-field incident kinetic energy Ei = 0.05 eV and an 
incident angle θ = 0o (i.e., the moving direction is perpendicular to the surface). The adatom injection frequency is 
chosen to give a deposition rate of R = 2.5 nm/ns. To approximately maintain a constant thickness of the free 
surface region, the isothermal region expands upward during simulations. Since surface roughness might develop, 
the isothermal region expands at about 80% of the surface growth rate to ensure that the upper boundary of the 
isothermal region never exceeds the surface valley locations. Fig. 1 shows the resulting configuration obtained 
after 0.66 ns deposition, where the original substrate is shaded in purple. It can be seen that the MSW potential 
correctly captures the crystalline growth of the Tl-hcp phase. This strongly validates that Tl-hcp has the lowest 
energy at room temperature as compared to any other configurations. 

 

 
Figure 1. Vapor deposited hcp Tl film obtained from MD simulations 
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6.2 Br-sc Growth 

MD simulations are also performed to grow Br on an Br-sc substrate. A sc crystal containing 1008 Br atoms with 
14 ( )100  layers in the x direction, 9 ( )010  layers in the y direction, and 8 ( )001  layers in the z direction is used 
as the initial substrate. During simulations, the bottom 2 (010) layers are held fixed. The next 4 (010) layers are 
controlled at the desired growth temperature. Using the same approach as described above, the growth simulation 
is performed at two substrate temperatures T = 150 K and T = 300 K, an incident energy Ei = 0.05 eV, an incident 
angle θ = 0o, and a deposition rate R = 2.5 nm/ns. The resulting configurations obtained after 1.20 ns deposition are 
shown in Figs. 2(a) and 2(b) respectively for the 150 K and 300 K temperatures. It can be seen from Fig. 2(a) that 
the sc- crystalline growth is achieved with our potential, strongly validating that the Br-sc crystal has the lowest 
(free) energy at 150 K as compared to any other configurations. Fig. 2(b), on the other hand, shows that amorphous 
growth is achieved at 300 K. This strongly validates that Br exhibits a liquid type phase at room temperature. 

 

 
Figure 2.  MD simulations of Br growth on a Br-sc substrate at a temperature of (a) 150 K and (b) 300 K. Our 

potential prescribes a liquid Br as the most stable phase at room temperature 

 

6.3 TlBr-CsCl Growth 

For TlBr-CsCl growth, an initial TlBr substrate of a CsCl type of crystal containing 300 Tl atoms and 300 Br atoms 
with 20 ( )200  layers in the x direction, 10 ( )020  layers in the y direction, and 12 ( )002  layers in the z 
direction is used. Initially, Br terminates the top y surface. During the simulations, the bottom 3 ( )020  layers are 
fixed. The next 4 ( )020  layers are used to control the growth temperature. Following the same approach as 
described above, the growth simulations are performed at a substrate temperature T = 700 K, an incident energy Ei 
= 0.05 eV, an incident angle θ = 0o, a deposition rate R = 2.75 nm/ns, and a stoichiometric vapor flux ratio Tl:Br = 
1:1. Fig. 3 shows the system configuration obtained at 0.78 ns deposition time. It is seen again that our MSW 
potential correctly captures the crystalline growth of the equilibrium (CsCl) phase of TlBr. In particular, the 
randomly injected Tl and Br atoms are reconstructed correctly to their corresponding sublattices. Because the 
potential captures the crystallization from a rather stochastic vapor phase, it enables robust simulations of 
structural evolution of TlBr-CsCl under conditions where the presence of both dislocations and external electric 
fields may induce configuration disorders if the potential has any deficiencies in capturing the lowest energy 
phase. 
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Figure 3. Vapor deposited CsCl phase of a TlBr film obtained from MD simulations 

 

7. Molecular Dynamics Structural Evolution Under Fields 
Our objective is to allow direct MD simulations of structural evolution of TlBr-CsCl crystal under an external 
electric field. The external electric field can be simulated by applying opposite biased forces to Tl and Br atoms. 
Note that in our model, we do not directly address charges. This is a reasonable approximation because charges 
only give two forces: the Coulomb forces between atoms, and biased forces under external fields. The Coulomb 
forces between atoms are digested into the interatomic potential in our model. This allows us to use biased forces 
to independently simulate the external electric field. 

The simulations may become challenging at large external electric fields because the biased forces may induce 
phase transformation when the potential does not capture the lowest energy for the equilibrium phase. Here we 
demonstrate two cases to demonstrate that our potential allows simulations to be performed when atoms are subject 
to large forces of ±0.4 eV/Å. These forces correspond to a high electric field of 4×106 V/mm assuming Tl and Br 
atoms adopt full charges of ±1 e. Again note that atoms are not strictly point charges and atoms in perfect bulk may 
not be subject to big forces from the external field. Nonetheless, the model becomes robust if we pass this test.  

A TlBr-CsCl crystal containing 16128 Tl atoms and 16128 Br atoms with 84 ( )110  layers in the x direction, 24 
( )110  layers in the y direction, and 32 ( )002  layers in the z direction is used. To prevent system from shifting, 
the bottom region of about 10 Å wide is fixed. To remove the boundary effects, periodic boundary conditions are 
used in all three coordinate directions. An MD simulation is then performed at 1200 K (a homologous temperature 
0.832 Tm) with a biased force of ±0.4 eV/Å using the NVT ensemble (i.e., number of atoms, volume, and 
temperature are all constant).  

In the first case, we assume that the system contains a pair of Tl and Br vacancies by removing a Tl and a Br atom 
far away from the fixed region. Comparison of atomic configurations between a time span of 0.06 ns is shown in 
Fig. 4. Fig. 4 verifies that our potential allows for stable TlBr-CsCl MD simulations to be performed with a high 
biased force. Interestingly, we found that Tl and Br vacancies are not very mobile even at the high biased force and 
temperature. In fact, during the 0.06 ns span, Tl vacancy jumped by one lattice spacing whereas the Br vacancy did 
not jump. 
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Figure 4. Structure evolution of a TlBr-CsCl crystal containing vacancies at a temperature of 0.832 Tm and a biased 
force of ±0.4 eV/Å: (a) Starting time of observation; and (b) 0.06 ns later. The TlBr-CsCl crystal remains intact at 
the large electric field. During the 0.06 ns span, Tl vacancy jumped by one lattice spacing whereas the Br vacancy 

did not jump 

 

In the second case, we assume that the system contains a pair of Tl and Br interstitials by inserting a Tl atom and a 
Br atom at locations far away from the fixed region. Comparison of atomic configurations between a time span of 
0.12 ns is shown in Fig. 5. Fig. 5 again verifies that our potential allows stable TlBr-CsCl MD simulations to be 
performed with a high biased force. Unlike the vacancy case, we found that Tl and Br interstitials are very mobile, 
and both interstitials moved a significant distance during the 0.12 ns time span. 

 

 
Figure 5. Structure evolution of a TlBr-CsCl crystal at a temperature of 0.832 Tm and a biased force of ±0.4 eV/Å: 

(a) Starting time of observation; and (b) 0.12 ns later. The TlBr-CsCl crystal remains intact at the large electric 
field. During the 0.12 ns span, Tl and Br interstitials migrated significant distances 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 4, No. 3; 2015 

28 

The cases shown in Figs. 4 and 5 are designed to validate the robustness of our potential, but not to launch a 
thorough study of structure deterioration under external fields. We are currently using our model to study how 
defects (dislocations, vacancies, interstitials) evolve under external electric fields, and how diffusion of various 
species contribute to mass transport and changes of stoichiometry of the material. These studies are beyond the 
scope of this paper and will therefore be published separately. 

8. Conclusions 
Herein we have developed a new modified Stillinger-Weber potential. Unlike the conventional SW potential that 
significantly overestimates the elastic constants of closely packed elements and are limited mainly to tetrahedral 
structures, our modified potential can capture very low elastic constants for closely packed elements and can be 
used for many non-tetrahedral crystal structures. We have parameterized the modified SW potential for TlBr. 
Through rigorous vapor deposition simulation tests, we have demonstrated that our potential captures the 
experimental properties of the observed Tl and TlBr phases, and predicts the Br liquid to be the most stable phase 
at room temperature. Moreover, we have demonstrated that our potential is robust enough for challenging 
simulations of structure evolution of TlBr crystals under very high external electric fields. Test simulations 
indicate that interstitials migrate much faster than vacancies. We have also developed a polymorphic potential 
model and implemented it in the public MD code, LAMMPS. This essentially enables future material research to 
be performed at a higher fidelity level because improved potentials no longer require modification of the MD 
codes and therefore can immediately be utilized by a broader materials and physics community. 
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Appendix 
Density functional theory (DFT) calculations were performed within the spin-polarization formalism using the 
optB86b-vdW functional (Klimeš, Bowler, & Michaelides, 2011), and the hybrid HSE06 (Heyd, Scuseria, & 
Ernzerhof, 2003) functional with and without the inclusion of the empirical dispersion correction developed by 
Grimme (Grimme, 2006) (the one with the dispersion correction is notated as HSE06+D). The calculations were 
carried out using projector-augmented-wave (PAW) pseudopotentials and a plane-wave energy cutoff of 500 eV. 
The atom positions and primitive unit cells of the bulk materials were optimized using the three methods 
(optB86b-vdW, HSE06, and HSE06+D) until all forces were less than 0.01 eV/Å. The Brillouin zone was 
sampled using a 10×10×10 and a 5×5×5 gamma-centered Monkhorst-Pack grid respectively. The optimized 
lattice parameters and cohesive energies are reported in Table A-I. For the point defect calculations (see Table 
A-II), 5×5×5 supercells were created from the optB86b-vdW optimized TlBr-CsCl primitive unit cell and the 
systems were relaxed (atoms only) until all forces were less than 0.01 eV/Å. For these calculations, the 
Monkhorst-Pack grid was reduced to 2×2×2. The point defect energies ( '

DE ) are reported in Table A-II. The 
point defect energies were also determined at the HSE06 level of theory using the optB86b-vdW optimized 
geometries and a 1×1×1 k-point grid. Since the point defect structures were based on the optB86b-vdW 
optimized geometries, the cohesive energies of the lowest energy bulk materials, as needed for the determination 
of '

DE  (see Equation 16), were also determined based on the optB86b-vdW optimized geometries. This was 
done to avoid the inclusion of lattice deformation energy in the point defect energy. All calculations were 
performed using VASP 5.3.5 (Kresse, & Hafner, 1993; Kresse & Hafner, 1994; Kresse & Furthmüller, 1996; 
Kresse & Furthmüller, 1996). 

The calculations herein were carried out using different methodologies for a couple reasons. First, we wanted to 
consider methods (optB86b-vdW and HSE06+D) capable of modeling dispersion interactions (van der Waals 
forces) since bromine molecules (Br2) are held together by such interactions. Although, calculations were not 
explicitly performed on such a system, we found that the inclusion of van der Waals forces had significant 
effects on the cohesive energies of the bulk Br structures (see Table A-I). Second, Klimeš et al. (Klimeš, Bowler, 
& Michaelides, 2011) showed that the optB86b-vdw functional outperforms several traditional 
generalized-gradient approximation (GGA) functionals (e.g. PBE) for the prediction of lattice constants, bulk 
moduli, and atomization energies for a range of solids and we wanted to identify a GGA based functional 
capable of accurately predicting the lattice constants of TlBr-CsCl. This was desirable because performing 
hybrid DFT optimizations on large supercells, required for studying point-defects, is extremely computationally 
demanding. However, hybrid functionals are arguably more accurate than traditional GGA functionals accredited 
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to the inclusion of exact Fock exchange. The results obtained using the optB86b-vdW functional are in relative 
good agreement with those obtained using the HSE06+D method. Moreover, the lattice constants obtained for 
TlBr-CsCl and Tl-hcp agree very well with experiment (~1%), and even slightly better than those obtained using 
the HSE06 and HSE06+D methods. Note, the PBE functional was also considered but the predicted lattice 
constants were in greater disagreement with experiment. Regarding the prediction of the cohesive energies, the 
HSE06 functional performs the best. This is attributed to a decrease in self-interaction error as a result of using a 
functional that incorporates exact Fock exchange. We have decided to included only the HSE06 values in the 
main text for internal consistency and simplicity; however, we have included the results obtained using the 
different methods for completeness and for interested readers.  

 

Table A-I. Lattice constants a (for dimer, a refers to the dimer bond length) and c (Å), and cohesive energy Ec 
(eV/atom) determined using optB88b-vdw, HSE06, and HSE06+D functionals  

material structure
optB86b-vdw HSE06 HSE06+D 

a c Ec a c Ec a c Ec 

 

 

Tl 

dc 6.965 ---- -1.922 7.012 ---- -1.526 6.681 ---- -1.899

sc 3.185 ---- -2.238 3.214 ---- -1.827 3.082 ---- -2.371

bcc 3.868 ---- -2.368 3.971 ---- -1.828 3.973 ---- -2.294

fcc 4.873 ---- -2.340 4.940 ---- -1.927 4.868 ---- -2.349

hcp 3.500 5.581 -2.399 3.558 5.674 -1.874 3.521 5.614 -2.289

 

 

 

Br 

di (gas) 2.309 ---- -1.265 2.272 ---- -1.132 2.280 ---- -1.132

dc 6.898 ---- -0.961 7.078 ---- -0.405 7.031 ---- -0.489

fcc 4.644 ---- -1.123 4.803 ---- -0.281 4.852 ---- -0.496

bcc 3.703 ---- -1.160 3.822 ---- -0.361 3.820 ---- -0.580

hcp 2.945 7.049 -1.210 2.919 ---- -0.840 2.902 ---- -0.947

sc 3.006 ---- -1.218 3.174 ---- -0.459 3.150 ---- -0.612

 

 

TlBr 

wz 4.682 8.724 -2.767 4.994 8.371 -2.473 4.897 8.209 -2.686

zb 7.371 ---- -2.662 7.494 ---- -2.450 7.371 ---- -2.598

NaCl 6.622 ---- -2.866 6.762 ---- -2.529 6.616 ---- -2.794

CsCl 3.959 ---- -2.880 4.032 ---- -2.487 4.066 ---- -2.822

 

Table A-II. Intrinsic defect energies '
DE  (eV) for TlBr-CsCl determined using optB88b-vdw, HSE06, and 

HSE06+D functionals 

method VTl VBr TlBr BrTl Tli,1 Tli,2 Bri,1 Bri,2 

optB86b-vdw 0.66 1.56 3.47 1.72 2.16 2.55 2.32 1.59 

HSE06 1.24 1.81 3.59 3.02 1.85 2.82 2.69 1.74 

HSE06+D 1.51 2.24 3.79 2.66 1.70 2.66 2.35 1.70 

 

Note 
Note 1. For convenience, we will use abbreviation to represent structures in the following: di: dimer; dc: 
diamond-cubic; sc: simple-cubic; bcc: body-centered-cubic; fcc: face-centered-cubic; hcp: 
hexagonal-closely-packed; zb: zinc-blende; wz: wurtzite; NaCl: B1; and CsCl: B2. 
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