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Abstract 

Photovoltaic properties of nano-sized zinc oxide (ZnO) films sensitized with a conventional ruthenium complex 
(N719) and two metal-free organic indoline dyes (D-149 and D-205) were compared. The ZnO nanoparticles 
were deposited on transparent conductive aluminum-doped ZnO coated glass substrates (AZO) by spray-coating 
deposition method and then annealed in air at 500 C. Using the ZnO-coated AZO as transparent conductive 
substrates, dye-sensitized solar cells (DSCs) were prepared with the N719, D149 and D205 dyes as the 
sensitizers. The photoaction spectra of the incident photon-to-current conversion efficiency (IPCE) of the DSCs 
revealed that the indoline-sensitized solar cells were higher and broader than the ruthenium-sensitized solar cell 
in the photo-absorption behavior. Under AM 1.5 simulated sunlight (1000 W m-2), the indoline-sensitized ZnO 
solar cells yielded solar-to-electric energy conversion efficiency of 3.02 and 2.26% for the D-205 and D-149 
respectively, while the N719 sensitized ZnO recorded only 0.97%. The superior performance of the 
indoline-sensitized solar cells was attributed to mainly higher sunlight harvesting efficiency of these metal-free 
organic dyes. 
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1. Introduction 

Commercially available solar cells are currently based on inorganic semiconductor (silicon, cadmium-terullide 
CdTe and copper-indium-gallium-selenide CIGS) materials. These inorganic semiconductor materials are 
expensive and besides their device fabrication processes are tedious and complex. Therefore, solar cells based on 
organic materials appear to be highly promising and low cost alternative for the photovoltaic energy sector. 
Dye-sensitized solar cell (DSC) is a photovoltaic device that relies on a dye as the sunlight-absorber material, a 
porous oxide semiconductor film coated on a transparent conducting film, an electrolyte containing a redox 
couple and a counter electrode. The dye first absorbs light, producing excitons which dissociate at the 
dye-semiconductor interface, resulting in the injection of photoelectrons into the conduction band of the porous 
semiconductor. While the electron is transported through the porous semiconductor to the external circuit, the 
hole migrates through the electrolyte solution to the counter electrode where it recombines with an electron. 
Therefore, the dye plays a critical role in the operation of the DSC. The development efforts in the synthesis of 
dye sensitizers can be grouped into two areas, namely the synthesis of ruthenium complex dyes such as N3 
(Grätzel, 2004; Nazeerudin et al., 1993), N719 (Nazeerudin et al., 2002), Z907 (Wang et al., 2002; Wang et al., 
2003) and black dye (Nazeerudin et al., 2001; Chiba et al., 2006) and the synthesis of metal-free organic donor 
dyes (Chen et al., 2010; Guerin et al., 2010; Tefashe et al., 2010; Chen et al., 2011). The former class of 
compounds contains expensive ruthenium metal and requires careful synthesis steps, while the latter can be 
prepared rather inexpensively by following designed rules. At present, the state-of-the-art DSCs based on 
ruthenium complex dye as the sensitizer and TiO2 semiconductor have an overall power conversion efficiency of 
more than 11% under standard Air Mass 1.5 (AM 1.5) illumination (Nazeerudin et al., 2005; Chiba et al., 2006). 
However, the molar extinction coefficients of these dyes are low compared with most metal-free organic dyes 
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(Wang et al., 2005). In contrast to the ruthenium complex dyes, different light absorbing groups can be 
introduced into the organic framework of the metal-free dye in order to tune the spectral absorption over wide 
wavelength and also to achieve high extinction coefficients. Major progress has been made in the use of 
metal-free organic dyes as sensitizers in DSCs with the highest solar-to-electric power conversion efficiency 
exceeding 8% (Ito et al., 2006; Ito et al., 2008). In our previous work, we have reported the preparation and 
characterization of sputtered aluminum and gallium co-doped zinc oxide (ZnO) films as conductive substrates in 
dye-sensitized solar cells (Onwona-Agyeman et al., 2013). In this work, we have compared two metal-free 
indoline dyes (D149 and D205) and a ruthenium complex dye (N719) to sensitize the film composites on which 
ZnO nanoparticles were deposited by spray-coating method. The ZnO photoelectrodes were formed on 
transparent and conductive aluminum-doped zinc oxide films (AZO) instead of the usual fluorine-doped tin 
oxide (FTO) to eliminate lattice mismatch and thermal expansion differences during heat treatments. The 
photovoltaic properties of the sensitized ZnO DSCs were evaluated under standard AM 1.5 simulated sunlight 
(1000 W m-2) illumination. 

2. Experimental Procedure 

The AZO films were prepared by radio frequency (rf) magnetron sputtering using a mixed ceramic target 
consisting of ZnO (97.5 wt. %) and Al2O3 (2.5 wt. %) (Hirahara et al., 2012). During the deposition of the AZO 
film, rf power was kept at 100 W, substrate temperature at 300 C and sputter pressure at 3 Pa. The resultant 
AZO films prepared under these conditions yielded films with sheet resistance of 8 /sq and the average 
transmittance of 82% within the wavelength range of 400-800 nm. ZnO powder (20 nm particle size, Wako 
Chemicals, Japan), few drops of glacial acetic acid and 40 ml of ethanol were mixed and ultrasonically dispersed 
for 10 min. The mixture was then sprayed onto AZO substrates heated at 150 C and subsequently annealed in 
air at 500 C for 30 min. The resultant ZnO photoelectrodes (active cell area ~ 0.25 cm2) were then immersed 
separately in a mixture of acetonitrile/tert-butanol (volume 1:1) containing either 5  10-4 M indoline (D149 or 
D205) or ruthenium dyes for 12 h. The dye-coated ZnO photoelectrodes were removed, rinsed with acetonitrile 
and allowed to dry. Finally, the ZnO photoelectrodes were sandwiched with a platinum-coated counter electrode 
and the intervening space filled with an electrolyte solution (0.1 M LiI, 0.05 M I2, 0.5 M tert-butyl pyridine, 0.6 
M dimethylpropylimidazolium iodide in methoxyacetonitrile). The photocurrent action spectra (50 W cm-2) and 
the current-voltage (I-V) characteristics of the solar cells at AM 1.5 (1000 W m-2) simulated sunlight irradiation 
were recorded with a calibrated solar cell evaluation system (JASCO, CEP-25BX). 

3. Results and Discussions 

 

 
Figure 1. XRD pattern of the AZO film used as a transparent conductive substrate in ZnO dye-sensitized solar 

cells. Inset is the transmittance spectrum of the AZO film measured at room temperature  
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Figure 1 shows the X-ray diffraction (XRD) pattern of the as-grown AZO film prepared by rf magnetron 
sputtering. The XRD pattern revealed that, the AZO film orientation is mainly along the (002) direction. The 
inset in Figure 1 is the transmittance spectrum of the same AZO film with an average transmittance of 82% 
within the wavelength range of 400-800 nm. 

The chemical structures of the indoline dyes (D149 and D205) used in the sensitization of ZnO films in this work 
are shown in Figure 2. The D205 dye is designed by introducing an octyl substitute, in place of ethyl group, into 
the rhodanine ring of the D149. Indoline dyes have also been previously used to sensitized oxide semiconductors 
such as TiO2 (Ito et al., 2008) and SnO2 (Onwona-Agyeman et al., 2006; Ariyasinghe et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Chemical structures of the indoline dyes used in the sensitization of ZnO electrodes: a) D149 and b) 
D205 

 

Figure 3 shows the absorption spectra of the D149 and D205 dyes in dimethylformamide (DMF), and the 
incident photon-to-electron conversion efficiency (IPCE) spectra of the ZnO photoelectrodes sensitized with the 
indoline and ruthenium dyes are shown in Figure 4. Strong absorption band maxima of the D149 and D205 in 
DMF were about 530 nm and these values shifted significantly to higher wavelengths when the dyes were coated 
on the ZnO films as shown in Figure 4. The self-association of dyes in solution or at solid-liquid interface is a 
frequently encountered phenomenon in dye chemistry owing to strong intermolecular van der Waals-like 
attractive forces between the molecules (Lanzafame et al., 1996). It can be clearly seen in Figure 4 that light 
harvesting by the indoline-sensitized ZnO electrodes is higher while that of ruthenium-sensitized electrode is 
lower. From Figure 4, the IPCE for the D205 sensitized electrode is almost 80%, that of the D149 is 60% and 
finally the IPCE for the N719 sensitized cell is less than 40%. Indoline dyes are known to form dye aggregates 
on oxide semiconductors (due to their high extinction coefficients) and the low light harvesting of the N719 dye 
on the ZnO electrode may be due to the inability of the dye to form proper aggregates on the semiconductor 
surface because of low molar extinction coefficient of ruthenium complex dyes (Nazeerudin et al., 1999). 

a) b) 
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