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Abstract 
Zeolites based on the numerous applications can be utilised in providing solutions to some challenges of our world. 
With the ability to store thermal energy as chemical potential, zeolites are able to store thermal energy for long 
periods. This can occur with very minimal loss of energy and indefinitely unless the zeolite comes into contact 
with an adsorbate. The use of zeolite - water as adsorbent - adsorbate pair in thermal energy storage (TES) 
applications have been studied and have shown good results. However, the cost of zeolites synthesized from 
reagents continue to hamper the effective use of this adsorbent. Zeolite A was synthesized from kaolin from Wassa 
in Ghana based on a modified synthesis route. The adsorption properties of the zeolite utilising a designed and 
fabricated TES system using amounts of 100g, 200g, 300g, 400g and 500g of zeolite with a 1:1.5 ratio to water. 
Adsorption isosteres were plotted with the temperature and pressure values recorded and results showed correlation 
to adsorption behaviour of zeolites. Langmuir adsorption isotherms with r-squared values greater than 90% 
confirmed the affinity of water for zeolites. isosteric heat of adsorption was calculated with the minimum being 
5,655.84 J/g and the maximum being 8,113.44 J/g. This confirms that the Zeolite A synthesized from Was kaolin 
has the structural properties needed for TES applications. 
Keywords: thermal energy storage, zeolite, adsorption, adsorption isotherm. heat pump 
1. Introduction 
As society develops, the range of energy applications continue to increase with energy consumption. This results 
in a mismatch when generation doesn’t meet demand. This gap can be reduced or eliminated via energy storage. 
Energy storage is critical to efficient utilization of energy especially thermal energy use (Paksoy, 2005). Thermal 
energy is favoured due to its minimal effect on the environment though difficult to store. Thermal Energy Storage 
(TES) due to its flexibility can improve energy supply, reduce consumption and store excess energy(Ding & Riffat, 
2013; Schreiber, Lanzerath, Reinert, Grüntgens, & Bardow, 2016). TES systems can utilize solar energy, 
geothermal energy as well as waste heat from domestic and industrial processes (Gwadera & Kupiec, 2014). TES 
employing sorption utilizes the reversible reactions involved in the storage of thermal energy. The physical and 
chemical bonds of the sorbent and sorbate are used to store the energy (Scapino, Zondag, Van Bael, Diriken, & 
Rindt, 2017). 
In adsorption, no chemical reaction occurs as the molecules of the adsorbate are attached to the adsorbent material. 
Energy is instead lost as this reaction is exothermic (Dicaire & Tezel). Addition of heat during the desorption 
phase results in an endothermic reaction with the separation of adsorbate and adsorbent (Scapino et al., 2017). This 
process also known as physisorption is reversible. 
The need to develop materials better suited for applications such as thermal energy storage has become compelling. 
Many materials such as silica gels, silicoaluminophosphates (SAPOs) and zeolites have been suggested (Herzog, 
Jänchen, Kontogeorgopoulos, & Lutz, 2014). Water has been mostly used as the adsorbate due to its high latent 
heat and nonpolluting nature (Chan, Chao, Sze-To, & Hui, 2012). 
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A working pair for thermal energy adsorption should meet some basic requirements. The adsorbate should be 
nontoxic, inflammable, ecofriendly and have high latent heat. Adsorbents are also expected to have large 
adsorption capacities, good thermal stability and high affinity for the adsorbate (Li, 2013). The wide application 
of zeolites besides silica gel has led to innovative designs of heat exchanger systems as well as increasing 
optimization of the material (Dawoud, 2013; J. Janchen & Stach, 2011). 
The properties of zeolites such as hydrothermal stability is dependent on some factors. These are the Si/Al ratio, 
nature of cations, lattice types as well as cavities and their sizes (Jochen Janchen et al., 2012). Zeolites are 
crystalline aluminosilicates and used in various industrial processes. Their three-dimensional unit framework is as 
a result of the SiO4 and AlO4 tetrahedra (Khan, Arafat, Reza, Razzaque, & Alam, 2010). The reversible adsorption 
and desorption processes of zeolites has been well documented. This thermal property is critical in the exploitation 
of zeolites in TES (Vieillard, 2010). This has contributed to the increasing research on zeolites for TES applications. 
Several data exist for zeolites synthesized from reagents and some natural zeolites. With the desire to reduce the 
cost of zeolites, the use of local raw materials in synthesis is imperative. The use of kaolin as starting material has 
been extensively researched on. However, the use of kaolin from Wassa, Ghana, was recently explored by (Von-
Kiti, 2016). The thermo- physical and thermal properties of zeolites synthesized from this type of kaolin will 
contribute to the efficient exploitation of this resource as in Figure 1 
 

 
Figure 1. Map of clay deposits in Ghana (Asamoah et al., 2018) 

 
2. Principle of Operation 
Sorption has been used to describe the process as gas or vapour is fixed on the surface of a liquid or solid. The 
captured substance is the sorbate and the other sorbent. Sorption includes both adsorption and absorption as they 
involve mass or heat transfer although different phenomena (Ding & Riffat, 2013). Sorption storage of energy 
utilizes the reversible reactions between the sorbate and sorbent and can provide a lossless heat storage (van 
Alebeek et al., 2018). In adsorption, the adsorbate is amassed onto the surface of the adsorbent depending on the 
regions which are most attractive as in Figure 2. 
Heat is adsorbed during the endothermic charging process leading to the breaking of bonds between the adsorbent 
and adsorbate. The reverse occurs during discharging process as the stored heat is evolved with the bonding of the 
adsorbate and adsorbent. Adsorption can also be classified as physisorption or chemisorption based on the nature 
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of bonding involved. Physisorption involves electrostatic forces whereas chemisorption involves the formation of 
chemical bonds (Khalfaoui, Knani, Hachicha, & Lamine, 2003). The heat can be stored for long periods of time 
as long as the components are separated (Dicaire & Tezel). As the equilibrium of adsorption is dependent on 
temperature, adsorbents are able to adsorb more at lower temperatures (Chan, Chao, Sze-To, et al., 2012). Also, 
the type of adsorbent and adsorbate, the surface area of the adsorbent and conditions of the experiment affect the 
adsorption rate (White, 2012). 
Thermodynamically, energy storage employing adsorption phenomena can be described as a heat pump process. 
As heat is stored and released based on the adsorption/desorption cycle, heat can be upgraded from low temperature 
heat to high temperature heat (Henninger, Jeremias, Kummer, Schossig, & Henning, 2012). During the adsorption 
process, the heat stored is released as the adsorbate vapour bonds with the adsorbent surface. The adsorbate vapour 
returns to its liquid phase as it releases heat a certain temperature. However, the evaporation and adsorption of the 
adsorbate continues over the adsorption phase with the continuous release of heat. Thus, upgrading the heat from 
a low to high temperature level. It is important the TES system is evacuated before the process of storage. 
Competition from other gases present in the system are likely to affect the storage capacity of the adsorbent (Chan, 
Chao, & Bahrami, 2012). During regeneration/desorption, high temperature heat is applied to remove the adsorbate. 
This cycle can be represented by the Clausius-Clapeyron Cycle as in Figure 3. 
 

 
Figure 2. Attractive regions in pores of different surface properties with different adsorbate distributions (Kong & 

Adidharma, 2019) 

 
Figure 3. The adsorption heat pump cycle (Thommes et al., 2015) 
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The isosteric heat of adsorption which gives the amount of heat released is given by the Clausius-Clapeyron 
equation (Tchernev, 2001): 
 dInP/dT = H(T )/RT 2 (1) 
Where P is the gas pressure, R is the gas constant, and T is the zeolite temperature. 
Zeolites are aluminosilicates with channels and pores that can be occupied by water molecules as well as other 
cations. A critical property is its reversible water adsorption properties (Adriano, Soriano, & Duque, 2013). They 
have a stable three-dimensional structure and are able to adsorb molecules based on their sizes, shapes or electrical 
charges (Ityona, 2012). This makes them very useful in industrial applications. Their strong hydrophilic nature and 
ability to alter this property makes them better suited for TES applications than other adsorbent candidates such as 
silica gels. The adsorbate is bonded to the surface of the zeolite as in Figure 4. 
 

 

Figure 4. Schematic representation of several possible surfaces of an adsorbent. 1: van der Waals; 2: Connolly, 
Probe- accessible; 3: Accessible, r-distance (Thommes et al., 2015) 

 
Zeolite A with Si/Al ratio of 1 has about 47% open space is one of the simplest zeolites to synthesize (Ityona, 
2012). Although the adsorption capacity of zeolites has been shown to vary with the presence of other molecules, 
they are good candidates due to their high thermal stability. They also store heat rather in chemical bonds between 
the adsorbent and adsorbate thus no significant energy losses (van Alebeek et al., 2018). They also have crystal 
lattices of regular sizes when compared to other adsorbents (Menad, Feddag, & Rubeins, 2016). 
The synthesis of zeolites from chemical reagents is expensive. The synthesis from natural or chemical reagents 
have similar chemical properties, pore size, thermal stability, higher purity and uniform particle size (Mgbemere, 
Ekpe, & Lawal). The use of natural starting materials such as kaolin is ideal for the synthesis of Zeolite A 
(Gougazeh & Buhl, 2014). The use of kaolin was started from the 1970s as it is transformed by calcination into a 
more reactive phase, metakaolin. The efficiency of a TES system is dependent on the amount of heat energy 
released during the adsorption stage (Dicaire & Tezel). It is also important that the process is simple with the 
adsorption and desorption cycle. This process is applicable in storing solar thermal energy, geothermal energy and 
waste heat from industrial, commercial and domestic processes (Gopal, Hollebone, Langford, & Shigeishi, 1982). 
3. Material and methods 
Zeolite A was synthesized using kaolin from Wassa, Ghana as starting material. The hydrothermal synthesis route 
used was a modification of (Von-Kiti, 2016). 1.75 kg of metakaolin (calcined at 600 °C) following the procedure 
in Figure5. 
Fusion of the metakaolin with the NaOH was done for 45 minutes at 600 oC. The crystallization of the slurry was 
done at 105 °C for 24 hours. It is important that washing is done properly and the final product is not over-washed. 
For TES, the objective is to capture the thermal energy for storage and release for use at a later period. The TES 
system designed and developed comprises an evaporator, an adsorber and a condenser connected by copper tubing 
and valves (Figure 6). 
 
 



jmsr.ccsenet.org Journal of Materials Science Research Vol. 9, No. 3; 2020 

25 

 

Figure 5. Synthesis process 
 

 
Figure 6. Schematic of the TES system 

 
The zeolite was charged by heating the system to temperatures in the range of 95 to 105 °C, the system was 
vacuumed. The opening of valve 1 began the desorption process with valve 2 closed. Water in the evaporator was 
heated using an LPG burner as external heat source. Temperature and pressure within the system was recorded as 
well as the mass of the zeolite. The reverse cycle of adsorption was achieved by opening valve 2 and closing valve 
1. Water vapour was moved via capillary action from the condenser through the evaporator to the adsorber as 
zeolite is hygroscopic. The amount of water was measured to determine the amount adsorbed by the zeolite. The 
experimental parameters used are as in Table 2. 
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Table 1: Experimental parameters 
Experiment Adsorbent 

Amount (g) 
Adsorbate Amount (g) Time 

(mins) 
Repetition (no) 

1 100 150 60 5 
2 200 300 60 5 
3 300 450 60 5 
4 400 600 60 5 
5 500 750 60 5 

 
Studies of the properties of adsorbent materials have mostly been done via thermogravimetry, differential thermo- 
gravimetry, microcalorimetry as well as gravimetric isotherm measurements. The measured parameters of water 
vapour pressure (P), temperature (T), and water adsorption capacity (n) was used to define the isosteric equilibrium 
curves as well as Langmuir isotherms for the zeolite - water system. 
4. Results and discussions 
Understanding the zeolites requires a couple of characterization techniques as a single method will not provide 
enough information. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-Transformed 
Infrared Spectroscopy (FTIR) were the techniques employed for the characterization of the zeolite synthesized. 
Results obtained from characterization confirmed the synthesis of Zeolite A. The Zeolite A synthesized from the 
kaolin sourced from Wassa was of good quality as those synthesized from reagents. A comparison with the 
dehydrated zeolites indicated now significant structural changes as the peaks were at the same positions. 
The adsorption process consists of two phases - the desorption and adsorption phases. The zeolite crystal structure, 
geometry and presence of acceptor centers contribute to the adsorption volume (Akimkhan, 2012). The maximum 
adsorbed amount of adsorbate at a specific pressure and temperature is defined as the equilibrium uptake (Rahman, 
Muttakin, Pal, Shafiullah, & Saha, 2019). This can be represented with an isotherm model to show the varied 
uptakes with respect to pressure. The IUPAC has classified the various isotherms under physisorption as in Figure 
10. 
Adsorption-desorption isosteres were obtained from the temperature-pressure measurements. The adsorption 
isosteres were observed not to correlate as compared with the desorption experiments. The disparity may be 
attributed to the reasons as ascribed in (Herzog et al., 2014) with respect to the gas phase behaviour, sorption molar 
volume and desorbed amount. Based on the theory of volume micropore filling (TVMF), this disparity confirms 
the different amounts of adsorbate adsorbed by the zeolite. The use of adsorption isosteres makes it possible to 
study the process with only the physicochemical properties of the adsorbate as well as the structural and energetic 
constants of the adsorbent (Shkolin, Fomkin, & Yakovlev, 2007). The linearity of the isosteres gives a more 
accurate calculation of the adsorption isotherms. 
The angular coefficient of the calculated isosteres (trendline) exceeds that of the experimental as the 
calculated heat of adsorption exceeds the real heats of adsorption. However, they are similar in the desorption 
experiments. During adsorption, the micropores are being filled unlike in desorption. The trendlines are a 
representation the isosteres at equilibrium as they must satisfy the Clausius Clayperon equations (Tchernev, 
2001). The slopes as observed were all greater than 1 indicating that the adoption process occurred as the 
adsorbed gas phase was in a lower energy state than the gas vapour. 
 

 
Figure 7. SEM image of Zeolite A 
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(a) Synthesized Zeolite A                            (b) Dehydrated Zeolite A 

Figure 8. XRD image of Zeolite A 
 

 
Figure 9. FTIR of Zeolite A 

 

 
Figure 10. Classification of physisorption isotherms (Thommes et al., 2015) 
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Figure 11. 100g Isosteres 

 

 

Figure 12. 200g Isosteres 

 

 

Figure 13. 300g Isosteres 
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Figure 14. 400g Isosteres 

 

 

Figure 15. 500g Isosteres 

 
The adsorption capacity is dependent on the interaction of the adsorbent and adsorbate as the adsorption 
characteristics is dictated by this interaction.  Therefore, adsorbents with higher adsorption capacities tend to have 
higher selectivity, surface area and pore volume (Kulprathipanja, 2010). Zeolites with less Al and charge 
compensating cations per unit cell as in (J. Janchen & Stach, 2011) tend to have less adsorption capacities. 
At adsorption equilibrium, adsorption isotherms give information on the effect of heats of adsorption on the 
adsorbent surface (Chakraborty & Sun, 2014). Although adsorption isotherms of zeolites adsorbing water are 
usually nonlinear as in Figure 10, that is Type 1, some forms of hysteresis have been observed during condensation 
(Ityona, 2012). 
The Langmuir equation has been used in describing monolayer adsorption (Kong & Adidharma, 2019; 
Kulprathipanja, 2010). Apart from the 400 g isotherm, R- squared values obtained were greater than 90 %. 
Although no best-fit model exists for Zeolite A - water pair adsorption, it is evident that the adsorption was 
favourable. In the application of the Langmuir model, it is assumed that the adsorbent is homogenous and that 
each adsorption site is occupied by only one atom (Rahman et al., 2019). 
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Figure 16. Langmuir Isotherms 

 
Thermodynamic analysis of the synthesized zeolite A from kaolin is momentous. The derivation of the adsorption 
isosteres contribute to the rapid analysis of the adsorption process. This is through the relationship of the isosteric 
heat of adsorption at any temperature and pressure and the latent heat vaporization of the adsorbate to the slope of 
the isostere (Tchernev, 2001). Thus, the isosteric heat of adsorption is equal to the latent heat of vaporization 
multiplied by the slope as in Figure 17. 2,400 J/g was used as heat of vaporization of water found in the steam 
tables in (Tchernev, 2001). 
In comparison with the maximum adsorption capacity (qm) as in Table 2, there is an inverse relationship. 100 g, 
300 g and 500 g zeolites which had lower maximum adsorption capacities have higher isosteric heats of adsorption 
than 200 g and 400 g zeolites obvious from their calculations. However, the adsorption capacity is not enough to 
explain the discrepancies observed. These may be caused by the lack of attainment of equilibrium or changes in 
samples during sample dehydration (Vieillard, 2010). 
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Figure 17. Comparison of the isosteric heats of adsorption 

 
Table 2. Langmuir isotherm constants 

Zeolite qm (1/slope)/g/g−1 b (1/y-intercept)/g−1 slope y-intercept 
100 0.295805478 0.509210863 3.3806 6.6389 
200 0.420609884 0.444267962 2.3775 5.3515 
300 0.311915159 0.410657103 3.206 7.807 
400 0.424340151 0.395024892 2.3566 5.9657 
500 0.308090455 0.375814837 3.2458 8.6367 

 
The energy of adsorption, b, decreases with increasing zeolite amount. This indicates the decreasing affinity for 
the zeolite by the water vapour. This could be caused by the increasing competition for adsorption sites or non-
attainment of equilibrium conditions. The increasing amount of zeolite also limits the diffusion of the adsorbate 
within the system. The tendency of zeolites to agglomerate at the surface contributes greatly to this. Thus, 
increasing zeolite thickness leads to a slower adsorption kinetics (Dawoud, 2013) and lead to longer cycle times 
for the attainment of equilibrium (Chan, Chao, & Bahrami, 2012). To reduce the effect of agglomeration at the 
surface, the use of the lowest possible grain size would be effective. This, however, may require an infinite number 
of heat exchanger fins (Dawoud, 2013). Consequently, leading to the increase the thermal mass of the adsorber 
and require more energy to heat the system. 
To improve the performance of a TES system, the adsorption system should have better heat and mass transfer (Li, 
2013). Adsorbate uptake during the adsorption and desorption phases at equilibrium is analogous to the system 
performance (Chan, Chao, Sze-To, et al., 2012). Eliminating heat storage losses is also imperative in improving 
the system. Some forms of modifications to improve on the adsorbent bed includes the use of granules and 
composite adsorbents (White, 2012). Increasing charging temperature also contributes to increasing energy storage 
density (Ding & Riffat, 2013). This, nonetheless, also leads to heat losses in the system. For a continuous system, 
heat losses are minimal unlike systems that require long term storage of heat for which only the heat of adsorption 
will be available. 
5. Conclusion 
Utilizing zeolites can contribute to solving some significant problems of the technology and the environment. 
Zeolites synthesized from kaolin have been used in other applications. The thermodynamic analysis of some 
aspects of zeolite synthesized from Wassa kaolin gives more information on its use in TES applications. The 
microstructure as obtained using characterization techniques such as SEM, FTIR and XRD confirmed the synthesis 
of Zeolite A. 
Isosteres and Langmuir isotherms for zeolites of amounts 100, 200, 300, 400 and 500 g were obtained from 
temperature and pressure readings. This was similar to isosteres of known zeolites. This enabled the analysis of 
the thermal dependence of the zeolite adsorbent and water vapour adsorbate. 
The results obtained showed that the zeolite synthesized from kaolin could be used in TES applications. The 
isosteric heat of adsorption obtained ranged from 5,655.84 to 8,113.44 J/g. 
Thus, it is possible to reduce the cost of zeolites whiles increasing the application value of zeolites. 
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