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Abstract 
Failure of high density polyethylene, low density polyethylene, and polypropylene filled with grinded rubber 
particles was studied. In tension, particles debond from the matrix and initiate appearance of pores. Small 
particles lead to formation of elliptical pores. In contrast, large particles initiate appearance of diamond cracks 
leading to fast failure of filled polymer. In the intermediate case elliptical pore gradually transforms into 
diamond crack. The diamond crack appears when the elongation of an elliptical pore reaches the critical crack tip 
opening of the unfilled polymer. The size D of filler particles should be lower than Dc = GIc/[(d – 1)σd)], where 
GIc is the fracture toughness, d—the draw stress and d—the natural draw ratio of the matrix in the neck. 
Ductile or brittle behavior of filled polymer depends on whether the polymer yields uniformly or with necking. If 
the neck does not appear, filler particles usually do not initiate brittle fracture. In contrast, filled polymers, 
yielding with necking, often are brittle. 
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1. Introduction 
Permanently growing use of polymers leads to an increase in volume of used polymers. Over the last years the 
volume of industrial waste has largely increased, creating a problem for today society and future generations. A 
substantial part of industrial waste is cross-linked rubber that is not thermoplastic and cannot be remolded. One 
way to recycle cross-linked rubber is to grind the rubber and to use the obtained powder as the filler for 
thermoplastic polymers (Knunyants et al., 1988; Rajalingam, Sharpe, & Baker, 1993).  

Grinded rubber particles have broad distribution in size, from 10 microns to 1 mm (Bazhenov, Goncharuk, 
Knuniantz, Avinkin, & Serenko, 2002). In contrast to small rubber particles, used to toughen polymers (Bucknall, 
Cote, & Partridge, 1986; Wu & Mai, 1993), large rubber particles are defects initiating failure. For example, 
brittle fracture of high density polyethylene (HDPE) was observed after introduction of a single large particle 
into the polymer (Bazhenov, Goncharuk, Knuniantz, Avinkin, & Serenko, 2002). Brittle fracture of filled 
polymers is usually accompanied by localized yielding near the fracture surfaces. On this reason the fracture is 
called quasibrittle (Li, Silverstein, Hiltner, & Baer, 1994). The fracture elongation at quasibrittle fracture is 
roughly 100-fold lower than that at ductile fracture.  

Some polymers, such as superhighmolecularweight polyethylene (SHMWPE) or polyimide under tension yield 
uniformly. However, usually homogeneous elastic extension is followed by a non-homogeneous yielding; the 
film thins down in a short region and a neck is formed. Outside of a neck the material is in a state of low stretch, 
and within the neck stretch is high.  

Tensile strength, Young’s modulus and toughness of filled polymer composite depend on the size (Topolkaraev 
et al., 1988; Chao & Riggleman, 2013), shape, size distribution (Lauke, 2009), the volume fraction of particles, 
as well as adhesion of the matrix and the particles (Ramsteiner & Theysohn, 1984; Topolkaraev et al., 1988; 
Bailly & Kontopoulou, 2009). The matrix yielding and ductility are also beneficial for tough composite.  

The main disadvantage of filled polymers is their tendency to brittle fracture (Bazhenov, Li, Hiltner, & Baer, 
1994; Bazhenov, 1998). However, SHMWPE filled by rigid aluminum particles remains ductile even at the 
particle content of 60% by volume (Bazhenov, Grinev, Kudinova, & Novokshonova, 2010). Under tension, rigid 
particles debond from the matrix and initiate appearance of pores (Topolkaraev et al., 1988; Tao, Ping, Mei, & 
Cheng, 2013). Two types of pores were observed in filled polymers: elliptical pores elongated in tension 
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was 2 mm/min. During tensile tests, samples were regularly photographed. After fracture, the surface of samples 
was examined with a Hitachi S-520 scanning electron microscope (SEM). The size of rubber particles in 
composites was measured with the optical and SEM microscopes.  

4. Results 
4.1 Filled HDPE 

Figure 2 shows typical engineering stress σ – strain ε curves for HDPE filled with different amount of grinded 
rubber particles. The stress-strain curve for unfilled HDPE is typical for ductile polymers. After reaching the 
yield point the stress drops to the draw stress and remained constant while the neck propagates along the 
specimen. Fracture occurred after the propagation of the neck through the entire sample. Different behavior was 
observed for filled materials. HDPE filled with Vf = 8 and 17 vol.% of rubber fractured during formation of the 
neck. Thus, filler results in a dramatic reduction of the failure strain. 

 

200 400 600 800

10

20

30

17 vol.% of rubber

8 vol.% of rubber

 

 

HDPE

S
tr

es
s,

 
 (

M
P

a)

Strain,  (%)  
Figure 2. Engineering stress σ - strain ε curves for unfilled HDPE and HDPE filled with 8% and 17% by volume 

of rubber particles 

 

Figure 3 shows SEM images of HDPE filled with 17 vol.% of rubber particles after tensile fracture. The particles 
were not sieved and their size varied from 10 to 1000 µm. The arrow shows the elongation direction. On the 
Figure 3a the large diamond crack and two small elliptical pores are observed. The diamond crack is elongated in 
the tension direction and its length is ≈ 1.5 mm. Figure 3b represents the enlarged image of the diamond crack. 
The HDPE is torn in the tip of the diamond crack, and it grows in three directions. As a result, the composite 
fractures at low strains. The enlarged SEM image of elliptical pores is shown in Figure 3c. The parts of broken 
and dewetted rubber particles are observed on Figure 3c. In contrast to the diamond cracks, elliptical pores do 
not initiate failure of the composite.  

Below the appearance of diamond cracks in different polymers was studied. With this aim a set of sieves 
separating rubber particles of different size was used. For HDPE, if particles were larger than 100–200 µm in 
size, their fracture initiated formation of diamond cracks, and the composite failed as a macroscopically 
quasibrittle material. In contrast, if the size of particles was less than 100 µm, pores were elliptical, the neck 
propagated along the sample and material did not fail during neck formation. Thus, the particles size 100–200 
µm is critical for the HDPE. Smaller particles initiate appearance of elliptical pores.  
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sample and the composite was ductile. In contrast, if the size of particles exceeded the critical value, the diamond 
cracks appeared, and the composite behaved as a quasibrittle material. The critical size of particles is different 
for different polymers. 

4.4 Propagation of Crack in Notched Polymers 

Propagation of diamond cracks is similar to growth of a notch under tensile load. Figure 7 illustrates propagation 
of the crack in HDPE. At comparatively low tensile strains, the crack tip is round (Figure 7a). Elongation leads 
to gradual crack tip opening, and the crack does not grow. However, at some strain the shape of the crack tip 
changes, and it transforms into a wedge with the angle of 155o. As a result, the crack propagates through the 
sample. Schematic of the crack tip zone is presented in Figure 7c.  

4.5 Theoretical Analysis 

The wedge of the growing crack tip resembles a half of a diamond crack. Particularly, the angles of a diamond 
crack and a notch tip wedge practically coincide. According to linear fracture mechanics, the crack growth starts 
when the crack tip opening reaches a critical value  = c (Leonov & Panasiuk, 1959; Morozov & Parton, 1985). 
When the crack tip opening reaches c, a round crack tip transforms into a wedge (Figure 7b). Assuming that the 
elliptical pore transforms into the diamond crack when the pore elongation reaches the critical crack tip opening 
c, the criterion of the appearance of a diamond crack (onset of fracture) is  = c.  

 

              
                     (а)                                              (b) 

 

 

 

  

 

 

 

  

 

(с) 
Figure 7. Propagation of crack in HDPE. (a) rounded crack tip; (b) wedge-shaped crack tip; (c) schematic 

drawing of a crack growth. Arrows show the direction of tensile drawing 

 

Considering a spherical particle with a diameter D, debonded from the matrix, and assuming that tensile strain is 
uniform, the local strain of the pore is equal to macroscopic strain of the sample. The elongation of the pore is 
equal to a difference of its current length, D, and the initial diameter, D: 

                                  = ( – 1) D                                    (1)  

where  = L/L0, L and L0 are the current and the initial size of a sample. 
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An elliptical pore transforms into a diamond crack when the pore elongation (opening)  reaches its critical value 
c, and the equality  = c is the criterion for appearance of diamond crack. The diamond cracks appear at the 
draw ratio: 

с = с/D + 1                                     (2) 

Equation (2) determines the extension ratio at which elliptical pore is transformed into growing diamond crack. 
If λc is lower than the natural draw ratio of the polymer matrix in neck d, the diamond cracks appear in the 
forming neck, and composite is quasibrittle. In contrast, if c > d, diamond cracks appear after propagation of 
the neck along the sample, and the composite is ductile material. The criterion of the composite embrittlement is 
c = d. The criterion c = d is fulfilled at the critical dimension of particles Dc given by: 

Dc = с/(d – 1)                                    (3) 

If D < Dc, diamond cracks appear after propagation of the neck along the sample, and the composite is ductile 
material. If D > Dc, diamond cracks appear during neck formation, and composite is quasibrittle.  

Experimental values of the draw ratio in neck d, the critical crack tip opening с, and the critical size of particles 
Dc are given in Table 1. In the last column of Table 1 values of Dc calculated with Equation (3) are presented. 
The experimental and theoretical Dc values agree both for cross-linked rubber particles and rigid Al(OH)3 
particles. Figure 8 shows a correlation between the experimental values of the critical particle size, Dc, and its 
theoretical value, сd – . The correlation is described by a straight line with the slope equal to 1. Hence, the 
transformation of an elliptical pore to a diamond crack does occur when the elongation of a pore reaches the 
critical crack tip opening of the matrix, с.  

 

Table 1. The critical crack tip opening, с, and the critical size of particles, Dc, for five polymers 

Polymer Draw ratio 
in neck d 

Critical crack tip 
opening с (m)

Experimental critical 
particle size Dc (m) 

Dc calculated with 
Equation 3 (m) 

LDPE 15803 3.3 1400 600–700 610 

LDPE 16803 3.4 1050 300–400 420 

PP 4 560 100–200 190 

HDPE 4.7 680 100–200 180 

PP* 5.0 140 25 35 

*PP with molecular weight 630000 filled with Al(OH)3 particles. Data are taken from the paper of Topolkaraev 
et al. (1988).  
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The critical size of filler particles is determined by the critical crack tip opening с of the matrix which 
characterizes resistance to crack growth. In addition to с, the resistance to crack growth may be characterized by 
an equivalent characteristic—fracture toughness, GIc. Taking into account the relationship between the fracture 
toughness and the critical crack tip opening, GIc  dс (McClintock, 1971), where d is the draw stress of the 
polymer, Equation (3) may be rewritten: 

1)(λσ

G
D

dd

Ic
c 
                                        (4) 

The critical particle size is determined by the polymer fracture toughness GIc, the draw stress d, and the natural 
draw ratio in neck d. For thermoplastic polymers quite typical are values GIc = 2–3 kJ/m2, d = 30 MPa, d = 4, 
and the typical critical particle size is estimated as Dc = 20–30 μm.  

5. Discussion 
Large particles are defects initiating fracture of filled polymer. However, the effect of particles dramatically 
depends on whether the polymer yields by necking or uniformly without necking. Figure 9 compares 
schematically the effect of particle size on the fracture strain of polymers yielding uniformly (9a) and by necking 
(9b). The curve 1 on Figure 9a shows the strain,  c – 1, of appearance of diamond cracks and the curve 2 - 
the fracture strain of the unfilled polymer. The fracture strain of the composite is equal to the lower of two values 
determined by curves 1 and 2. It is shown by the solid line. If particles are small, the fracture strain of the 
composite is equal to that of the unfilled matrix. If particles are large enough and the curve 1 is under the line 2, 
the fracture strain decreases with the particle size. Nevertheless, the composite remains ductile. 

If the matrix is necking (Figure 9b), the fracture strain of the composite abruptly drops when the particle size 
reaches the critical value Dc. In this case the fracture strain is reached in the forming neck, while outside of the 
neck the material is in a state of low stretch, and macroscopically material is brittle. The size of filler particles 
should not exceed the critical value Dc. If the particle size is higher than Dc, fracture is caused by diamond crack 
quickly growing through the necking zone. In contrast, small particles lead to formation of elliptical pores. It is 
worth mentioning that aggregates of the nanoparticles (Khare & Burris, 2010) may be similar to a large particle. 
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Figure 9. The fracture strain of filled polymer plotted against the particle diameter D for matrix yielding uniformly 

(a) and by necking (b). Curve 1 was calculated with equation (2) for с = 140 m and d = 5 

 

An elliptical pore transforms into diamond crack when the pore opening reaches the critical crack tip opening of 
the unfilled matrix. The criterion of transformation of an elliptical pore into a diamond crack (onset of failure) 
coincides with the criterion of the onset of notch propagation.  

Tensile strength, Young’s modulus and toughness of filled polymer composite depend on the size, shape, size 
distribution, the volume fraction of particles, adhesion of the matrix and the particles. However, the key point 
determining ductile or brittle behavior of filled polymer is whether the polymer matrix yields uniformly or with 
necking. If the neck does not appear under tension as in SHMWPE filled by rigid aluminum particles, material 
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remains ductile up to very high filler content (Bazhenov, Grinev, Kudinova, & Novokshonova, 2010). 
Rubber-like polymers filled with nanosize particles are also ductile materials (Lee, Kontopoulou, & Park, 2010).  

6. Conclusions 
1) Large filler particles initiate appearance of growing diamond cracks. In contrast, small particles lead to 
formation of elliptical pores. In the intermediate case pores initially are elliptical, which gradually transform into 
diamond cracks.  

2) The diamond pore is formed when the elongation of an elliptical pore reaches the critical crack tip opening of 
the polymer matrix.  

3) The critical size of particles initiating appearance of diamond pores is determined by the fracture toughness or 
critical crack tip opening of the matrix. 

4) Quasibrittle behavior is typical to filled composites with matrices yielding by necking. In contrast, matrices 
yielding uniformly without necking usually are not brittle. 
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