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Abstract 

This study addresses the Allocated Maximal Backup Covering Tour Problem (AMBCTP) that is a generalization 
of the Covering Tour Problem (CTP). This problem is defined on an undirected graph ),( EWVG  , where W 
is a set of vertices that must be collectively covered by a vehicle. The AMBCTP consist of determining a 
minimum length vehicle route on a subset of V, subject to side constraints, such that every vertex of W is within 
a pre-specified distance from the route. Maximizing number of vertices of W set which are covered for second or 
more times is another objective in this problem. Moreover, allocation cost of the every vertex of W to one vertex 
of V which is belonging to the tour is minimized. Transmission vehicle from each city, in health care teams 
example that provided by Current and Schilling (1994) for this problem, requires to build a clinic in it, therefore 
we considered a fixed and variable cost (i.e. building cost) for visited cities, that must be minimized. 
Mathematical formulation of the AMBCTP, that is a multi-objective problem, is proposed. We used a powerful 
Multi-objective Decision Making (MODM) method for optimizing it. Finally a numerical example is provided to 
demonstrate the validity of the model. 

Keywords: The allocated maximal backup covering tour problem, Multi-objective decision making, Global 
criterion method 

1. Introduction 

This paper represents an extension of the CTP (that is a combination of Traveling Salesman Problem and Set 
Covering Problem), namely Allocated Maximal Backup Covering Tour Problem. Since the CTP is a NP-hard 
problem, so the AMBCTP also will be NP-hard. The AMBCTP is a multi-objective problem and aims to 
determine a minimal length tour for a subset of nodes (V set) while also maximizing number of vertices in set of 
W which is covered for second or more times by a node of V set which is belonging to the tour, i.e. maximizing 
backup coverage. Moreover, allocation cost of the every vertex of W set to one vertex of V set which is 
belonging to the tour is minimized. In this goal, number of vertices in W set that is allocated to any vertex of V 
set, is determined and so vehicle driver can pre-schedule for stop time unites in each visited node. Note that 
allocation cost is in the distance form. An example provided by Current and Schilling (1994) for this problem is 
construction of a route for visiting health care teams in developing countries, where medical services can only be 
delivered to a subset of cities, but all users must be able to reach a visiting medical team, so transmission vehicle 
from each city, in this case, requires to build a clinic in it, therefore we considered a fixed and variable cost (i.e. 
building cost) for visited cities, that must be minimized.  

Some when, some of nature incidents such as flood and earthquake cause that people reaching to selected 
locations be impossible, also it may be required in high-demand areas to maintain a uniform level of service 
when vehicles can respond to only one call at a time (Hogan & revelle, 1986), so it is necessary that backup 



www.ccsenet.org/jms             Journal of Management and Sustainability            Vol. 2, No. 1; March 2012 

                                                          ISSN 1925-4725   E-ISSN 1925-4733 152

coverage in selecting of locations for people welfare (or set of W) is considered. In this example, that we defined 
the AMBCTP on it, nodes of V set refer to cities set and vertices of W set refer to demand points that need to 
medical services.  

The AMBCTP can be formally described as follows: let ),( EWVG  be an undirected graph, where 
WV  is the vertex set, and },,|),{( jiWVvvvvE jiji   is the edge set. Vertex 1v  is a depot, V is the set 

of vertices that can be visited, nV || , T  V is the set of vertices that must be visited ( Tv 1 ), and W is the set 
of vertices that must be covered. A distance matrix )( ijcC  , satisfying triangle inequality, is defined for E. 
Another distance matrix )( lkdD  , also is defined for distance between Wvl  and Vvk  . Vectors kfF   and 

khH  are associated with fixed and variable clinic building cost, respectively. The AMBCTP consists of 
defining a tour for a subset of V, which contains all the vertices from T, while at the same time optimizing the 
following four objectives: (i) the minimization of the tour length, (ii) the maximization of the backup coverage, 
(iii) the minimization of the allocation cost and finally (iv) the minimization of the total clinic building cost. (ii) 
and (iii) objectives are known as service level indicators in the AMBCTP in this paper. A feasible solution for a 
small instance is provided in Figure 1. 

As mentioned above the AMBCTP is a generalization of the CTP and though the CTP has not received much 
attention in literature (Gendreau et. al, 1997), it seems that this problem was first introduced by Current (1981). 
It is formulated in Current and Schilling (1989). In this reference and in Current and Schilling (1994), a 
two-objective version of the problem is considered: the length of the tour and the number of vertices covered by 
the tour. Finally this problem proposed by Gendreau et. al (1997) and an exact branch-and-cut algorithm 
developed for it and the latter has been applied successfully to the routing of a mobile medical facility in Ghana 
(Hodgson et. al, 1998). In addition, Maniezzo et. al (1999) have presented a model and three scatter-search 
algorithms, and Motta et. al (2001) proposed a generalized version of the CTP, namely the Generalized Covering 
Tour Problem (GCTP), and presented a set of reduction rules, heuristic algorithms and a ILP based formulation 
for the GCTP, note that Motta et. al (2010) proposed this problem for first time. A bi-objective model of the CTP 
(BOCTP) formulated by Jozefowiez et. al (2007) that aims to determine a minimal length tour for a subset of 
nodes while also minimizing the greatest distance between the nodes of another set and the nearest visited node. 
Hachicha et. al (2000) considered multi-vehicle covering tour problem (m-CTP) that W is a set of vertices that 
must collectively be covered by up to m vehicles. 

To our knowledge backup coverage, location-allocation and building cost have not considered for the CTP in the 
literature. The proposed model inherits its formulation from the previous researches in maximal covering and 
location-allocation models. A part of model is formed by using Hogan and ReVelle’s (1986) maximal backup 
coverage model. Hogan and ReVelle (1986) suggested that backup coverage can be used as a decision criterion 
or location of emergency service vehicles on a network. They describe backup coverage as the second coverage 
of a demand zone. They applied backup coverage criterion to Set Covering Location Problem (SCLP) and 
Maximal Covering Location Problem (MCLP) models. First coverage was traded off against backup coverage in 
their models. It was shown that backup coverage can be provided without substantial first coverage loss (Araz et. 
al, 2007). For reaching to (iii) aim, we applied location-allocation concept for our suggested model. Cooper 
(1963) introduced location-allocation problem for the first time. This problem aims at finding optimum number 
of new facilities, their locations and the optimal allocation of existing facilities to new ones in such a way that 
total cost of transportation is minimized. In the AMBCTP, existing facilities are vertex of W set and new 
facilities are visited vertex of V set. Considering fixed and variable building cost is an idea that we created for 
the CTP in this work. 

In this paper a powerful MODM method is provided for solving and demonstrating validity of the model, mean: 
Global Criterion (GC) method. The GC method is one of the most famous of multi-objective optimization 
methods. This method is proposed by Salukvadze (1974) and many researchers have used it efficiently for 
multi-objective problems. For example, Sahidul Islam (2008) has used this method for combine the different 
objective functions to a single objective function in a multi-objective marketing planning inventory problem. In 
this work, the optimal solutions with good trade-off for different preferences on objective functions are derived 
truly from applying this method, and so in this paper we also use this method for integrating objective functions 
and find the optimal solutions for different weights on objective functions.  

2. Model definition 

The AMBCTP can be formulated as a multi-objective integer non-linear program as follows: for Vvk  , let ky  
be a binary variable equal to 1 if and only if vertex kv  belongs to the tour. If Tvk  , then ky  is necessarily 
equal to 1. For ),( ji vv  and ji  , let ijx  be a binary variable equal to 1 if and only if edge ),( ji vv  belongs 
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to the tour. Define binary coefficients lk  equal to 1 if and only if Wvl   can be covered by Vvk   in 
primitive radius (i.e. cclk  , where c is primitive coverage radius ), and let }1|{  lkkl VvS   for every 

Wvl  . Hence assume that 2|| lS  for all Wvl   and that the degenerate tour ( 1v  ) is infeasible. Also let 
binary coefficients lk   equal to 1 if and only if Wvl   can be covered by Vvk   in secondary radius (i.e. 

dclk   ,where d is secondary coverage radius and cd  ), and let }1|{  lkkl VvS   for every Wvl  . 

lu  is a binary variable that is associated with backup coverage and equal 1 if and only if Wvl   in primitive 
or secondary radius covered by a vertex of Vvk   for second or more times and there are a benefit coefficients 
for every Wvl   as la  that indicates importance of vertices of W set. For allocation Wvl  to a vertex 
of Vvk  , we need to define a binary variable as lkz  that equal to 1 if and only if  vertex Wvl  allocate to 

Vvk  and integer variable kA  is associated with number of vertex Wvl  that are allocated to vertex Vvk  . 
Then the AMBCTP can be stated as: 
 

 

Min  


 

1

0 1

n

i
ij

n

ij
ij xc   (1)

Min 
Vv

kk

k

yc   (2)

Max 
Wl

llua   (3)

Min  
 Wv Vv

lklk

l k

zd   (4)

Subject to    

 



'

1

lk Sv

lk Uy  Wl  (5)

 



Vv

lk

k

z 1  Wl  
(6)

 lklkz   VvWl k  ,  (7)

 klk yz   VvWl k  ,  (8)

 



Wl

lkk zA  Vvk   (9)

 

k

n

kj
kj

k

i
ki yxx 2

11

 


 Vvk   
(10)

 







SVvSv
or

SVvSv
kij

ij

ji

yx

\,

\,

2  
SvST

nSVS

k 


,\

2||2,



 

(11)

 1ky  Tvk   (12)

  ZAk  Vvk   (13)

 }1,0{ky  TVvk \  (14)

 
}1,0{ijx  jiVji  ,,  (15)

 }1,0{lkz  VvWl k  ,  (16)

 }1,0{lu  Wl  (17)



www.ccsenet.org/jms             Journal of Management and Sustainability            Vol. 2, No. 1; March 2012 

                                                          ISSN 1925-4725   E-ISSN 1925-4733 154

In this formulation, objective (1) minimizes the tour length, objective (2) provides maximum backup coverage, 
objective (3) aims minimizing total allocation cost and objective (4) minimizes total building cost. Note that 
objective (2) and (3) are service level indicators in the AMBCTP. Constraints (5) are associated with the backup 
coverage. Constraints (6) ensure that every vertex of Wvl  allocated only to one vertex of Vvk  which is 
belonging to the tour (i.e. any demand point allocated only to one city which place on the tour). Constraints (7) 
and (8) ensure that any vertex of Wvl  can allocated to vertices of Vvk  which are in primitive coverage 
distance and this vertices must be place on the tour, respectively. Constraints (9) is considered for calculating 
number of vertices Wvl  which allocated to every vertex of Vvk   Constraints (10) are degree constraints 
and constraints (11) are connectivity constraints and they force the presence of at least two edges between any 
set S and V\S, for every proper subset S of V such that ST \  and S contains a vertex kv  belonging to the 
tour. Constraints (12) enforce that every vertex of T belongs to the tour. Finally constraints (13), (14), (15), (16) 
and (17) set the integrality requirements. Note that in this formulation, we do not allow the case where 21 kx  
for some k since this can only happen if the tour ),,( 11 vvv k  is feasible. The proposed model is multi-objective. 
Different objectives are usually in conflict and most of the time no optimal solution can be found for this kind of 
problems. In such cases the concept of optimality is replaced by non-dominance solutions that also called Pareto 
optimal solutions and will be describe completely in the next section.  

3. Multi-objective optimization 

Multi-objective programming is a mathematical programming method that can investigate multiple definite 
objectives. It aims to help the decision-makers obtain a better policy under the constraints on finite resources and 
conflicting objectives (Low et. al, 2005). Output of MODM problems called Pareto optimal solution (i.e. 
non-dominated solution). A solution is said to be Pareto optimal if it is not dominated by any other solution in the 
solution space and the set of all feasible non-dominated solutions is referred to as the Pareto optimal set and 
solutions in the Pareto optimal set have trade-off with together. The ultimate goal of a multi-objective 
optimization algorithm is to identify solutions in the Pareto optimal set and determine the best optimal solution 
from this set by decision-maker (Deb, 2001). Elements of the Pareto optimal set should be have a suitable 
diversity and a uniform partly distribution until the decision maker be confronted with varied solutions. When 
this goal is provided the decision maker can select a solution based on his preferences. In the classic 
multi-objective optimization methods, such as whatever that we used in this paper, the different solutions obtain 
with considering different preference vectors for objectives. But in many discrete problems, such as our problem, 
there is no information about this case which preference vectors redound to a Pareto optimal set with good 
specification (Deb, 2001). Since in this paper we introduced some preference vector based on randomness and 
our mental perception about the problem, of course quality of these vectors is tested by graphical tools.  

In this section, we introduce one of the multiple-objective decision making (MODM) methods, which called 
Global Criterion method and will apply it to determine Pareto optimal set of the AMBCTP as a multi-objective 
programming in the next subsection. 

3.1 The global criterion method 
The GC method (Salukvadze, 1974), tries to minimize a distance from the optimal solution. The optimal solution 
is computed by solving all the problems with only one objective function. The optimal value for the function if  
is obtained by solving the problem with only if as objective function. In this way an optimal vector 
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where parameter of P defines the type of distance and when reducing distance between an objective function and 
its optimal value is very important, this parameter is considered very big and inverse, also vector 
of ),...,,( 21 kwwww   shows objectives importance and       . Solving result of such a problem is a 
non-dominance solution and with changing P and vector of w other optimal solutions will be obtained that form 
Pareto optimal set. 

4. Numerical example and analysis 

Because of limitations, we provide a Pareto optimal set only with 10 members. For demonstrating validity of the 
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model, one of these solutions will be explain completely. Moreover, we will show trade-off between objective 
functions through comparison tow solutions with together. Meanwhile, adequacy of the Pareto optimal set will 
be shown by draw a graph on this set, see Figurer 2. Note that this figure is drawn only for two objectives, 
first and second objective. Of course other graphs on the other objectives also prove this issue, but because 
of some limitations we think that to this extent is sufficient. 

To the best of our knowledge, there are no test instances for the CTP available in the literature. Hence an 
experiment was conducted on a randomly generated instance. Because of the AMBCTP is a NP-hard problem 
and our purpose in this paper is to solve it by exact methods, so we consider very small size of this problem. One 
instance of problem with 10 cities (as V set) and with 22 demand points (as W set) using GC method is ran and 
Pareto optimal solutions for this instance are computed. For applying GC method, first, we shall obtain the 
optimal value for any objective function of model by solving the problem with only one if  as objective 
function. Table 1 shows results of this operation. Then a new problem is solved whose objective function is (18) 
and note that parameter of P is considered equal to 1 in this paper. Finally, new problem by using of table 1 data 
and equation (18) is constructed as equation (19).  

As mentioned in the previous section, for obtain a Pareto optimal set with 10 members, we need to 10 preference 
vectors. These vectors, which are shown in Table 2, guaranteed a suitable diversity and distribution for Pareto 
optimal set because they produced based on explained logic in the previous section. This issue also is depicted in 
Figure 2. 

In this work we used CPLEX solver of GAMS 22.2 software for optimizing of the constructed MODM model. 
Meanwhile, note that this model is executed on a Pentium Core Duo processor with 4 GB of RAM and 2.2 GHz 
of CPU.    
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Results for our instance which are Pareto optimal solutions are depicted in Table 3. The column headings are 
defined for this table as follows: 

TL: Tour length 

TC: Total clinic building cost 

BC: Backup coverage (first service level indicator) 

AL: Allocation cost (second service level indicator)  

V: Visited cities set 

ST: Necessary time for stop in each city (one time unit for any allocated demand point) 

NBC: Number of demand point with backup covering 

PBC: Percent of demand point with backup covering 

For example, number 3 case will be illustrated. Preference vector in this case is (0.25, 0.25, 0.25, 0.25), so all of 
objective functions importance is same. If objective function values in this row of table 3 compare with the 
optimal values in table 1, one can see as well as all of objective functions have gotten value with a distance form 
optimal value and this event is completely natural in MODM problems. Because solutions in such problems 
optimize all objective functions simultaneously and not only one objective functions. In this case tour length, 
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total fixed and variable clinic building cost, total utility of backup coverage and allocation cost are equal to: 149, 
1267, 87, 317 respectively. Health care teams should pass from cities 1, 3, 4, 5, 6, 7 and 9. Numbers of demand 
points that are allocated to these cities consist: 2, 3, 3, 5, 2, 4 and 3 respectively and health care teams should 
divide their time between visited cities based on these allocations and for example should be consider 2 time 
units for stop in the city 1. Transmission of this path redounds to impart 15 demand points from backup coverage 
and so 68 percent of total demand points use of this vantage. 

Moreover, trade-off between obtained Pareto optimal solutions is visible truly. We consider two solutions which 
have almost inverse preference vectors, mean solutions of 2 and 6, for example. In second solution, tour length 
and backup covering is more importance, while in sixth solution allocation and clinic building cost is premier. 
Below comparisons shows exchange between these solutions truly. 

TL(2)=161<TL(6)=253 

TC(2)=1666>TC(6)=1259 

BC(2)=109>BC(6)=84 

AL(2)=355>AL(6)=310 

It is clear that solution of 2 has better conditions in tour length and backup covering, while solution of 6 in 
allocation and clinic building cost has better position. Computations results prove that this new multi-objective 
model is more comprehensive and practical with respect to the CTP.  

5. Conclusion and future research 

In this work we have studied a generalization of the covering tour problem, namely allocated maximal backup 
covering tour problem (AMBCTP). The AMBCTP is a multi-objective problem and aims to optimizing four 
objectives at a same time: (i) the minimization of the tour length, (ii) the maximization of the backup coverage, 
(iii) the minimization of the allocation cost and (iv) the minimization of the total clinic building cost. Finally a 
numerical example illustrated the proposed model. Results showed that the AMBCTP is a comprehensive and 
practical problem. Development of our model in capacitated form, considering the problem in a fuzzy or 
stochastic space for this problem can be discussed as future researches.  
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Table 2. Preference vectors 

4w  3w  2w  1w  Vector Number 

0.6 0.2 0.1 0.1 1 
0.0 0.8 0 0.2 2 
0.25 0.25 0.25 0.25 3 
0.4 0.0 0.2 0.4 4 
0.0 0.4 0.1 0.5 5 
0.6 0.0 0.4 0.0 6 
0.05 0.05 0.2 0.7 7 
0.1 0.05 0.1 0.75 8 
0.1 0.6 0.2 0.1 9 
0.0 0.3 0.7 0.0 10 

 

Table 3. Pareto optimal set with 10 members 

PBC(%)NBC ST* V AL BC TC TL 
Solution 

Number 
81.8 18 2,2,2,3,4,3,4,2 1,2,3,4,5,6,7,9 307 109 1537 161 1 
81.8 18 0,3,2,3,1,3,2,4,41,2,3,4,5,6,7,8,9355 109 1666 161 2 
68 15 2,3,3,5,2,4,3 1,3,4,5,6,7,9 317 87 1267 149 3 

27.2 6 4,2,3,4,5,4 1,2,3,4,5,6,7 326 34 1143 137 4 
81.8 18 2,0,5,6,4,1,4,0 1,2,3,4,5,6,7,9 384 109 1481 161 5 
68 15 3,2,5,3,4,3,2 1,3,5,6,7,9,10 310 84 1219 253 6 

54.5 12 2,7,2,5,2,4 1,3,4,5,6,7 339 65 1111 137 7 
54.5 12 3,5,2,4,3,4 1,3,4,5,6,7 331 65 1124 137 8 
81.8 18 1,1,6,2,5,1,4,2 1,2,3,4,5,6,7,9 316 109 1503 161 9 
68 15 1,9,4,1,4,2,1 1,3,5,6,7,9,10 396 84 1186 268 10 

     147 min and 52 sec. 
Total 

time: 
*Order of elements in this column is same order of V column. 
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Must be covered  (W )  

Must be visited     (T )  

Added  vertex 

 
(V =Added vertex  +  T ) 

(V : Can be visited)  

  

 
Allocation and covering in primitive 

radius 

 Backup covering in primitive radius 

 Coverage in secondary radius 

 Tour 

 

Figure 1. An example of a solution for the AMBCTP 

 

 

F1=TL

F2=TC  
Figure 2. Display distribution and diversity for Pareto optimal set in case of first and second objective 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


