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Abstract

An integral domain R is a degree-domain if for given two polynomials f (x) and g(x) in R[x] such that for all k ∈ R

(g(k) � 0 ⇒ g(k)| f (k)), then f (x) = 0 or deg f ≥ deg g. We prove that the ring of integers OL is a degree-domain, where
Q ⊆ L is a finite Galois extension. Then we study degree-domains that are also unique factorization domains to determine
divisibility of polynomials using polynomial evaluations.
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1. Introduction

All the rings are assumed to be commutative with identity.

Definition 1. An integral domain R is a degree-domain if given two polynomials g(x), f (x) ∈ R[x] such that for all k ∈ R,
(g(k) � 0 ⇒ g(k)| f (k)) then f (x) = 0 or deg f ≥ deg g.

Note that fields cannot be degree-domains.

In Section 2, we prove that Z is a degree-domain. We also present an example of an integral domain that is neither a field
nor a degree-domain. In Section 3, we show that the ring of integers OL is also a degree-domain, where Q ⊆ L is a finite
Galois extension of fields. In Section 4, we study divisibility of polynomials over degree-domains that are also unique
factorization domains. The obtained results allow us to determine non-trivial conditions on polynomials f (x) and g(x)
with integer coefficients such that the following statement holds:

If g(n)| f (n) for all n ∈ Z with g(n) � 0 then g(x)| f (x) in Z[x]. (∗)
Note that the statement (∗) does not always hold: let p be a prime number and consider the polynomials g(x) = p and
f (x) = xp − x, it follows (from Fermat’s Little Theorem) that g(n)| f (n) for all integers n but clearly g(x) � f (x) in Z[x].

For all n ≥ 0 consider pn(x) and qn(x) defined as follows.

p0(x) = 1, p1(x) = x, pn+1(x) = 2xpn(x) − pn−1(x),
q0(x) = 0, q1(x) = 1, qn+1(x) = 2xqn(x) − qn−1(x). (∗∗)

In (Jones J.P. & Matiyasevich Y.V., 1991, Equation (2.14)) it is proved that if a ≥ 2 then pn(a)|q2n(a). Can we say that
pn(x)|q2n(x) as polynomials? Consider the particular case n = 4:

q8(x) = −8x + 80x3 − 192x5 + 128x7

= 8x
(
−1 + 2x2

) (
1 − 8x2 + 8x4

)
= 8x

(
−1 + 2x2

)
p4(x)

The above calculations show that p4(x)|q8(x). Using the results obtained in Section 4, we prove that indeed pn(x)|q2n(x)
in Z[x], and hence the polynomials in (∗∗) provide non-trivial examples where the statement (∗) holds.

This paper is based on results from the second author M.Sc. thesis (Vélez-Marulanda, J.A., 2005), which was based on
results from the first author Ph.D. thesis (Cáceres, L.F., 1998). The latter advised the former in the writing of his thesis.
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2. Rings that are degree-domains

Lemma 2. The integral domain Z is a degree-domain.

Proof. Let g(x) and f (x) be polynomials with integer coefficients such that f (x) � 0 and deg g > deg f . If follows that
lim
k→∞

f (k)
g(k) = 0. Then there exists k0 ∈ Z+ such that 0 < | f (k0)| < |g(k0)|, which implies that g(k0) � f (k0). This argument

proves Lemma 2 by contradiction.

Example 3. Let Q be the set consisting of prime numbers p such that p = 2 or p ≡ 1 mod 4. Consider the domain Z[W]
where W = {1/p : p ∈ Q}. Note that the non-integer elements in Z[W] are of the form c/d where c and d are relatively
prime and p is a prime factor of d if and only if p ∈ Q. Moreover, an element c/d is a unit in Z[W] if and only if any
prime factor of c is an element of Q. To see this, assume that (c/d)(u/t) = 1 for some u/t in Z[W] and let p be a prime
factor of c. Since cu = dt and c and d are assumed to be relatively prime then p is a prime factor of t. Since u/t is an
element of Z[W] with u and t relatively prime, then p ∈ Q. Conversely, if c is a product of primes in Q, it is clear that c/d
is a unit in Z[W]. Now consider an arbitrary element a/b ∈ Z[W] with a and b relatively prime. Look at g(x) = x2 + 1 as
a polynomial with coefficients in Z[W] (note in particular that g(r) � 0 for all r ∈ Z[W]). Consider g(a/b) = (a2 + b2)/b2,
we want to show that g(a/b) is a unit in Z[W]. Observe that if a2 + b2 = 2k for some k ≥ 1 then g(a/b) is a unit in Z[W].
So assume that a2+b2 ≡ 0 mod p for some odd prime p. The condition that a and b are relatively prime implies that a or
b , say a, is relatively prime to p. Let a′ satisfying aa′ ≡ 1 mod p. It follows that 1+ (ba′)2 ≡ (aa′)2+ (ba′)2 ≡ 0 mod p,
which implies that (ba′)2 ≡ −1 mod p making −1 a quadratic residue of p. Therefore p ≡ 1 mod 4 (see (Burton, D.M.,
2002, Theorem 9.2)), and hence p ∈ Q. This argument together with the observation above shows that g(a/b) is a unit
in Z[W]. If we consider f (x) = 1 as a polynomial with coefficients in Z[W] then g(r)| f (r) for all r ∈ Z[W], but clearly
deg g > deg f . Hence the integral domain Z[W] is not a degree-domain. It is clear that Z[W] is not a field.

Proposition 4. Let R be an integral domain. Given polynomials g(x, y), f (x, y) ∈ R[x][y] such that if g(x, xt) � 0 then
g(x, xt)| f (x, xt) in R[x] for any t ∈ Z+ arbitrarily large. Then f (x, y) = 0 or degy f ≥ degy g.

Proof. Let g(x, y), f (x, y) ∈ R[x][y] and suppose g(x, xt)| f (x, xt) for t arbitrarily large. Assume that f (x, y) � 0 and
n = degy f < degy g = m with f (x, y) = an(x)yn+ · · ·+a1(x)y+a0(x) and g(x, y) = bm(x)ym+ · · ·+b1(x)y+b0(x). Note that
in particular we have an(x) � 0. Let t ∈ Z+ such that t >

| deg an−deg bm |
m−n

and g(x, xt) � 0, and consider h(x) = f (x, xt) and
l(x) = g(x, xt). Note that deg h = deg an+tn and deg l = deg bm+tm. By hypothesis g(x, xt)| f (x, xt), which implies l(x)|h(x).
Then either h(x) = 0 or deg h ≥ deg l. If h(x) = 0 then an(x) = 0, which contradicts that an(x) � 0. If deg h ≥ deg l then
t ≤ deg an−deg bm

m−n
≤ | deg an−deg bm |

m−n
, which contradicts our choice of t. Therefore f (x, y) = 0 or degy f ≥ degy g.

We have the following direct consequence of Proposition 4.

Corollary 5. Let R be an integral domain. Then the ring of polynomials R[x] is a degree-domain.

Proof. Assume that R[x] is not a degree-domain. Then there exist two polynomials f (x, y) and g(x, y) in R[x, y] such that
for all p(x) ∈ R[x] (g(x, p(x)) � 0 ⇒ g(x, p(x))| f (x, p(x))) but f (x, y) � 0 and degy g > degy f . Note that the latter implies
that g(x, y) � 0. Let t ∈ Z+ sufficiently large such that g(x, xt) � 0. Using the assumptions on the polynomials f (x, y)
and g(x, y), we obtain that g(x, xt)| f (x, xt). It follows from Proposition 4 that f (x, y) = 0 or degy g ≤ degy f , which is a
contradiction.

3. Ring of Integers

We review the definition of integral elements.

Let R be a subring of a ring L. An element α ∈ L is integral over R if there exists a monic polynomial f (x) ∈ R[x] such
that f (α) = 0. In particular, when R = Z, the element α is said to be an algebraic integer in L. It is well-known that
the set C consisting of all the elements that are integral over R is a ring which is called the integral closure of R in L. In
particular, if R = Z and L is a field containing Z, the integral closure of Z in L is called the ring of integers of L, and we
denote this ring by OL. For example, let d be a square-free integer and consider Q(

√
d) = {a + b

√
d : a, b ∈ Q}, the ring

of integers in Q(
√

d) is O
Q(

√
d) = Z[ω] = {a + bω : a, b ∈ Z} where

ω =

⎧⎪⎪⎨⎪⎪⎩
√

d, if d ≡ 2, 3 mod 4
1+

√
d

2 , if d ≡ 1 mod 4

We say that an integral domain R is integrally closed if R is equal to its integral closure in its field of fractions. In
particular, Z is integrally closed.

Proposition 6. Let R be an integral domain and K be its field of fractions. Assume that K ⊆ L is a finite Galois extension of
fields and let C be the integral closure of R in L. Then σ(C) = C for all σ ∈ Gal(L/K), where Gal(L/K) denotes the Galois
group of the extension K ⊆ L. Moreover, if R is integrally closed, then R = {b ∈ C : σ(b) = b, for all σ ∈ Gal(L/K)}.
For a proof of Proposition 6, see (Lorenzini, D., 1996, Chapter 1, Proposition 2.19 (iv)).
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Let R, K, L and C as in the hypotheses of Proposition 6. For all p(x) = αnxn + · · · + α1x + α0 ∈ L[x] and σ ∈ Gal(L/K)
let pσ(x) = σ(αn)xn + · · · +σ(α1)x +σ(α0). Note that deg p = deg pσ. Moreover, if p(x) = r(x)s(x) with r(x), s(x) ∈ L[x]
then pσ(x) = rσ(x)sσ(x).

Lemma 7. Let R, K, L and C be as in the hypotheses of Proposition 6 with R integrally closed and let p(x) ∈ C[x].

(i) If a ∈ R then pσ(a) = σ(p(a)) for all σ ∈ Gal(L/K);

(ii) p(x) = pσ(x) for all σ ∈ Gal(L/K) if and only if p(x) ∈ R[x].

Proof. Statement (i) follows directly from the fact that R ⊆ K. Assume that p(x) = pσ(x) for all σ ∈ Gal(L/K). Then
the coefficients of p(x) are fixed by any element of Gal(L/K). Since R is integrally closed, the second conclusion in
Proposition 6 implies that p(x) ∈ R[x]. Conversely, if p(x) ∈ R[x] then p(x) = pσ(x) for all σ ∈ Gal(L/K) since R ⊆ K.

Let R, K, L and C be as in the hypotheses of Proposition 6. For all p(x) ∈ L[x], let NL/K(p)(x) to be the polynomial∏
σ∈Gal(L/K) pσ(x). Note that deg NL/K(p) = |Gal(L/K)| deg p and NL/K(p)(x) = 0 if and only if p(x) = 0.

Lemma 8. Let R, K, L and C as in the hypotheses of Proposition 6 with R integrally closed and let p(x) ∈ C[x]. Then

(i) NL/K(p)(x) ∈ R[x];

(ii) NL/K(p)(a) ∈ R for all a ∈ R;

(iii) NL/K(p)(a) =
∏
σ∈Gal(L/K) σ(p(a)) for all a ∈ R.

Proof. Let q(x) = NL/K(p)(x) (note that q(x) ∈ C[x]) and let τ be a fixed element in Gal(L/K). Then τ ◦ σ ∈ Gal(L/K)
and (pτ)σ(x) = pτ◦σ(x) for all σ ∈ Gal(L/K). Note that τ induces a permutation of the finite group Gal(L/K). Then
qτ(x) =

∏
τ◦σ∈Gal(L/K) pτ◦σ(x) = q(x), which implies by Lemma 7(ii) that q(x) ∈ R[x] proving (i). Note that (ii) is a direct

consequence of (i) and the statement (iii) follows from Lemma 7(i).

Proposition 9. Let R, K, L and C as in the hypotheses of Proposition 6 with R integrally closed. If R is a degree-domain
then the ring C is also a degree-domain.

Proof. Let f (x) and g(x) be two polynomials in C[x] such that for all k ∈ C (g(k) � 0 ⇒ g(k)| f (k)). Consider F(x) =
NL/K( f )(x) and G(x) = NL/K(g)(x). By Lemma 8(i), F(x),G(x) ∈ R[x]. Let b be an arbitrary element of R such that
G(b) � 0. It follows that g(b) � 0, and hence g(b)| f (b). Therefore σ(g(b))|σ( f (b)) for all σ ∈ Gal(L/K). Using
properties of divisibility together with Lemma 8(ii) and Lemma 8(iii) we obtain that G(b) =

∏
σ∈Gal(L/K) σ(g(b)) divides

F(b) =
∏
σ∈Gal(L/K) σ( f (b)) in R. Since R is a degree-domain then F(x) = 0 or deg G ≤ deg F, which implies that f (x) = 0

or deg g ≤ deg f . Therefore the ring C is also a degree-domain.

Since Z is integrally closed, the following result follows directly from Proposition 9.

Corollary 10. Let Q ⊆ L be a finite Galois extension. Then the ring of integers OL is a degree-domain.

4. Degree-domains that are unique factorization domains

Let R be a unique factorization domain. For all p(x) ∈ R[x] we denote by C(p) the content of p(x), i.e., the greatest
common divisor of the coefficients of p(x). Remember that p(x) ∈ R[x] is said to be primitive if C(p) is a unit. Gauss
Lemma states that the product of two primitive polynomials over a unique factorization domain is also primitive. This
implies that if f (x), g(x) and h(x) are polynomials in R[x] with g(x) primitive and m f (x) = h(x)g(x) for some m ∈ R, there
exists a polynomial q(x) ∈ R[x] such that h(x) = mq(x).

Proposition 10. Let R be a unique factorization domain and let K be its field of fractions. The following properties are
equivalent.

(i) R is a degree-domain.

(ii) If f (x), g(x) ∈ R[x] are such that g(k)| f (k) for almost all k ∈ R, then f (x)
g(x) ∈ K[x].

(iii) If f (x), g(x) ∈ R[x] with g(x) non-constant and primitive are such that for all k ∈ R, (g(k) � 0 ⇒ g(k)| f (k)), then
g(x)| f (x) in R[x].

Proof. (i) ⇒ (ii). Let g(x), f (x) ∈ R[x] such that for almost all k ∈ R, g(k)| f (k). Let A = {k1, . . . , kn} be a finite subset of
R such that g(k)| f (k) for all k ∈ R − A. Let k1, . . . , ks ∈ A such that g(ki) � 0 for i = 1, . . . , s and let β = g(k1) · · · g(ks).
If s = 0, let β = 1. Consequently, for all k ∈ R (g(k) � 0 ⇒ g(k)|β f (k)). Since R is a degree domain, β f (x) = 0 or
deg g ≤ deg β f . If β f (x) = 0 it follows that f (x) = 0, which trivially implies f (x)

g(x) ∈ K[x]. Suppose deg g ≤ deg β f and
g(x) = anxn + · · · + a0. Then there exist q(x), r(x) ∈ K[x] and s ∈ Z+ such that as

nβ f (x) = g(x)q(x) + r(x), with r(x) = 0

30 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

or deg r < deg g. Note that if r(x) = 0 then f (x)
g(x) ∈ K[x]. Hence, assume that deg r < deg g and denote α = as

nβ. Thus for
all k ∈ R with g(k) � 0 we have both g(k)|α f (k) and g(k)|g(k)q(k), which implies g(k)|r(k). Using the hypothesis for the
polynomials g(x) and r(x) we obtain r(x) = 0 or deg r ≥ deg g. Therefore r(x) = 0 and hence α f (x) = g(x)q(x). It follows
that f (x)

g(x) = α
−1q(x) ∈ K[x].

(ii) ⇒ (iii) Let f (x), g(x) ∈ R[x] with g(x) non-constant and primitive such that for all k ∈ R (g(k) � 0 ⇒ g(k)| f (k)).
Since g(x) � 0, it follows that g(k)| f (k) for almost all k ∈ R. By hypothesis we have f (x)

g(x) = p(x) ∈ K[x]. Assume that
p(x) = rn

sn
xn + rn−1

sn−1
xn−1 + · · · + r1

s1
x + r0

s0
, where ri, si ∈ R, with si � 0 for all i = 0, . . . , n. Let m = s0s1 · · · sn and consider

h(x) = mp(x) ∈ R[x]. We have m f (x) = mp(x)q(x) = h(x)g(x). As g(x) is primitive and m f (x) ∈ R[x], then there exists
q(x) ∈ R[x] such that h(x) = mq(x). Consequently, mq(x) = mp(x) and p(x) = q(x) ∈ R[x], which implies g(x)| f (x) in
R[x].

(iii) ⇒ (i) Let f (x) and g(x) be polynomials in R[x] such that for all k ∈ R, (g(k) � 0 ⇒ g(k)| f (k)). If g(x) is a constant
polynomial and deg f < deg g = 0 then f (x) = 0. Suppose that deg g ≥ 1 and let h(x) be a primitive polynomial in R[x]
such that g(x) = C(g)h(x). By hypothesis, for all k ∈ R we have (h(k) � 0 ⇒ h(k)| f (k)), which implies h(x)| f (x) in R[x]. It
follows that f (x) = 0 or deg f ≥ deg h = deg g. In both cases for g(x) we obtain that f (x) = 0 or deg g ≤ deg f . Therefore
R is a degree-domain.

The following result, which is a consequence of Proposition 10 together with Lemma 2 provides non-trivial conditions on
polynomials f (x) and g(x) such that statement (∗) holds.

Corollary 11. Let f (x), g(x) ∈ Z[x] with g(x) a non-constant and primitive such that for all k ∈ Z, (g(k) � 0 ⇒ g(k)| f (k)).
Then g(x)| f (x) in Z[x].

Example. Let n ≥ 1 and consider the polynomials pn(x), qn(x) in (∗∗). For all a ≥ 2 we know that pn(a)|q2n(a); looking
at the proof of this in (Jones J.P. & Matiyasevich Y.V., 1991, Equation (2.14)), we see that it can be extended to any
a ∈ Z with |a| ≥ 2. Observe also that the polynomials pn(x) are primitive. Applying Corollary 11 to the polynomials
g(x) = pn(x) and f (x) = q2n(x), we obtain that pn(x)|q2n(x) in Z[x].
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