A Simple Proof of Silver's Theorem

Pimpen Vejjajiva, Athipat Thamrongthanyalak

Abstract


By using combinatorial properties of stationary sets, we give a
simple proof of some generalization of Silver's Theorem i.e. if
$\kappa$ is an uncountable regular cardinal such that
$\aleph_\kappa$ is a singular strong limit cardinal, then the
following hold.

(1). If $\{\alpha<\kappa : \aleph_\alpha^{<\kappa} \leq
\aleph_{\alpha\cdot2}\}$ is stationary, then $2^{\aleph_{\kappa}}
\leq \aleph_{\kappa\cdot2}$.

(2). If $\{\alpha<\kappa : \aleph_\alpha^{<\kappa} \leq
\aleph_{\alpha+\gamma}\}$, where $0<\gamma<\kappa$,  is stationary,
then $2^{\aleph_{\kappa}} \leq \aleph_{\kappa+\gamma}$.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Journal of Mathematics Research   ISSN 1916-9795 (Print)   ISSN 1916-9809 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.