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Abstract

This paper deals with an inventory model with stock dependent and time varying decreasing demand which increases
under the effect of price discount. After some time before deterioration starts a fixed discount on unit selling price is given
and when product starts to deteriorate the demand becomes stock independent and is only time decreasing. In such a
situation another discount on the selling price is given to boost up the demand and to reduce the loss due to deterioration.
The model determines optimal discount to be given on unit selling price during deterioration so as to maximize the total
profit. Numerical examples are presented to illustrate the model and sensitivity analysis is also reported.
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1. Introduction

In most of the existing inventory models in the literature it is assumed that items can be stored indefinitely to meet the
future demands. However, certain types of commodities either deteriorate or become obsolete in the course of time and
hence are unstable. Thus it is important to control and maintain the inventories of deteriorating items for the modern
corporation. The first attempt to describe the optimal ordering policies for deteriorating items was made by Ghare &
Schrader (1963). They presented an EOQ model for an exponentially decaying inventory. Later Nahmias (1982), Cob-
barert & Oudheusden (1996), Chung et al. (2000), Goyal & Giri (2001) provided an excellent & detailed review of
deteriorating inventory literatures.

In the existing literature, in maximum inventory models for deteriorating items it is assumed that the deterioration occurs
as soon as the commodities arrive in inventory. However, in real life, most goods would have a span of maintaining quality
or original condition, i.e. during that period no deterioration occurs. This phenomenon is termed as ‘non-instantaneous
deterioration’, given by Wu et al. (2006). This type of phenomena can be commonly observed in food stuffs, fruits, green
vegetables and fashionable goods, which have a span of maintaining fresh quality & during that period there is almost
no spoilage and after some time some of the items will start to decay. For these kinds of items the assumption that the
deterioration starts from the instant of arrival in stock may cause retailers to make inappropriate replenishment policy
due to overvalue of the total annual relevant inventory cost. Thus it is necessary to consider the inventory problems for
non-instantaneous deteriorating items. Lin and Shi (1999) classified inventory models into two categories decay models
& finite lifetime models. Castro & Alfa (2004) proposed a lifetime replacement policy in discrete time for a single unit
system. Ouyang et al. (2006) developed an inventory model for non-instantaneous deteriorating items with permissible
delay in payments. Chang et al. (2010) developed optimal replenishment policies for non-instantaneous deteriorating
items with stock-dependent demand.

In the existing literature of inventory models, the assumption of constant demand rate is not applicable to most of the
products. The demand rate of any product is always in a dynamic state i.e. products experience fluctuations in the demand
rate. Demand of goods may vary with time or with price or even with the instantaneous level of inventory displayed.
Many contributions have been made to the replenishment problem when there is a linear increasing trend in demand
within a time horizon, which is more realistic than the case where demand is constant. In real life, the demand of some
existing products decreases with time when new products are launched. Thus the demand rate is decreasing with time for
some products. Further the large amount of stock on display has a motivational effect on demand rate and increases the
demand rate for a short span. Smith (1977) presented an inventory model where the demand rate is decreasing negative-
exponentially. Benkherouf (1995) developed an inventory model for deteriorating items with decreasing time-varying
demand & shortages. Zhao et al. (2001) proposed a replenishment policy when the trend in demand is decreasing. Zhou
(2003) presented a multi-warehouse inventory models for items with demand rate as a function of time which increases
at a decreasing rate. Balkhi & Benkherouf (2004) came up with an inventory model for deteriorating items with stock
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dependent & time varying demand rate for a finite planning horizon. Yang et al. (2004) presented a replenishment policy
with non-linear decreasing demand. Omar (2009) considered a production policy under linearly decreasing demand.
Banerjee & Sharma (2010) developed inventory models with price and time dependent seasonal demand.

It is a common practice for a supplier to offer discounts to customers. The motivation for offering discounts stems from
the fact that it encourages the customers to purchase a large lot size than the regular one. From the supplier’s perspective,
he offer’s discount to increase cash flow, to decrease the levels of inventory to reduce loss due to deterioration, to boost
market share or simply to retain customers. Supplier has to decide the optimal discount and the optimal time when the
discount is to be given to the customers. This is because the selling price should not be so high that it puts off the
customers and not so low that the supplier losses out on the profits. Thus price discount is one of the key factors which
influence demand and its effect cannot be ignored. Ardalan (1994) developed an inventory policy where temporary price
discounts resulted in increase in demand. Wee & Yu (1997) proposed an inventory model for deteriorating items with
a temporary price discount. Papachristos & Skouri (2003) presented an inventory models for deteriorating items where
demand rate is a convex decreasing function of the selling price. Sana & Chaudhuri (2008) presented an EOQ model with
delay in payments and price discount offers. Hsu & Yu (2009) proposed an EOQ model for imperfective items under a
one-time-only discount. Panda et al. (2009) developed an EOQ model for perishable products with discounted selling
price and stock dependent demand. Cardanas-Barron et al. (2010) presented an inventory model for determining the
optimal ordering policies to take advantage of a one-time discount offer with allowed back orders.

The present paper is an extension of Panda et al. (2009). They proposed an EOQ model for an infinite time horizon for
perishable products with discounted selling price and stock dependent demand with non-instantaneous constant rate of
deterioration. In the present paper an inventory model is considered with stock dependent and time varying decreasing
demand. Deterioration is non-instantaneous and time dependent. A temporary discount on selling price before the start
of deterioration is given to enhance the demand in order to boost the inventory depletion rate. After some time when
product starts deteriorating the demand becomes stock independent and is only time decreasing. In such a situation
another discount on selling price is given to boost up the demand, to decrease the levels of inventory, so as to reduce loss
due to deterioration. The model is developed for finite planning horizon. Numerical examples are provided to illustrate
the optimization procedure. In addition the sensitivity analysis of the optimal solution with respect to parameters of the
system is carried out.

2. Assumptions and Notation

2.1 Assumptions

The following assumptions are adopted:

The replenishment is instantaneous and lead time is zero.

The system operates for a prescribed period of a planning horizon.

Shortages are not allowed.

The deterioration rate is time dependent and the deterioration of items begins after a time μfrom the instant of the arrival
of the stock.

I (t)is the inventory level at time t.

In each cycle the demand rate follows the patternD(t) = a + bI (t) − cti.e. the demand is stock dependent and decreasing
with time from the time of fresh replenishment up to the time μ, and when deterioration starts at time μ it is only time
decreasing i.e. D(t) = a − ct where a is a positive constant and b and care the scale parameters where a is a positive
constant and b and care the scale parameters where 0 ≤ b, c ≤ 1.

d1 (0 ≤ d1 ≤ 1)is the percentage discount offer on unit selling price before deterioration. α1 = (1 − d1)−n1 (n1 ∈ R, the set
of real numbers), is the effect of discounted selling price on demand before deterioration. When d1 → 0, α1 → 1 i.e. for
no pre-deterioration discount the demand is assumed to bea+ bI (t)− ct.d2 (0 ≤ d2 ≤ 1)is the percentage discount offer on
unit selling price during deterioration. α2 = (1 − d2)−n2 (n2 ∈ R, the set of real numbers), is the effect of discounted selling
price on demand during deterioration. When d2 → 0, α2 → 1 i.e. the demand of decreased quality items remains same.

In day to day life it is commonly observed that the demand of fresh goods is increased significantly if a discount is offered
on selling price and the demand of decreased quality items is also increased if a discount is offered on selling price. Since
the demand is boosted if the discounts are offered therefore it is concluded that the demand is partially stock and time
dependent and partially stock, time and selling price dependent if the discounts are given.

2.2 Notations

The following notations are used in the model:

A is the set up cost.
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C1 is the unit holding cost per item.

s is the unit selling price of the product per unit.

d1 is the percentage discount offer per unit before deterioration.

d2 is the percentage discount offer per unit after deterioration.

C4 is the unit purchasing cost.

C5 is the disposal cost per unit.

θt is the deterioration rate.

Q is the order level for quantity.

T is the fixed time horizon.

t1 is the decision variable representing the time from which pre-deterioration discount starts.

μ is the time at which deterioration starts.

I(t) is the inventory level at any time t.

3. Mathematical Model

Formulation of the model when pre- and post deterioration discounts on selling price are given is given by Figure-1. At the
beginning of the replenishment cycle the inventory level raises to Q. As time progresses inventory level decreases due to
stock and time dependent demand up to the timet1. Att1, d1% discount is offered on unit selling price in order to enhance
the demand of fresh items. This discount is continued upto the time μ where deterioration starts. When deterioration starts
another d2% discount is offered on unit selling price to boost the demand. This discount is continued for the rest of the
replenishment cycle.

Therefore, the inventory level I (t)at any time t in the interval[0,T ] can be represented by the following differential
equations:

dI (t)
dt
= − (a + bI (t) − ct) 0 ≤ t ≤ t1 (1)

dI (t)
dt
= −α1 (a + bI (t) − ct) t1 ≤ t ≤ μ (2)

dI(t)
dt
+ θtI(t) = −α2(a − ct) μ ≤ t ≤ T (3)

The solutions of the above differential equations after applying the boundary conditions I (0) = Qand I (T ) = 0 are given
by:

I (t) =
(
Q +

a

b
+

c

b2

)
e−bt +

(−a + ct

b

)
− c

b2 0 ≤ t ≤ t1 (4)

I (t) = −
(
a − ct

b

)
− c

b2α1
− c

b2

(
1 − 1
α1

)
ebα1(t1−t) +

(
Q +

a

b
+

c

b2

)
ebα1(t1−t)−bt1 t1 ≤ t ≤ μ (5)

I(t) = α2

[
a

{
(T − μ) + θ (T − μ)3

6
− (t − μ) − θ (t − μ)3

6
− θt

2 (T − μ)
2

+
θt2 (t − μ)

2

}

+c

{
(t − μ)2

2
+
θ (t − μ)4

8
− (T − μ)2

2
− θ (T − μ)4

8
− θt

2 (t − μ)2

4
+
θt2 (T − μ)2

4

}]
μ ≤ t ≤ T (6)

Order quantity Q is obtained by equating I (μ) from equations (5) and (6)

Q = α2 [X + Y] e−bα1(t1−μ)+bt1 + Ze−bα1(t1−μ)+bt1 + Mebt1 −
(
a

b
+

c

b2

)
(7)

Based on above equations, total profit consists of the following elements:

1. Ordering cost during the cycle is
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Cr = A (8)

2. Holding cost and disposal cost of inventories during the cycle is

Ch +CD = C1

t1∫
0

I (t)dt +C1

μ∫
t1

I (t)dt +C1

T∫
μ

I (t)dt + θC5

T∫
μ

tI (t)dt = C1

[
1
b

(
1 − e−bt1

)
{α2 {X + Y}

e−bα1(t1−μ)+bt1 + Ze−bα1(t1−μ)+bt1 +Mebt1
}
− ct1

b2 − aμ

b
+

cμ2

2b
− c (μ − t1)

b2α1
+

1
α1b

Mebα1(2t1−μ)

−
[
α2 (X + Y)ebt1α1 + Zebt1α1 + Mebα1(2t1−μ)]]

+α2C1

[
a

{
(T − μ)2

2
+
θ

12
(T 4 + 9μ2T 2 − 4μ3T − 6μT 3)

}
+ c

{
−1

3
(T − μ)3

+
θ

120
(−8T 5 + 3μ5 − 40μ4T + 55μT 4 + 110μ3T 2 − 120μ2T 3)

}]

+α2θC5

[
a

{
1
6

(T 3 + 2μ3 − 3μ2T ) +
θ

40
(T 5 − μ5 + 10μ3T 2 − 5μT 4 − 5μ4T )

}

+c

{
1
24

(−3T 4 + 5μ4 + 6μ2T 2 + 4μT 3 − 12μ3T )

+
θ

240
(−5T 6 − 30μ6 − 40μ3T 3 + 75μ4T 2 + 30μT 5 − 30μ5T ) (9)

3. Purchase cost in the cycle is given by

CP = C4Q

= C4α2(X + Y)e−bα1(t1−μ)+bt1 +C4Ze−bα1(t1−μ)+bt1 +C4Mebt1 −C4(
a

b
+

c

b2 ) (10)

4. The total sales revenue in the order cycle is given by

S R = s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t1∫

0

(a + bI(t) − ct)dt + α1(1 − d1)

μ∫
t1

(a + bI(t) − ct)dt + α2(1 − d2)

T∫
μ

(a − ct)dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= s

[
(1 − e−bt1 )

{
α2(X + Y)e−bα1(t1−μ)+bt1 + Mebt1

}
− ct1

b

+α1(1 − d1)
{

1
α1

Mebα1(2t1−μ) − c(μ − t1

)
bα1 − 1

α1

[
α2(X + Y)ebα1t1 + Zebα1t1 + Mebα1(2t1−μ)]}

+α2(1 − d2)
{
a(T − μ) − c

2
(T 2 − μ2)

}]
(11)

Therefore, the total profit per unit time is given by

T PT (d2, t1) =
1
T

(S R −CP −Ch −CD −Cr)

=
1
T

[{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
(1 − d2)−n2 (X + Y) e−b(1−d1)−n1 (t1−μ)+bt1
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+Ze−b(1−d1)−n1 (t1−μ)+bt1 +Mebt1
}
+

{
s (1 − d1)−n1+1 − C1

b

}
{

1
(1 − d1)−n1

Meb(1−d1)−n1 (2t1−μ) − c (μ − t1)
b (1 − d1)−n1

}
− sct1

b
+

cC1t1

b2 +
aμC1

b
− cC1μ

2

2b

+ {−s (1 − d1) +C1} {(1 − d2)−n2 (X + Y) eb(1−d1)−n1 t1 + Zeb(1−d1)−n1 t1 +Meb(1−d1)−n1 (2t1−μ)}
+s (1 − d2)−n2+1

{
a (T − μ) − c

2

(
T 2 − μ2

)}
+C4

(
a

b
+

c

b2

)

− (1 − d2)−n2 C1

[
a

{
(T − μ)2

2
+
θ

12

(
T 4 + 9μ2T 2 − 4μ3T − 6μT 3

)}
+ c

{
−1

3
(T − μ)3

+
θ

120

(
−8T 5 + 3μ5 − 40μ4T + 55μT 4 + 110μ3T 2 − 120μ2T 3

)}]

− (1 − d2)−n2 θC5

[
a

{
1
6

(
T 3 + 2μ3 − 3μ2T

)
+
θ

40

(
T 5 − μ5 + 10μ3T 2 − 5μT 4 − 5μ4T

)}

+c

{
1
24

(
−3T 4 + 5μ4 + 6μ2T 2 + 4μT 3 − 12μ3T

)
+
θ

240

(
−5T 6 − 30μ6 − 40μ3T 3 + 75μ4T 2 + 30μT 5 − 30μ5T

)}]
− A

]
(12)

It is to be noted that here the two discounts d1 and d2 are given on constant unit selling prices of the product. There may
be another case if the discount d2 after the start of deterioration may be given on the pre-deterioration discounted selling
price (1 − d1) s.

The pre-deterioration discount on selling price is to be given in such a way that the discounted selling price is not less
than the unit cost of the product, i.e. s (1 − d1) − c > 0.

4. Solution Procedure

According to equation (12), T PT (d2, t1) is a function ofd2 and t1. To maximize total profit per unit timeT PT (d2, t1), the
optimal values of d2and t1 are obtained by solving the following equations simultaneously.

∂T PT (d2t1)
∂d2

= 0 (13)

And
∂T PT (d2, t1)

∂t1
= 0 (14)

Provided ⎛⎜⎜⎜⎜⎝∂2T PT

∂d2
2

⎞⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎝∂2T PT

∂t2
1

⎞⎟⎟⎟⎟⎠ − (
∂2T PT

∂d2∂t1

)2

< 0 (15)

Equation (13) and (14) are equivalent to

i.e.
1
T

[{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
n2 (1 − d2)−n2−1 (X + Y) e−b(1−d1)−n1 (t1−μ)+bt1

}
+ {−s (1 − d1) +C1}

{
n2 (1 − d2)−n2−1 (X + Y) eb(1−d1)−n1 t1

}
−s (1 − n2) (1 − d2)−n2

{
a (T − μ) − c

2

(
T 2 − μ2

)}

−n2 (1 − d2)−n2−1 C1

[
a

{
(T − μ)2

2
+
θ

12

(
T 4 + 9μ2T 2 − 4μ3T − 6μT 3

)}
+ c

{
−1

3
(T − μ)3
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+
θ

120

(
−8T 5 + 3μ5 − 40μ4T + 55μT 4 + 110μ3T 2 − 120μ2T 3

)}]
−n2 (1 − d2)−n2−1 θC5

[
a

{
1
6

(
T 3 + 2μ3 − 3μ2T

)
+
θ

40

(
T 5 − μ5 + 10μ3T 2 − 5μT 4 − 5μ4T

)}
+c

{
1
24

(
−3T 4 + 5μ4 + 6μ2T 2 + 4μT 3 − 12μ3T

)

+
θ

240

(
−5T 6 − 30μ6 − 40μ3T 3 + 75μ4T 2 + 30μT 5 − 30μ5T

)}]
− A

]
= 0

And

1
T

[{
sbe−bt1 −C1e−bt1

} {
(1 − d2)−n2 (X + Y) e−b(1−d1)−n1 (t1−μ)+bt1 + Ze−b(1−d1)−n1 (t1−μ)+bt1 +Mebt1

}
+

{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
b
(
1 − (1 − d1)−n1

)
(1 − d2)−n2 (X + Y) e−b(1−d1)−n1 (t1−μ)+bt1

+b
(
1 − (1 − d1)−n1

)
Ze−b(1−d1)−n1 (t1−μ)+bt1 +bMebt1

}
+

{
s (1 − d1)−n1+1 − C1

b

}
{

2bMeb(1−d1)−n1 (2t1−μ) +
c

b (1 − d1)−n1

}
− sc

b
+

cC1

b2

+ {−s (1 − d1) +C1} {b (1 − d1)−n1 (1 − d2)−n2 (X + Y) eb(1−d1)−n1 t1 + (1 − d1)−n1 bZ

eb(1−d1)−n1 t1 +2b (1 − d1)−n1 Meb(1−d1)−n1 (2t1−μ)}] = 0

Where X = a (T − μ)
{
1 − θμ2

2 +
θ(T−μ)2

6

}
,Y = c

(T−μ)2

2

{
−1 + θμ

2

2 − θ(T−μ)2

4

}
, Z =

{
a−cμ

b
+ c

b2(1−d1)−n1

}
and M = c

b2

(
1 − 1

(1−d1)−n1

)
5. Special Cases

CASE 1:

If c = 0, then the demand rate reduces to D (t) = a + bI (t) i.e. the demand becomes stock dependent.

dI (t)
dt
= − (a + bI (t)) 0 ≤ t ≤ t1 (16)

dI (t)
dt
= −α1 (a + bI (t)) t1 ≤ t ≤ μ (17)

dI (t)
dt
+ θtI (t) = −α2a μ ≤ t ≤ T (18)

The solutions of the above differential equations after applying the boundary conditions I (0) = Qand I (T ) = 0 are given
by:

I (t) =
(
Q +

a

b

)
e−bt − a

b
0 ≤ t ≤ t1 (19)

I (t) = −a

b
+

(
Q +

a

b

)
ebα1(t1−t)−bt1 (20)

I (t) = α2

[
a

{
(T − μ) + θ (T − μ)3

6
− (t − μ) − θ (t − μ)3

6
− θt

2 (T − μ)
2

+
θt2 (t − μ)

2

}]
(21)

Order quantity for pre- and post deterioration discount on unit selling price is given by
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Q = α2Xe−bα1(t1−μ)+bt1 +
a

b

{
e−bα1(t1−μ)+bt1 − 1

}
(22)

The total profit per unit time is given by

T PT (d2, t1) =
1
T

[{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
(1 − d2)−n2 X e−b(1−d1)−n1 (t1−μ)+bt1

+
a

b
e−b(1−d1)−n1 (t1−μ)+bt1

}
+

aμC1

b
+ {−s (1 − d1) +C1} {(1 − d2)−n2 X eb(1−d1)−n1 t1 +

a

b
eb(1−d1)−n1 t1

}
+s (1 − d2)−n2+1 a (T − μ) +C4

a

b
− (1 − d2)−n2 C1a

{
(T − μ)2

2
+
θ

12

(
T 4 + 9μ2T 2 − 4μ3T − 6μT 3

)}
− (1 − d2)−n2 θC5a

{
1
6

(
T 3 + 2μ3 − 3μ2T

)
+
θ

40

(
T 5 − μ5 + 10μ3T 2 − 5μT 4 − 5μ4T

)}
−A] (23)

T PT (d2, t1) is a function of d2, and t1. To maximize total profit per unit timeT PT (d2, t1), the optimal values of d2and t1
can be obtained by solving the following equations simultaneously.

∂T PT (d2, t1)
∂d2

= 0 (24)

And

∂T PT (d2, t1)
∂t1

= 0 (25)

Provided

⎛⎜⎜⎜⎜⎝∂2T PT

∂d2
2

⎞⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎝∂2T PT

∂t2
1

⎞⎟⎟⎟⎟⎠ − (
∂2T PT

∂d2∂t1

)2

< 0 (26)

Equations (24) and (25) are equivalent to

1
T

[{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
n2 (1 − d2)−n2−1 X e−b(1−d1)−n1 (t1−μ)+bt1

}
+ {−s (1 − d1) +C1}

{
n2 (1 − d2)−n2−1 X eb(1−d1)−n1 t1

}
− s (1 − n2) (1 − d2)−n2 a (T − μ)

−n2 (1 − d2)−n2−1 C1a

{
(T − μ)2

2
+
θ

12

(
T 4 + 9μ2T 2 − 4μ3T − 6μT 3

)}
−n2 (1 − d2)−n2−1 θC5a

{
1
6

(
T 3 + 2μ3 − 3μ2T

)
+
θ

40

(
T 5 − μ5 + 10μ3T 2 − 5μT 4 − 5μ4T

)}]
= 0

1
T

[{
sbe−bt1 −C1e−bt1

} {
(1 − d2)−n2 X e−b(1−d1)−n1 (t1−μ)+bt1 +

a

b
e−b(1−d1)−n1 (t1−μ)+bt1

}
+

{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {
b
(
1 − (1 − d1)−n1

)
(1 − d2)−n2 Xe−b(1−d1)−n1 (t1−μ)+bt1

+
(
1 − (1 − d1)−n1

)
ae−b(1−d1)−n1 (t1−μ)+bt1

}
+ {−s (1 − d1) +C1} {b (1 − d1)−n1 (1 − d2)−n2 X eb(1−d1)−n1 t1

+ (1 − d1)−n1 aeb(1−d1)−n1 t1
}]
= 0

CASE 2: Model for fixed life time products

If the product has a fixed shelf life then the post deterioration discount does not comes into account and only pre- deteri-
oration discount on selling price is given. So, μ = T, d2 = 0.

Hence, from equation (7) the initial inventory level is given as:

Q =

{
a − cT

b
+

c

b2α1

}
e−bα1(t1−T )+bt1 + Mebt1 −

(
a

b
+

c

b2

)
(27)
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and the total profit per unit time T PT (t1) over the period [0, T] is reduced to

T PT (t1) =
1
T

[{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {{a − cT

b
+

c

b2 (1 − d1)−n1

}
e−b(1−d1)−n1 (t1−T )+bt1

+Mebt1
}
+

{
s (1 − d1)−n1+1 − C1

b

} { 1
(1 − d1)−n1

Meb(1−d1)−n1 (2t1−T ) − c (T − t1)
b (1 − d1)−n1

}
− sct1

b
+

cC1t1

b2 +
aTC1

b
− cC1T 2

2b

+ {−s (1 − d1) +C1}
{{

a − cT

b
+

c

b2 (1 − d1)−n1

}
eb(1−d1)−n1 t1 +Meb(1−d1)−n1 (2t1−T )

}
+C4

(
a

b
+

c

b2

)
−A] (28)

To maximize total profit per unit timeT PT (t1), the optimal value of t1 can be obtained by solving the following differential
equation.

∂T PT

∂t1
= 0 (29)

Provided
∂2T PT

∂t2
1

< 0 (30)

1
T

[{
sbe−bt1 −C1e−bt1

} {{a − cT

b
+

c

b2 (1 − d1)−n1

}
e−b(1−d1)−n1 (t1−T )+bt1 +Mebt1

}

+

{
s
(
1 − e−bt1

)
−C4 − C1

b

(
1 − e−bt1

)} {(
1 − (1 − d1)−n1

) {
a − cT +

c

b (1 − d1)−n1

}
e−b(1−d1)−n1 (t1−T )+bt1

+Mebt1
}
+

{
s (1 − d1)−n1+1 − C1

b

} {
2bMeb(1−d1)−n1 (2t1−T ) +

c

b (1 − d1)−n1

}
− sc

b
+

cC1

b2

+ {−s (1 − d1) +C1}
{

(1 − d1)−n1

{
a − cT +

c

b (1 − d1)−n1

}
eb(1−d1)−n1 t1 +2b (1 − d1)−n1 Meb(1−d1)−n1 (2t1−T )

}]
= 0

6. Numerical Examples

Example 1:

When both pre- and post deterioration discounts on unit selling price are given, a practical model is considered taking
the following values for different parameters: a=110 units, b=0.5, c = 0.35, T=10 months, s=Rs. 12, θ=0.009, n1=1,
n2 = 2, μ = 5.5, A =Rs.300 per order, C1=0.75, C4=6, C5=0.60, d1=0.3 Using the solution procedure described in
the model the optimal results obtained are, d∗2= 0.573715, t∗1=2.5424, T PT

(
d∗2, t

∗
1

)
= Rs. 843.373 and Q∗= 77473.3. Thus

the pre-deterioration discount of 30% on unit selling price starts at time t∗1=2.5424 and when product start to deteriorate
57.37% discount on unit selling price is given for the remaining period of replenishment cycle in order to obtain the
maximum profit T PT

(
d∗2, t

∗
1

)
= Rs. 843.373 on optimal order quantity Q∗= 77473.3.

Example 2: When c = 0 , then the demand rate reduces to D (t) = a+bI (t) i.e. the demand becomes only stock dependent.
Using the parameters of Example-1 the results obtained are,d∗2= 0.580829, t∗1=2.54243, T PT

(
d∗2, t

∗
1

)
= Rs. 875.159 and

Q∗= 80539.1. Thus the pre-deterioration discount of 30% on unit selling price starts at time t∗1=2.54243 and when product
start to deteriorate 58.08% discount on unit selling price is given for the remaining period of replenishment cycle in order
to obtain the maximum profit T PT (d∗2, t∗1) = Rs. 875.159 on optimal order quantity Q∗= 80539.1.

Example 3: Based on Case 2, When products have fixed lifetime, only pre-deterioration discounts on unit selling price
is given, a practical model is considered taking the following values for different parameters: a=110, b=0.5, c = 0.35,
T=5.5, s=12, θ=0.009, n1=1, n2 = 2, μ = 5.5, A = 300, C1 = 0.75, C4 = 6, C5 = 0.60, d1 = 0.3

Using the solution procedure described in the model the results obtained are, t∗1=2.5424, T PT
(
t∗1
)
= Rs. 297.885 and Q∗=

6181.32. Thus in order to enhance inventory depletion rate the pre-deterioration discount of 30% on unit selling price
should start at time t1=2.54251 when product has a fixed lifetime period.
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7. Sensitivity Analysis

To study the effect of changes of the parameters on the optimal profit derived by proposed method, a sensitivity analysis
is performed considering the numerical examples given above. Sensitivity analysis is performed by changing (increasing
or decreasing) the parameters by 20% & 50% and taking one parameter at a time, keeping the remaining parameters at
their original values. The results are shown in Table 1 for Example 1

A careful study of Table 1 reveals the following:

i. d2is slightly sensitive to changes in the values of parameters c, C5 & a, it is moderately sensitive to changes in θ and
neutral to changes in A.

ii. t1is neutral to changes in c, C5, a, θ& A.

iii. Qis slightly sensitive to changes in the values of parameters c, C5 & θ, it is highly sensitive to change in a and neutral
to changes in A.

iv. T PT is slightly sensitive to changes in the values of parameters c & C5, it is moderately sensitive to changes in θ & A

and highly sensitive to change in a.

8. Conclusion

In this paper an inventory model is developed with stock dependent and time varying decreasing demand. Deterioration
is non-instantaneous & time dependent. After some time when product starts to deteriorate the demand becomes stock in-
dependent and is only time decreasing. A mathematical model is developed incorporating both pre-and post deterioration
discounts on unit selling price. Optimal discount on unit selling price and optimal time to give the discount for maximiz-
ing the total profit per unit are determined. Results obtained imply that the effect of pre-and post deterioration discount
and non-instantaneous time dependent deterioration on the total profit is more significant than a policy which ignores the
effects of these factors. An analytic formulation of the problem on the frame work described above and optimal solution
procedure to find optimal discount is presented. Sensitivity analysis with respect to various parameters has been carried
out.

Thus this model incorporates some realistic features that are likely to be associated with some kind of inventory. The
model could be very useful in retail business. It can be used for electronic components, fashionable goods, clothes,
foodstuffs (vegetables and fruits) and other products which have more likely the characteristics above.

The present study can be further extended for some other factors involved in the inventory system.
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Table 1.

Parameter % change % change in d2 % change in t1 % change in TPT % change in Q
c -50 0.0063 0.0000 0.0188 0.0197

-20 0.0025 0.0000 0.0075 0.0079
20 -0.0026 0.0000 -0.0075 -0.0079
50 -0.0064 0.0000 -0.0187 -0.0196

θ -50 -0.0482 0.0000 -0.0491 -0.0661
-20 -0.0243 0.0000 -0.0255 -0.0347
-20 0.0248 0.0000 0.0278 0.0386
-20 0.0627 0.0000 0.0743 0.1053

C5 -50 0.0104 0.0000 0.0114 0.0262
-20 0.0041 0.0000 0.0045 0.0103
20 -0.0041 0.0000 -0.0045 -0.0102
50 -0.0104 0.0000 -0.0111 -0.0251

a -50 -0.0130 0.0000 -0.5364 -0.5195
-20 -0.0032 0.0000 -0.2146 -0.2079
20 0.0021 0.0000 0.2146 0.2079
50 0.0042 0.0000 0.5366 0.5197

A -50 0.0000 0.0000 0.0178 0.0000
-20 0.0000 0.0000 0.0071 0.0000
20 0.0000 0.0000 -0.0071 0.0000
50 0.0000 0.0000 -0.0178 0.0000

Figure 1.

Published by Canadian Center of Science and Education 129


