Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[
- Eric Djeutcha
- Didier Alain Njamen Njomen
- Louis-Aimé Fono
Abstract
This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.
- Full Text: PDF
- DOI:10.5539/jmr.v11n1p76
Journal Metrics
Google-based Impact Factor (2018): 3.1
- h-index (August 2018): 16
- i10-index (August 2018): 35
- h5-index (August 2018): 9
- h5-median (August 2018): 9
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- COPAC
- EBSCOhost
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathEDUC
- MathGuide
- MathSciNet
- MIAR
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- The Keepers Registry
- UC Riverside Library
- Ulrich's
- Universal Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org