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Abstract 
This study contributes to understanding the physical and economic impacts of progressive, climate-driven 
aquatic salinization on the spatial distribution of mangrove species in the Indian Sundarbans, which accounts for 
about two-fifths of the 10,200 km2 tidal-wetland forest delta. To estimate future mangrove distribution, a 
five-step analysis was undertaken, using high-resolution spatial assessments. A current (2015) basemap and 
overlays of salinity tolerance for major mangrove species and their assemblages and projected location-specific 
aquatic salinity for 2050 were used to predict salinity-induced migration. The results show gain-and-loss patterns, 
with salt-tolerant species predominating at the expense of freshwater species. These changes are likely to reduce 
the flow of ecosystem services, adversely affecting the livelihood options of poor people in adjacent areas. 
Effective management will require establishing baseline data for monitoring system changes over time, protocols 
for maintaining species health, and support for mangrove regeneration and restoration. Resources should also be 
directed to alternative livelihoods for mangrove-dependent households. The study recommends an integrated 
policy approach, focused on rising salinity, changes in mangrove dynamics, and the welfare of 
mangrove-dependent communities. 

Keywords: aquatic salinization, climate change, high-resolution assessment, mangrove-dependent livelihood, 
mangrove migration, spatial distribution, Sundarbans  

1. Introduction 
The mangrove ecosystems of the Sundarbans—the world’s largest remaining contiguous mangrove forest 
situated along coastal segments of Bangladesh (60 percent) and India (40 percent) in the Bay of Bengal—are at 
increasing risk from the impacts of climate-driven sea-level rise. In this 10,200 km2 tidal-wetland forest delta, as 
in other globally important mangrove forests, sea-level rise may even threaten the survival of mangrove species. 
In the past, mangroves have shown considerable resilience to sea-level fluctuations (Alongi, 2002, 2008; Gilman 
et al., 2006; Erwin, 2009); however, their future rate of adaptation and migration may not keep pace (Ellison & 
Stoddart, 1991; Semeniuk, 1994; United Nations Environment Programme, 1994; McLeod & Salm, 2006; Lange 
et al., 2010). In the case of the Sundarbans, the extent of permanent inundation is uncertain since sedimentation 
is still occurring in the active Ganges-Brahmaputra Delta. That said, climate-driven sea-level rise will inevitably 
have significant implications for the many poor people who depend on the mangrove forest for their livelihoods. 
(Note 1) 

1.1 Challenges to Healthy Mangroves in the Sundarbans 

In the Sundarbans, the two greatest threats to the health of mangroves in a changing climate are progressive 
aquatic salinization and shortage of nutrients from freshwater flows (Dasgupta, Kamal, Khan, Choudhury, & 
Nishat, 2015a; Dasgupta, Hossain, Huq, & Wheeler, 2015b; Institute of Water Modeling, 2003; Peterson & 
Shireen, 2001; Soil Resources Development Institute, 2000, 2010; United Kingdom Department of Environment, 
Food & Rural Affairs, 2007). It is expected that alteration of riverine flows from the Himalayas, combined with 
sea-level rise, will intensify salinity intrusion as climate change continues (Dasgupta et al., 2015a, b; Dasgupta et 
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Table 1. Ecosystem services and common uses of mangrove species in the Indian Sundarbans 

Mangrove species Timber 
for 
building 
materials 

Fuel- 
wood 

Thatch Medicine Food 
(fruits, 
leaves, 
seeds) 

Fishing 
equip-
ment 

Tannin Honey 
collection 

Environ-
mental 
functionsa 

Fish 
habitat 

Heritiera fomes        o o o 
Avicennia alba, A. 
marina, A.  
officinalis 

 o    o    o 

Sonneratia apetala, 
S. alba, S. griffithii, 
S. caseolaris 

 o       o o 

Excoecaria 
agallocha 

         o 

Ceriops decandra, 
C. tagal 

     o   o o 

Bruguiera 
gymnorrhiza, B. 
cylindrical 

     o   o o 

Rhizophora 
mucronata, R. 
apiculate 

          

Xylocarpus 
mekongensis, X. 
granatum 

 o      o  o 

Phoenix paludosa          o 
Aegiceras 
corniculatum 

         o 

Note. () indicates information from the literature, and (o) is used to represent expert opinion. 
a. Examples include trapping suspended sediment, preventing soil erosion, sequestering carbon, and mitigating the impact of natural 
disasters. 

 

Traditionally, the intertidal zone where mangroves are found has been well-suited for breeding and rearing a 
variety of fish, crustacean, and mollusk species. (Note 12) But progressive aquatic salinization is expected to 
impact the food web, taking its toll on economically important fish catches with specific salinity-tolerance limits. 
Also, with changes in mangrove species combinations, honey collectors (“Moulis”) may not fetch as high a price 
due to variations in the honey’s fragrance and viscosity. In addition, reduced diversity of mangrove species could 
diminish tourism in the region. Furthermore, altered species combinations could increase salinity ingression, 
affecting the water table and thus water sources; women would shoulder a greater burden since they spend more 
hours collecting fuelwood and drinking water.   

Engineering attempts to control rising salinity in the Indian Sundarbans are unlikely to succeed. Concerns over 
increasing aquatic salinity have not yet been incorporated into regional management protocols despite the 
Sundarbans’ treaty-protected ecological status, which is widely acknowledged. Eastward meandering of the 
Ganges and Brahmaputra Rivers has already reduced freshwater inflows significantly. Even at the current sea 
level, strong tides may travel long distances upstream since the land is quite flat. Continuing sea-level rise will 
only exacerbate such tidal effects. As long as these dynamics continue, efforts to improve local ecological 
conditions through changes in hydrological regime (e.g., river training) will likely prove futile (Potkin, 2004).  

The Indian Sundarbans is a UNESCO World Heritage site, and effective conservation management will require 
establishing baseline data for monitoring system changes over time, management protocols to maintain 
mangrove health, and support for mangrove regeneration and restoration. Location-specific baseline data is 
needed for tree-stand structures, tree abundance, species richness and diversity, export of nutrients, hydrological 
patterns, rates of sedimentation, and relative sea-level rise (McLeod & Salm, 2006). Management protocols 
should include connectivity between mangrove systems and nearby river sources, as well as maintenance of 
upland freshwater catchments. Also, areas that are likely to survive climate-driven sea-level rise should be 
identified. In addition, monitoring of tidal fluctuations, varying pH, and salinity is needed to support 
regeneration and colonization of suitable species, where necessary. Furthermore, restoration of currently 
degraded areas should be undertaken. (Note 13)  
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Sea-level rise will continue beyond 2100, even if greenhouse gas emissions are stabilized in the near future. The 
impacts on globally-important mangrove ecosystems and the socioeconomic implications for vulnerable 
populations are substantial, suggesting that resources should also be directed to developing alternative 
livelihoods for mangrove-dependent households. It is hoped that this research will promote more widespread 
efforts to develop conservation and sustainable development policies that integrate rising salinity, changes in 
mangrove dynamics, and the welfare impacts on poor communities. 
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Notes 

Note 1. Current scientific estimates are that sea level may rise by 1 m or more in this century, globally affecting 
some 1 billion people by 2050 (Hansen et al., 2011; Vermeer & Rahmstorf, 2009; Pfeffer, Harper, & O’Neel, 
2008; Rahmstorf, 2007; Dasgupta et al., 2009; Brecht et al., 2012); a rise of 3 m or more by 2100 is feared in 
light of new evidence on ice-cliff instability of the Antarctic. https://www.nature.com/articles/nature17145; 
http://www.nature.com/news/antarctic-model-raises-prospect-of-unstoppable-ice-collapse-1.19638; 
https://climatefeedback.org/evaluation/antarctica- doomsday-glaciers-could-flood-coastal-cities-grist-eric-holthaus/ 

Note 2. Rao (1987) reported that the Indian mangroves consisted of 60 species, while Naskar (1988) reported 35 
true mangroves and Blasco, Saenger, & Janodet (1996) reported 58 species. 

Note 3. Freshwater flow has become increasingly restricted since the 1975 construction of the Farakka Barrage 
Township; between 1962 and 2006, water discharge of the Ganges fell from 3,700 m3 per second to 364 m3 per 
second, strangling an already parched ecosystem and thus making the distributary networks more dependent on 
tidal flow bringing in sea water from the Bay of Bengal (Islam and Gnauck, 2008). 

Note 4. The groundwater is also saline, except for a few meter-thick, confined aquifers. 

Note 5. The acquisition date of the Landsat 8 OLI data is March 18, 2015 and the path/row is 138/45. Landsat 8 
OLI has 9 spectral channels, ranging from visible to shortwave infrared bands. The spatial resolution is 
comparable to the ETM+. Temporal resolution of Landsat 8 is 16 days. Hyperspectral data from Hyperion were 
processed and used for the spectral signature generation of various mangrove species. The acquisition dates of 
the Hyperion data are September 10, 2011, November 23, 2014, and November 13, 2016 and the path/row is 
138/45. Hyperion images have 242 bands that include both Visible and Near Infrared (VNIR) and Shortwave 
Infrared (SWIR), having a spectral range of 357 to 2,576 nm with a spectral interval of 10 nm. 

Note 6. Bad bands were removed while converting Digital Number (DN) value to radiance using the radiometric 
calibration tool. The output was converted to band-interleaved-by line (BIL) radiance image with floating point 
values as Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) correction module use BIL 
format. 

Note 7. During the acquisition of Hyperion data, vertical striping occurs at times due to poor calibration of push 
broom sensors. For this analysis, de-striping was performed by filling up the DN value of the gap line with an 
average DN value from the previous and the next column (Farooq & Govil, 2014). Atmospheric correction was 
performed using the FLAASH package available in ENVITM. 

Note 8. Gain and bias corrections of satellite data through radiometric calibration are prerequisites for the 
classification and detection of change from the multi-temporal images (Duggin & Robinove, 1990). 

Note 9. At present, there is no geo-coded database on aquatic or soil salinity for the Indian Sundarbans. Data was 
compiled from field measurements taken by the Nature Environment & Wildlife Society (NEWS) and World 
Wildlife Fund-India (WWF-India). 

Note 10. This study draws extensively on spatial data from the Aquatic Salinity Information System (RSIS) for 
southwest coastal Bangladesh, including the Sundarbans. The RSIS provides location-specific salinity estimates 
for December 2011, January–June 2012, December 2049, and January–June 2050 under 27 climate-change 
scenarios. 
http://sdwebx.worldbank.org/climateportal/index-cfm?page=websalinity_dynamics&ThisRegion=Asia&ThisCco
de=BGD 
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Note 11. These findings are in line with those of Barik et al., 2018. 

Note 12. The direct relationships between particular mangrove and fish species are still being investigated. 

Note 13. Community-based mangrove restoration activities could engage local women’s groups in nursery 
preparation of salt-tolerant species. 

 

Appendix A 
Processing of Landsat 8 OLI 
Gain and bias corrections of satellite data through radiometric calibration are prerequisites for the classification 
and detection of change from multi-temporal images (Duggin & Robinove, 1990). Therefore, Landsat 8 data 
products were first rescaled to Top of Atmosphere (TOA) radiance and TOA spectral reflectance, using the 
rescaling coefficient factor provided in the metadata.   

The OLI data were converted to TOA radiance, using the following conversion equation: 

Lλ = ML x Qcal + AL,                                (A-1) 

where Lλ equals TOA radiance (Watts/m2 x srad x μm), ML is the band-specific multiplicative rescaling, Qcal is 
the quantized and calibrated standard product pixel values (DN), and AL is equivalent to the band-specific 
additive rescaling factor. 

The OLI data were converted to TOA reflectance, using the following conversion equation: 

                                       ρ`஛= Mρ x Qcal + Aρ,                               (A-2) 

where ρ`஛	equals TOA planetary reflectance without correction for solar angle, Mρ equals the band-specific 
multiplicative rescaling factor, Qcal is the quantized and calibrated standard product pixel values (DN), and Aρ 

equals the band-specific additive rescaling factor. 

TOA reflectance was then corrected with the solar zenith angle, expressed as follows: 

            								ρ஛ୀ	 ಙ`ಓి౥౩	(ಐ౏ౖఽ),                                 (A-3) 

where ρ஛	equals TOA reflectance and θSZA is the solar zenith angle. 
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Appendix B 

Estimated Change in Area (km2) for Various Mangrove Species and Assemblages, 2015–2050 

Mangrove 

species and 

assemblages, 

2015 

Mangrove species and assemblages, 2050 

Ceriops- 

Excoecaria 

Excoecaria- 

Heritiera 

Excoecaria- 

Rhizophora- 

Ceriops 

Excoecaria Sonneratia Avicennia Avicennia- 

Bruguiera- 

Cereops 

Ceriops Phoenix- 

Xylocarpus- 

Aegiceras 

Ceriops- 

Excoecaria- 

Heritiera 

Ceriops- 

Excoecaria 

65.967 0.727 0.819 16.842 0.212 1.130 4.211 0.0054 0.005 0 

Excoecaria- 

Heritiera 

0.624 32.206 2.133 4.685 0.252 12.408 14.955 0.514 0.418 0 

Excoecaria- 

Rhizophora- 

Ceriops 

0.092 0.063 299.115 2.525 0.121 11.126 4.910 0.358 2.291 0 

Excoecaria 16.262 4.046 25.29 353.500 0.061 6.203 8.616 0.018 0.934 0 

Sonneratia 0.243 0.684 4.5 0 35.007 2.885 1.356 0 0.671 0 

Avicennia 4.095 0.838 12.978 14.871 0 718.681 0.005 4.986 0.049 0.084 

Avicennia- 

Bruguiera- 

Cereops 

8.619 7.026 29.907 0 0 23.820 338.535 5.543 2.638 0 

Ceriops 1.715 0.939  5.814 4.23 0.027 4.478 12.323 148.762 1.871 0 

Phoenix- 

Xylocarpus- 

Aegiceras 

0.017 0.023 1.8 0.579 0.123 6.485 1.256 2.828 47.110 0 

Ceriops- 

Excoecaria- 

Heritiera 

0 0 0.198 0.003 0 0.824 0 0.001 0.379 0.001 
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