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Abstract 

Several approaches to obtain the comprehensive stiffness of finite frameworks are present in literature; yet, the 
formulation has not been addressed for lattice materials and infinitely periodic structures. The objective of this 
paper is to introduce a systematic method to calculate the comprehensive stiffness of prestressed, infinitely 
periodic, structures and lattice materials with pin- and rigid-jointed connectivity. We first derive the 
comprehensive stiffness of a finite framework through the superposition of its material and nonlinear geometrical 
stiffness. By using the Bloch's theorem, we derive the irreducible form of the stiffness system of the finite 
framework, which represents the stiffness behaviour of the corresponding infinite, periodic assembly. Finally, the 
comprehensive stiffness of the infinite lattice is homogenized to generate the stiffness characteristics of the 
lattice material. A detailed example is provided to show the application of the methodology. Closed-form 
expressions of the elastic properties are presented for 12 planar lattices.  

Keywords: Geometrical stiffness, Comprehensive stiffness, Tangent stiffness, Periodic structures, Lattice 
materials 

1. Introduction 

Material and geometric nonlinearities are commonly encountered in structural analysis. The former is developed 
due to the nonlinear elastic, plastic and/or viscoelastic behaviour of the material. The latter starts once the 
structural deformations exceed the infinitesimal limit at which strains are sufficiently large to generate a change 
in the initial configuration of the structure. In this case, the equilibrium system of the deformed structure is not 
equivalent to its state in the undeformed configuration. As a result, the equilibrium state should be formulated in 
the deformed configuration to factor in an additional term, namely the geometrical stiffness.  

Geometrical nonlinearities are normally present in the response of any structure. In the context of small strain 
theory, their effect is often negligible; on the other hand, their influence cannot be ignored in kinematically 
indeterminate frameworks. A kinematically indeterminate framework is a pin-jointed structure with internal 
mechanisms, i.e. the modes of structural deformations occur without element deformation. Some of these 
internal mechanisms generate finite displacements at each external loading increment; other mechanisms, on the 
other hand, are exceptional as the structure encounters only first order infinitesimal mechanisms accompanied by 
higher order strains. Such kinds of structures are prestressable and can be found in several natural and 
engineering systems such as cable systems (e.g. cable nets), tensegrity frameworks, pneumatic domes and fabric 
roofs (Kuznetsov, 1997; Tilbert, 2002).   

The static analysis of prestressed structures finds its roots in the works of Mohr (1885), Maxwell (1890), 
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Levi-Civita and Amaldi (1930); and more recently in the contributions of Calladine (1982), Calladine and 
Pellegrino (1986; 1991), Volokh and Vilnay (1997) and Kuznetsov (1997; 2000). Maxwell (1890) first identified 
the minimum number of bars for a pin-jointed framework to be kinematically and statically determinate, i.e. 
"simply stiff". If the number of bars is below the minimum condition of Maxwell, the structure is a mechanism, 
unless its nodes are fixed. In this case, the mechanical behaviour of the framework is dominated by the bending 
failure of its constituents. On the other hand, if the number of bars is above the minimum condition of Maxwell, 
then the structure is "over-stiff”, for it has a redundant number of bars. The failure modes of simply stiff and 
over-stiff frameworks are dominated by the axial stress of its constituents, which results in a stretching 
dominated behaviour. Calladine (1978), Pellegrino (1993) and Pellegrino and Calladine (1986) reviewed the 
linear-algebraic basis of Maxwell’s rule. Their formulation generalized Maxwell's rule to obtain the states of 
self-stresses and the states of internal mechanisms from the fundamental subspaces of the equilibrium and the 
kinematic matrices of a pin-jointed framework. The generalized Maxwell’s rule can be used to obtain an accurate 
prediction of the determinacy state of finite structures. Deshpande et al. (2001a) extended the determinacy 
analysis to account for infinitely periodic frameworks. In their work, the mechanics of a limited set of pin-jointed 
lattice topologies with infinite periodicity was examined. In particular, only topologies wherein the nodes are 
similarly-situated, i.e. the framework appears the same and in the same orientation regardless of the viewpoint, 
were studied. In 2D, these are the regular square and triangular lattices; in 3D, this set includes the regular 
octet-truss. The generalized Maxwell’s rule was used to prove that the necessary but not sufficient nodal 
connectivity, Z, of a structure to be stretching dominated is Z=4 in 2D and Z =6 in 3D. On the other hand, the 
sufficient nodal connectivity was proven to be Z=6 in 2D and Z =12 in 3D.  More recently, Hutchinson (2004) 
used the Bloch’s theorem for modeling periodic waves in an infinite lattice structure. Following this approach, 
Elsayed and Pasini (2010a; 2010b) developed a matrix-based methodology to analyze the determinacy state of 
infinite lattice structures with an arbitrary cell topology and obtain the homogenized material stiffness properties 
of both pin-jointed and rigid-jointed infinitely periodic frameworks.  

From the aforementioned works, it appears that the analysis of the determinacy state of finite and infinite 
frameworks is well established. However, the impact of the determinacy state on the static response of the 
structures in the form of comprehensive stiffness characteristics has been investigated only for finite frameworks. 
As demonstrated in literature, the geometrical stiffness can play a major role in the comprehensive stiffness 
response of a prestressed structure. In this paper, we extend the literature on this topic to model the 
comprehensive stiffness of infinite periodic structures. We generalize their stiffness characteristics to account for 
the geometrical non-linearity of periodic frameworks. The homogenized, comprehensive stiffness of periodic 
cellular materials are for the first time provided for 12 lattice topologies. The role that the geometrical stiffness 
plays in the static response of a given lattice is discussed. 

The paper is organized in five sections. After the introduction, the mathematical description and the model of the 
comprehensive stiffness are presented for pin- and rigid-jointed frameworks as well as for lattice materials. To 
demonstrate the steps of the methodology, the procedure is applied in section 3 to the Kagome lattice material. 
The fourth section discusses the impact of the comprehensive stiffness on the stiffness resistance of two selected 
cell topologies, the Kagome and the 23 4.3  lattices. Concluding remarks are given in the last section. 

2. Analysis 

A periodic structure can be generated by tessellating a unit cell along periodic vectors. To characterize the physical 
properties of an infinite lattice, it is common to study the attributes of the unit module, which is considered as the 
Representative Volume Element (Hill, 1963; Shan & Gokhale, 2002). The unit cell can be described by the 
envelope of the unit cell and its bases. The former governs the structure periodicity, described by the translational 
symmetry bases, ܽ௞ሬሬሬሬԦ, where  nk ,..,1 with n=2 in 2D and n=3 in 3D. The latter representing the physical structure 
contains two groups, namely, the node bases group and the bar bases group. Fig (1) illustrates this concept applied 
to the Kagome lattice. Figure (1a) shows the structure of a cluster of unit cells of the lattice.  
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Figure 1. Kagome lattice structure 

 

Figure (1b) shows the cell envelope along with the translational primitive bases ܽଵ and ܽଶ. Figure (1c) 
illustrates the bar position vectors, ܾ௠, and the node position vectors, ݆௟, of a unit cell, where  bm ,...2,1  and

 jl ,...2,1 , b and j are, respectively, the total number of bars and the total number of nodes within the unit cell. 

In the next section, we present the comprehensive stiffness system of the unit cell and we extend its formulation 
to the infinite lattice. For simplification, we assume the cell elements have the same cross-sectional area and 
material properties.  

2.1 Stiffness System of the Unit Cell as a Finite Structure 

The stiffness system of a framework with b elements connected between j nodes is given by: 

fKd                     (1) 

where njnjR K is the stiffness matrix that relates the nodal deformation vector, njRd , of the structure to its 
nodal force vector, njRf  (McCormac, 2006), with n = 2 and n = 3 for pin- and rigid-jointed assemblies. For a 
prestressed, kinematically and statically indeterminate, structure in which finite deformations are expected, the 
equation of the force equilibrium must be formulated in the deformed configuration. Eqn (1) is then modified to 
account for the geometrical stiffness as: 

   fdKK  GE                      (2) 

where njnj
E R K and njnj

G R K are respectively the material and the geometrical stiffness matrices. To easy the 
formulation of the comprehensive stiffness for pin- and rigid-jointed finite frameworks, we rewrite eqn (2) as: 

   
    fdKKKdK
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where subscripts p  and r , refer, respectively, to the attributes of pin-jointed and rigid-jointed structures; 
subscripts E and G refer, respectively, to material and geometrical stiffness characteristics. Since the geometrical 
stiffness term in equation (3) is a function of the axial forces of the structural elements, we present in the next 
section the formulation of the axial forces in statically and kinematically indeterminate frames. 

2.1.1 Tension Forces in the elements of the Unit Cell 

The equilibrium and kinematic systems of a pin-jointed structure with b elements connected between j nodes can 
be expressed as: 

 fAt                   (4) 

eBd                  (5) 

where bjR  2A and jbR 2B  are Jacobian matrices with entries of direction cosines that transform, 
respectively, the vector of tension forces of the structural elements, bRt , to the vector of the nodal forces, 
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jR2f , and the vector of nodal displacements, jR2d , to the vector of element deformations, bRe , 
(Kuznetsov, 1997; 2000).  

The vector of tension forces of the structural elements, t, is composed of two terms: (i) b
f Rt , depends on the 

applied external loading, f, and (ii) Gs , generated by the elongations imposed in the redundant elements of the 
structure. Both terms contribute to the structural geometrical stiffness. Thus: 

Gff stSγtt                     (6) 

where sbR S is the matrix of states of self-stresses formulated by concatenating the modes of states of 
self-stress into its columns; s is the number of states of self-stress in the structure. sRγ is a vector of arbitrary 
constants that are used to generate a linear combination of the independent modes of the states of self-stress.  

Thus, a global state of self-stress, Gs , which describes the modes of axial forces induced in a framework with 
no applied external load, can be expressed as: 

Sγs G                           (7) 

The states of self-stress are the non-pivotal modes in the column space of the equilibrium matrix, A. They can be 
obtained by evaluating the reduced row echelon form (Strang, 1998) of the equilibrium matrix and calculating 
the non-pivotal modes in its column space.  

The element deformation vector, bRe , on the other hand, can be expressed as: 

Ftee  0                   (8) 

where bR0e is the vector of imposed elongations in the redundant elements of the structure due to heating, 
misfit or by prestressing a member through the use of, for example, smart materials, (Sener, et.al., 1994). 

bbR F  in eqn. (8) is a compliance diagonal matrix with entries expressed by: 

   
EA

l
f k
kk                       (9) 

The independent modes of mechanisms of a pin-jointed structure are found in the column space of the kinematic 
matrix, B, and are computed following the same approach as for the states of self-stress. In the current analysis, 
the modes of mechanisms encountered in a structure include both the rigid-body motions and the states of 
internal mechanisms. The reason for the occurrence of rigid-body motions in the unit cell is that its structure is 
not constrained into a foundation. It is worth mentioning here that B=AT, where AT is the transpose of the 
equilibrium matrix A, which is obtained through the principle of virtual work (Timoshenko & Young, 1945). 
This equivalence indicates that the modes of mechanisms are also found in the row space of the equilibrium 
matrix and can be determined by computing the left-null space of the equilibrium matrix. 

Pellegrino (1992; 1990; 1988), classified pin-jointed structures based on the number of states of self-stress, s, 
and the number of states of internal mechanisms, m, as shown in Table (1). Guest and Hutchinson (2003), 
demonstrated that periodic lattice structures cannot be simultaneously statically and kinematically determinate; 
thus the structural type I in Table (1) is excluded from this study. On the other hand, the pretension of an element 
(s>0) can significantly increase the stiffness resistance of the framework. In this paper, we examine structures of 
types III and IV (Table (1)). In particular, we investigate the effect of the term Gs  of the geometrical stiffness 
on the stiffness characteristics offered by lattice materials and periodic structures, regardless of the external 
loading.  

Table 1. Classification of Structural Assemblies 

Type # of modes of states of 
self-stress (s) 

# of modes of states of internal 
mechanisms (m) 

Static and kinematic properties 

I s=0 m=0 Statically and kinematically determinate 
II s=0 m>0 Statically determinate and kinematically 

indeterminate 
III s>0 m=0 Statically indeterminate and 

kinematically determinate 
IV s>0 m>0 Statically and kinematically 

indeterminate 
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Of course once the applied external loading, expressed in the form of macroscopic stress or strain fields, is 
determined, the term of the axial forces, ft , can be obtained  and a similar strategy can be followed to 
compute the resulting geometrical stiffness. 

2.1.2 Global State of Self-Stress 

The computation of the global state of self-stress Gs  is performed in two steps. The first is to compute the 
matrix S of the states of self-stress, as described in the previous section. The second is to determine the vector of 
arbitrary constants, γ , as a function of the imposed elongations, 0e . We use the orthogonality condition to 
obtain the vector of arbitrary constants that generates a linear combination of the states of self-stress. Following 
the approach of Pellegrino (1990; 1993), to impose the vector of element deformations, e , to be orthogonal to 
the null space of the equilibrium matrix, A, we write:  

0eST                    (10) 

Substituting eqn (6) into eqn (8), then substituting the result into eqn (10) and rearranging, gives: 

   f
TT FteSFSSγ 


0

1
              (11) 

Similar formulations to the orthogonality condition of eqn (11) can be found in textbooks on matrix analysis of 
structures (Livesley, 1975; Pestel & Leckie, 1963).  

Since we are interested in axial forces excited by the imposed elongations, 0e , by setting 0ft
  

in eqn (11) 
we obtain: 

  0
1

eSFSSγ TT 
                   (12) 

Substituting eqn (12) into eqn (7) results in the vector of global state of self-stress: 

  0
1

eSFSSSs TT
G


                (13) 

The vector of imposed elongations bR0e  can be formulated as: 

 lee 00                       (14) 

0 is a scalar corresponding to the nominal strain assumed in the redundant elements. 0  is used to control the 
level of pre-tension field within the lattice; b

l Re  is a vector with entries corresponding to the redundant 
elements in the unit cell expressed as   iil le  ; il is the length of the ith redundant element within the unit cell 
and  ri ,..,1 and the r's are indices of the redundant elements in the unit cell. Other indices corresponding to 
pivotal elements in the equilibrium matrix are set equal to zero in the b

l Re  vector. 

Substituting eqn (14) into eqn (13) results in:  

    l
TT

G eSFSSSs
1

0


                (15) 

The axial forces in the elements computed by Gs
 

are substituted into eqns (3) to obtain the comprehensive 
stiffness of the structure.  

2.2 Stiffness System of the Infinite Lattice Structure 

In this section, we extend the computation of the stiffness system of finite structures to infinite periodic 
structures. To compute the geometrical stiffness of the infinite periodic structure, we derive the states of 
self-stress that represent the irreducible expressions of their counterparts in the infinite lattice. The Bloch's 
theorem is used to compute the irreducible forms of the static wave-functions which are employed to determine 
the equilibrium system of the infinite lattice. The reduced equilibrium matrix, A

~ , is computed at the different 
wave-numbers that are derived from the irreducible first Brillouin zone of the reciprocal lattice (Brillouin, 1946). 
The null space of the matrix A

~
 is evaluated at the different wave-numbers. The independent vectors developed 

from the null space of the reduced equilibrium matrix represent the modes of states of self-stress of the infinite 
lattice. These modes are concatenated as the columns of the matrix S

~
 of the reduced states of self-stress.  
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It should be noted that at the wave-number )0,0( the row space of the reduced equilibrium matrix A
~  

contains two kinematical modes of translational rigid-body motion as the lattice structure is not constrained into 
a foundation. A rigid-body rotation is constrained due to the basic assumption of the translational periodicity 
(Guest & Hutchinson, 2003). An accurate computation of the periodic states of self-stress at wave-number 

)0,0(  requires eliminating the modes of rigid-body motion from the row space of the reduced equilibrium 
matrix, A

~ . This elimination process is discussed in the following section. 

2.2.1 Elimination of Modes of Rigid-Body Motions from the Row Space of Matrix A
~  

The computation of the left-null space of the reduced equilibrium matrix, A
~ , at wave-number )0,0( , 

generates a set of independent vectors that represent the modes of mechanisms experienced by the infinite lattice. 
In a 2D lattice, two of these modes are translational rigid-body motions and the others are internal mechanisms. 
To determine the states of self-stress that are excited explicitly by the internal mechanisms, the modes of the 
rigid-body motion have to be eliminated from the row space of the reduced equilibrium matrix; as a result, the 
states of self-stress are to be re-computed based on the resulting new truncated equilibrium matrix.  

We use here the product force vector approach to identify the modes of rigid-body motion from the internal 
mechanisms (Pellegrino & Calladine, 1984; 1986). The product force vector approach is a necessary condition to 
predict the possibility of imparting a positive definite geometrical stiffness. This geometrical stiffness is 
developed by the inextensional deformation of the infinite structure and the corresponding nodal forces resulting 
from the triggered states of self-stress. This necessary condition will not be satisfied in the case of rigid-body 
mechanisms. The following steps explain this process.  

First, the null space of the reduced equilibrium matrix, A
~ , at wave-number )0,0( is computed to determine 

the set of reduced states of self-stress which are concatenated into the reduced matrix S
~

. Applying the 
procedure of Section 2.1 to the infinite lattice results in the following reduced vector of linear combination 
constants: 

   l
TT eSSFSγ ~~~~~~ 1

0


                     (16) 

where F
~

 is the reduced diagonal flexibility matrix of the independent elements of the unit cell; le
~ is the 

reduced vector of element lengths (eqn (14)) applied to the entries corresponding to the redundant independent 
elements. Using eqn (16), the vector of the reduced generalized states of self-stress, Gs

~ , is given by: 

    l
TT

G eSSFSSγSs ~~~~~~~~~ 1
0


                 (17) 

Second, the product force vector approach is used to check the stiffening effect of the reduced generalized state 
of self-stress to each mode of mechanisms at wave-number )0,0( . For this purpose we set a nominal strain of

10   and we calculate the product force vector for 10  . The negative sign being the shortening of the 
element which generates a tension field in most lattice topologies. The tension field is necessary to impart 
positive definite stiffness tensors as the stiffening of the internal mechanisms is developed by the states of 
self-stress, as explained hereafter. If the stiffening effect is not satisfied at 10  , the computations is repeated 
for 10  . To check the stiffening effect of the reduced generalized state of self-stress for each mode of 
mechanisms, the following steps are performed. 

(i) Expand the reduced modes of mechanisms and global state of self-stress, computed respectively from the 
left-null space and the null space of the reduced equilibrium matrix. The kinematical displacements of all nodes 
and the tension force of all elements within the unit cell are then computed as: 

   DTD
~

d                             (18) 

   GeG sTs ~                         (19) 

where 
~
D  is the reduced mechanisms matrix containing the states of mechanisms of the infinite lattice 

concatenated into its columns. dT  and eT  are, respectively, the nodal and the element transformation matrices 
which are used to expand the wave-functions of the nodal and the element deformations from their infinite 
irreducible representation to the unit cell representation. The transformation matrices are computed using the 
Bloch's theorem at wave-number )0,0( , as show in (Elsayed, M.S.A., Pasini, D., 2010a; 2010b). 
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(ii) Formulate the set of product force vectors corresponding to each individual mechanism by using the 
expanded modes of mechanisms along with the expanded global state of self-stress obtained in (i). The product 
force vectors are concatenated into the product force vector matrix, P . The product force vector matrix is then 
reduced to the irreducible product force vector matrix, P

~
, of the infinite lattice structure as: 

PTP T
d

~
                    (20) 

(iii) Eliminate the non-pivotal columns in the reduced equilibrium matrix of the infinite lattice to obtain the 
truncated reduced equilibrium matrix

^

A
~

.  

(iv) Augment the reduced product force vector matrix to the truncated, reduced, equilibrium matrix 
^

A
~

 as: 

 











 PAA

^ ~~~
aug              (21) 

The reduced row echelon form of the matrix  TaugA
~

 is computed to determine the non-pivotal modes along 

with their indices. The non-pivotal modes represent the set of mechanisms after applying the stiffening effect of 
the global state of self-stresses, which - being free - are not affected by the periodic states of self stress. If the 
number of mechanisms is reduced to two, then these modes are rigid-body motions and the others are internal 
mechanisms that are stiffened by the global state of self-stress. On the other hand, if this number is greater than 
two, then an additional filtration step is required to distinguish rigid-body motions from non-stiffened internal 
mechanisms. 

(v) If g is the number of independent nodes within the infinite lattice, then, two modes of rigid-body motion can 
be defined for the infinite lattice as: 

  
  
  
   1212

0112

0212

1112








im

im

im

im

y

y

x

x

  and  gi ,...,1    (22) 

The mechanisms obtained from the augmented equilibrium matrix (eqn (21)) are internal if they are independent 
from those calculated in eqn (22), else they represent rigid-body motions. Once the indices of rigid-body 
mechanisms are determined, their corresponding rows are eliminated in the reduced equilibrium matrix to form 
the matrix A

~~
. The null space of A

~~
 is computed and its states of self-stress are assembled to form the final 

global state of self-stress, which is in turn expanded (eqn (19)) to generate the tension forces of all elements 
within the unit cell. These tension forces are used to generate the geometrical stiffness of the lattice structure at 
wave number )0,0( . 

2.3 Comprehensive Macroscopic Stiffness of Lattice Material 

The stiffness properties of the microscopic infinite lattice structure are homogenized to generate the 
comprehensive, effective, macroscopic stiffness properties of the lattice material. This is done by using the 
Cauchy-Born hypothesis (Bhattacharya, 2003; Born & Huang, 1954; Maugin, 1992) which is used to formulate the 
Cauchy-Born kinematic boundary condition (Elsayed & Pasini, 2010a). This boundary condition is an explicit 
expression of the microscopic nodal deformations in terms of an assumed homogeneous macroscopic strain field 
applied to the lattice material. The nodal forces are derived by direct substitution of the nodal deformations into the 
stiffness system of the lattice. The nodal forces and deformations are employed to derive the macroscopic stiffness 
properties of the pin- and rigid-jointed lattice material using the principle of virtual work (Timoshenko & Young, 
1945) and the Hill-Mandel principle (Maugin, 1992) of macro-homogeneity. Details of this approach can be found 
in (Elsayed, Pasini, 2010b). 

2.3.1 Cauchy-Born Kinematic Boundary Condition 

Assume i and j are two periodic nodes defined by the position vectors lj and 


 Rjl , using the Cauchy-Born 
hypothesis (Bhattacharya, 2003), the Cauchy-Born kinematic boundary condition can be formulated as: 
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Applying the above boundary condition to the nodal displacement vector, d, of the unit cell results in: 

 
  







εΕdTd
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rrdrr

ppdpp

~

~


             (24) 

where dpT  and drT  are respectively the transformation matrices of the nodal degrees of freedom for pin- and 
rigid-jointed unit cells. Eqns (24) are the pin- and the rigid-jointed kinematic boundary conditions of the 
Cauchy-Born hypothesis. 

Substituting eqns (24) into the stiffness system of the unit cell, eqns (3), results in: 
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    (25) 

Multiplying both sides of eqns (25) by the transpose of the transformation matrices, dpT  and drT , respectively, 
and applying the anti-periodic constraints necessary for the static equilibrium of the lattice, gives:  
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 (26) 

The first equation in (26) can be split into two matrix systems as: 

     
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            (27a) 

where     dp
bar
Ep

T

dp
bar
Ep TKTK 

~

 
and     dp

bar
Gp

T

dp
bar
Gp TKTK 

~
are, respectively, the material and the 

geometrical stiffness matrices of the infinite periodic structure with pin joints. 

Similarly, the second eqn in (26) can be split into three matrix systems as: 
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where     dr
bar
Er

T

dr
bar
Er TKTK 

~
,     dr

beam
Er

T

dr
beam
Er TKTK 

~
 and     dr
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Gr

T

dr
frame
Gr TKTK 

~
are, 

respectively, the material axial, the material bending and the geometrical stiffness matrices of the infinite 
periodic structure with rigid joints. 

2.3.2 Nodal Deformations in Terms of Macroscopic Strain Field  

To obtain the nodal deformations in terms of a macroscopic strain field, both sides of eqns (27) should be 
multiplied by the inverse of the reduced stiffness matrices of the infinite lattice structure. To invert these 
matrices, we need first to remove all the modes of both rigid-body motions and internal mechanisms, which 
would make the matrices singular. Once the modes are eliminated, the resulting stiffness matrices (subscript 
"red") can be inverted to obtain the following expressions of nodal displacements: 
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Where 
bar

Ep
~
d  and 

bar

Gp

~
d are, respectively, the nodal deformations corresponding to the material and the 

geometrical stiffness resistances of the pin-jointed lattice. On the other hand, 
bar

Er
~
d , 

beam

Er

~
d  and 

frame

Gr
~
d are, 

respectively, the nodal deformations corresponding to the material axial, the material bending and the 
geometrical stiffness of the rigid-jointed lattices.  

The generalized deformation of all nodes within the unit cell can be computed by substituting eqns (28) into eqns 
(24). For the expressions of the generalized microscopic nodal forces, we substitute the generalized nodal 
deformation vectors into the stiffness system of the unit cell (eqns (3)) for pin- and rigid-jointed lattices. The 
generalized nodal deformations and forces are given by: 
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2.3.3 Homogenized Macroscopic Stiffness of Lattice Material 

From expressions (29) and through the principle of virtual work (Timoshenko and Young, 1945) and the 
Hill-Mandel principle of macro-homogeneity (Maugin, 1992), we calculate the comprehensive macroscopic 
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stiffness properties of pin- and rigid-jointed lattice materials for a 2D lattice with out-of-plane thickness of unity 
as: 
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where 
Tc and Y are, respectively, a density constant that depends on the topology of the unit cell and the 

in-plane area of the unit cell enclosed within the cell envelope. We recall the expression of the relative density 
for a 2D lattice material: 











L

H
cT

L
L



           (31) 

where H is a unified thickness of the microscopic cell element in the plane of the 2D lattice. L


 , L and 

are respectively, the lattice material relative density, the lattice material density and the density of the solid 
material.  

From eqns (31), we write the comprehensive stiffness of a lattice material as: 

bar
LGp

bar
LEpLCp KKK            (32a) 
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beam
LEr

bar
LErLCr KKKK            (32b) 

where bar
LEr

bar
LEp KK  . Once the macroscopic stiffness matrix is computed, the macroscopic compliance matrix can 

be obtained along with the corresponding material elastic moduli. 

3. Example 

To illustrate the steps of the methodology presented in this paper, we select the 2D Kagome as a paradigm 
topology (Figure (1)). To obtain the comprehensive stiffness, we start from the reduced equilibrium matrix of the 
infinite Kagome lattice at wave-number )0,0( : 






































866.05.000866.05.0

010100

00866.05.0866.05.0

866.05.000866.05.0

010100

00866.05.0866.05.0

~
A        (33) 
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The null space of the reduced equilibrium matrix, eqn (33), is calculated to determine the states of self-stress 
matrix, S

~
; the resulting modes are concatenated into the columns of the matrix S

~
. From the computation of the 

reduced row echelon form of (33), we observe that the indices 4, 5 and 6 in the column space are non-pivotal 
modes. Hence, we can eliminate them from the reduced equilibrium matrix, 

~
A , to obtain the reduced truncated 

equilibrium matrix, 
^

A
~

.  

To determine the states of mechanisms of the Kagome lattice, the left-null space of the equilibrium matrix in eqn 
(33) is computed and the resulting modes are concatenated into the columns of matrix 

~
D , where 

~
D  is the 

reduced kinematic matrix. Three mechanisms are recovered from this computation, two out of the three modes 
are rigid-body motions. To determine accurately the states of self-stress associated with internal mechanisms at 
wave-number )0,0( , we eliminate the modes of rigid-body motions from the row space of the matrix A

~
. 

To distinguish modes of rigid-body motions from internal mechanisms, we resort to the product force vector 
analysis.  

The reduced flexibility matrix, F
~

, and the reduced vector of imposed elongations, 0
~e , are computed as: 
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Substituting eqn (34) into eqn (12) yields the reduced vector of linear combination constants of the Kagome 
lattice as: 

   T5.05.05.0~
0  γ            (35) 

Substituting eqn (35) into eqn (17), results in the reduced global state of self-stress of the Kagome lattice at 
wave-number, )0,0(  as: 

  TG 5.05.05.05.05.05.0~
0  s        (36) 

If we impose a nominal imposed strain 10  , we obtain the global state of self-stress and the global 
mechanisms which are used to formulate the product force vector matrix, P . This matrix is then reduced to form 
the reduced product force vector matrix, P

~
. Augmenting the reduced product force vector matrix, with the 

truncated reduced equilibrium matrix gives the expanded reduced equilibrium matrix as: 
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To determine the modes of the un-stiffened mechanisms along with their indices, we calculate the left-null space 
of the augmented reduced equilibrium matrix (eqn (35)) of the Kagome lattice as: 

  
T


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

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


101010

010101~
D              (36) 

The first and the second columns of the kinematic matrix,
~
D , (eqn (36)) of the Kagome lattice, represent 

translational rigid-body motions in the x and the y directions, respectively. Since for the Kagome lattice there are 
only two mechanisms, which both represent rigid-body motions, no additional filtration is required. The indices 
of the two mechanisms are found to be the 5th and 6th indices in the row space of the augmented reduced 
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equilibrium matrix. The nodal degrees of freedom corresponding to these modes are then removed from the 
reduced equilibrium matrix to obtain the matrix A

~~
. To determine the final sets of states of self-stress and states 

of internal mechanisms, the null space and the left-null space of the equilibrium matrix A
~~

are computed, 
respectively, as: 
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The results above allow writing the vector of linear combination constants which is then used to compute the 
final global state of self-stress. For the Kagome lattice, this results in: 

  T5.05.05.0~
0  γ ,   TG 5.05.05.05.05.05.0~

0  s   (38) 

Eqn (19) is used to expand the final global state of self-stress and formulate the geometrical stiffness of the unit 
cell structure. After homogenization, the geometrical and material stiffness are combined to obtain the 
comprehensive stiffness of the pin- and the rigid-jointed Kagome lattice materials as reported below.  

For a pin-jointed Kagome lattice material: 
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For a rigid-jointed Kagome lattice material: 
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where 









L

H
L 1.732 . 

The elastic moduli and Poisson's ratios of the pin- and rigid-jointed Kagome lattice, based on comprehensive 
stiffness analysis, are given by: 

For a pin-jointed Kagome lattice 
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For a rigid-jointed Kagome lattice 
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4. The Contribution of the Geometrical Stiffness to the Stiffness Resistance of Lattice Materials 

In this section, the elastic properties of the Kagome and the 23 4.3 lattices are examined to discuss the 
contribution of their geometrical stiffness and impact on the stiffness properties of the material.  
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4.1 The Kagome Lattice Material 

In Figure (2), the comprehensive stiffness properties of the Kagome lattice material is plotted for a relative 
density 1.0



L , and a nominal strain range 2.0:00  . The figure shows the variation of the elastic moduli 
of the Kagome lattice material against the nominal strain of the solid material. A minor contribution of the 
geometrical stiffness to the comprehensive stiffness can be observed for the Kagome lattice. The reason for this 
is that the Kagome lattice is stretching dominated and thus the contribution of the material stiffness dominates 
the other terms. 

 

 

 

 

 

 

 
 
 

 
 
 
 
 
 
 

Figure 2. Variation of the elastic moduli of the Kagome lattice with an applied nominal strain  
 

4.2 The 3342 Lattice Material 

Plotted for a relative density of ߩ௅തതത ൌ 0.1, Figure (3) shows the variation of the lattice shear moduli versus an 
applied nominal strain in the range 2.0:00  . The curves show that the geometrical stiffness of the pin-jointed 

23 4.3 lattice material contributes significantly to its comprehensive stiffness. In particular, Figure (4) shows that 
the geometrical stiffness can strongly enhance the stiffness resistance of a lattice topology, e.g. 23 4.3  lattice, 
while have a minor effect on others, e.g. the Kagome lattice. The Young's moduli in both the in-plane directions 
of the former are higher than those of the latter for the whole range of nominal strain under investigation. The 
rank of the shear modulus, however, changes in a range of nominal strain, as defined by the value 234.00  . 
When no geometrical stiffness is taken into account, the Kagome lattice material is better and its shear modulus 
outperforms up to 234.00  . For a nominal strain above this threshold, however, the shear resistance of the 

23 4.3  lattice prevails.  

The above demonstrates that the stiffness behaviour of a given lattice topology can be theoretically boosted if a 
nominal strain is applied to one of the cell member. Further work is required to verify experimentally the results 
found in this paper. Our plan is to replace one or more redundant microelements of the lattice with a smart 
material, which upon excitation can trigger the geometrical stiffness of the lattice. 

5. Conclusion 

The paper presented a matrix-based approach to derive the comprehensive stiffness of infinite periodic 
frameworks and lattice materials. The methodology can be applied to pin- and rigid-jointed structures and 
periodic cellular solids. Applied in detail to the Kagome lattice, the procedure has enabled to quantify the impact 
of the terms describing the geometrical stiffness onto the comprehensive stiffness. The homogenized 
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comprehensive stiffness of 12 lattice materials with pin- and rigid-joints has been characterized and given in the 
Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Variation of the shear moduli of the 23 4.3  lattice material with an applied nominal strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Comparison of the elastic moduli of the 23 4.3  lattice and the Kagome lattice 
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Appendix  

Stiffness Properties of 2d Rigid-Jointed Lattice Materials Based on Comprehensive Stiffness Analysis 

A.1 Triangular Lattice Material 

 

 

 

 

 

 

Figure A.1. 2D triangular lattice material 
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A.2 Lattice Material with Schlafli Symbol of 33.42 

 

 

 

 

 

 

 

 

 

Figure A.2. 2D lattice material with Schlafli symbol of 33.42 
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A.3 Lattice Material with Schlafli Symbol of 34.6 

 

 

 

 

 

 

 

 

Figure A.3. 2D lattice material with Schlafli symbol of 34.6 
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A.4 Double Hexagonal Triangulation (DHT) Lattice Material 

 

 

 

 

 

 

 

 

 

Figure A.4. DHT lattice material 
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A.5 Semi-Uni- Braced Square (SUBS) Lattice Material 

 

 

 

 

 

 

 

Figure A.5. SUBS lattice material 
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A.6 Triangular- Triangular (TT) Lattice Material 

 

 

 

 

 

 

 

 

 

 

Figure A.6. TT lattice material 
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A.7 Semi-Double Braced Square (SDBS) Lattice Material 

 

 

 

 

 

 

 

 

Figure A.7. SDBS lattice material 
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A.8 Uni- Braced Square (UBS) Lattice Material 

 

 

 

 

 

 

 

 

Figure A.8. UBS lattice material 
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A.9 Double-Braced Square (DBS) Lattice Material 

 

 

 

 

 

 

 

 

Figure A.9. DBS lattice material 
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A.10. Patched Kagome Lattice Material 

 

 

 

 

 

 

 

 

 

 

Figure A.10. Patched Kagome lattice material 
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A.11 Semi-Hexagonal Triangulation (SHT) Lattice Material 

 

 

 

 

 

 

 

 

Figure A.11. SHT lattice material 
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A.12 Square Lattice Material 

 

 

 

 

 

 

 

Figure A.12. 2D square lattice material 
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