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Abstract 

Using a battery on a household level has become easier after the launch of Tesla’s Powerwall. Storing electricity 
during daytime’s PV overproduction or charging the battery during night with an attractive tariff is the most 
prominent applications. This paper explores the economic impact of the usage of residential battery storage 
combined with solar photovoltaics (PV) based on real load data from Northern California, USA. A data-driven, 
deterministic model to benchmark electricity cost savings for single households is presented and the financial 
viability of such systems is scrutinized for California. Our results indicate that under current capacity and price 
points, battery systems have limited financial viability and have a payback period exceeding 20 years in most 
cases. We deepen our analysis and compare the results of our deterministic model to that of a stochastic model to 
demonstrate that for an hourly time resolution the deterministic model provides an adequate benchmark for 
estimating cost (within 3%) savings with a short (1/60th) computation time. 

Keywords: solar PV, battery, profitability estimation 

1. Introduction 

While costs to install PV systems have dropped, the number of residential PV installations has been rising 
during the past years in California (according to California energy commission (2015), the average price of 
PV panels dropped in California from 2006 to 2013 by 50 %, whereas the yearly installed capacity of 
residential houses increased by almost 6 times). 

Due to their intermittent nature, the increasing PV penetration will likely increase the need for measures to 
mitigate the effects on transmission and distribution levels. Batteries recently received more attention as a 
potential measure due to some prominent launches, such as Tesla’s Powerwall and price reductions 
(according to Nykvist & Nilsson (2015), the capacity price of electric vehicle batteries fell on average by 
about 15% per year). 

Thus, on a local level, houses with PV-panels could install storage in order to shift the overproduction of 
noon to the evening hours. An important problem that occurs while combining distributed generation with 
the actual grid topology is that distribution grids may not be designed to withstand overproduction occurring 
through infeed of distributed generation. The benefits of combining (battery-) storages with distributed PV 
are apparent: the grid stability on the distribution level is preserved and if the roundtrip efficiency is high, 
losses can be reduced. Therefore, in order to define the financial viability of such systems, the potential 
electricity cost savings for single households are quantified in monetary terms and are contrasted with the 
investment costs for PV/battery systems. 

Papers like Ha et al. (2007), Molderink et al. (2010) and Oldewurtel et al. (2010) investigate optimal demand 
response schemes and load management mostly for residential customers with time dependent and 
sometimes dynamic (real time) pricing while focusing on the methodology of the assessment rather than the 
quantification of the results. 

Weniger et al. (2014) discuss sizing of residential PV battery systems and their economic viability. The 
authors use an optimization algorithm to find the cost minimizing PV/battery-size combination and conclude 
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that, if the PV/battery system is sized accordingly, itis going to be financially viable. The underlying costs to 
calculate the financial viability however are not derived from empirical data (including installation, costs for 
surface etc.) but only take into account actual investment costs for buying the system components. In 
addition, eventual future cost reductions are estimated and contribute to the author’s positive conclusion. 
Suzuki et al. (2012) develop a model to optimally plan and operate residential PV systems combined with 
battery storage. 

Vrettos et al. (2013) develop a detailed battery model for households including a variety of appliances 
(uncontrollable loads, heat pump etc.) to maximize PV selfconsumption. A typical demand profile and 
different battery configurations are used to derive well-performing rule-based controllers for batteries and 
heat pumps to analyze the financial viability of such systems. 

Vrettos et al. (2013) use a model predictive control algorithm to realistically simulate demand response of 
houses with multiple loads including a thermal model of the house and weather conditions within different 
price environments. The authors concentrate on developing a realistic control algorithm to determine the 
potential of the demand response of residential buildings. 

Nelson et al. (2006) analyze hybrid systems including fuel cells. Fuel cells that are hardly available for 
residential customers are used to derive optimal sizing and to assess the economic viability of such systems. 

Upadhyay & Sharma (2014) review the sizing, control and effects to be considered in a cost/benefit analysis 
of hybrid systems (i.e., renewables (RES) combined with nonrenewables and/or storage). 

Lu & Shahidehpour (2005) develop an algorithm for short-term scheduling of batteries in 
security-constrained unit commitment, which aims at replicating a realistic battery control as accurately as 
possible, while taking into account grid constraints and locational prices to reduce electricity costs. 

Other papers, such as Kaldellis et al. (2009), Vrettos & Papathanassiou (2011) or Zhao et al. (2014) evaluate 
the case of sizing and controlling renewable energy sources combined with storage on islands or remote 
areas. The underlying situation is special, since uncommon constraints and price environments compared to 
most residential houses exist. Grid access is impossible or extremely expensive, and the alternate source of 
electricity is mostly considered to be a conventional fuel driven generator. Since most of these studies also 
consider islands located in areas with high sunshine (and islands have a higher degree of wind exposure), 
these resulting storage/RES systems become quickly financially viable. 

This paper contributes to the literature in multiple ways. Most importantly, in contrast to most literature it 
uses a large amount of real load data in a typical cost environment of residential customers to model 
potential savings through the usage of PV/battery systems. It takes into account empirical investment costs 
including e.g. installation costs to draw a realistic picture of the actual monetary benefits resulting from 
using those systems and to consequently estimate their financial viability. Thereby, two different modeling 
approaches are used: A deterministic optimization to give an upper bound for savings and a stochastic 
optimization, which takes into account the uncertainty of solar radiation and electricity consumption. Both 
approaches are compared in terms of results and computational time to show that a deterministic modeling 
approach is suitable in order to benchmark the potential savings on a per customer basis. 

2. Data 

A sample of 1924 realized load profiles in hourly resolution of residential customers for one year from 486 
Zip Codes in Northern California from a local utility were used in the modeling approach to estimate the 
monetary savings potential for residential battery users in California. 

According to the literature (see Li & Zio, 2012 or Mena et al., 2014) the solar radiation is modeled with a 
β-distribution. Data were taken from the National Solar Radiation Database Wilcox (2012). Every 
customer’s ZIP-Code was matched with the closest Class I meteorological station (Class I from I-III, here 
data are of highest possible quality). Further explanations can be found in the Appendix. The Trina Solar 
TSM-245PA05A, 245 Watt Solar Panel was used. The efficiency of the panel is 15 %, and the system size is 
64.95 × 39.05 inches (about 1.6 m2). This results in a possible installation of 150 W/m2. 

The most commonly used panel sizes according to California energy commission (2015) were: 0, 2, 4, 6 and 
8 kW. Average total costs (including installation) according to the same source were used (detailed costs can 
be found in the appendix). The specifications of the Powerwall model daily cycle were taken from the press 
release of Tesla [8] as simulation basis (state of data correspond to time of the preparation of the paper and 
are listed in Table 1). To model the degradation of the battery’s capacity, data from NREL DiOrio et al. (2015) 
were used, in which for the best case of a Li-ion battery, 65 % of its initial capacity is reached after ∼10’000 
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Notes 

Note 1. savings=costs(PV)-costs(PV,Battery), with changing battery size. 
Note 2. savings=costs(PV)-costs(PV,Battery), with changing battery size and tariff structures. 
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