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Abstract

This dissertation is to discuss the initial-boundary value problem under the third nonlinear boundary condition for a kind

of nonlinear evolution equations. To apply the maximum value theory and convex functional method£it is proved that

the blowing up of solution in the definite time under some assumed conditions. The conclusion popularizes the results of

references [Zhongwei Zha(2003)-Zhongwei Zha(2010)].
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1. Introduction

This paper discusses the initial-boundary value problem under the third nonlinear boundary condition for a kind of non-

linear evolution equations.

(I)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t = ∇(h(u)∇u) + f (x, t, u,∇u) D × (0,T ) (1.1)

h(u) ∂u
∂v + u = g(x, t, u,"u) ∂D × (0,T ) (1.2)

u(x, 0) = ϕ(x) D (1.3)

where D is a smooth boundary area in Rn, x = (x1, x2, · · · , xn), T is a positive constant, h(u) > 0 is a monotonous

decreasing continuous function, ∇ = ( ∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xn
) is a gradient operator and ∂u

∂v is the exterior normal derivative for

∂D.

The solution losing regularity and occuring blow condition in finite time study for nonlinear partial differential equations

(Nonlinear Evolution Equations) related to time variable t has important practical significance[Chaohao Gu(1993), Daqian

Li(1989)], which are studied in [Pao C.V.(1980)-Mizoguchi N.(1997)]. However, due to the wide equation range and

various characteristics of nonlinear equations, the existed results are obtained for finite solutions of specific physical

problems, such as papers [Zhongwei Zha(2003)-Zhongwei Zha(2010)] are special cases of (I).

For convenience, denote f
′
∇u = (

∂ f
∂q1
, ∂ f
∂q2
, · · · , ∂ f

∂qn
), where q1 =

∂u
∂x1
, q2 =

∂u
∂x2
, · · · , qn =

∂u
∂xn

. ∂(∇u)
∂t = (

∂q1

∂t ,
∂q2

∂t , · · · , ∂qn
∂t ) = q

′
t ,

and f
′
q · q′t = ∂ f

∂q1

∂q1

∂t +
∂ f
∂q2

∂q2

∂t + · · · + ∂ f
∂qn

∂qn
∂t denotes inner product.

For initial-boundary value problem (I), the followings are supposed:

(i) When x ∈ D, ϕ(x) ≥ 0.

(ii) f (x, t, p, q) ∈ C(R) × C1[0,T ) × C1(R) × C1(R), f and f
′
t are non-negative and the inner product f

′
q · q

′
t ≥ 0. Denote

H(u) =
∫ u(x,t)

o h(τ)dτ,G(p) =
∫ p

0
H(ζ)dζ, then there exists β > 1 such that GH f

′
p − (βH2 +GH

′
) f ≥ 0 holds when p ≥ 0.

(iii) g(x, t, p, q) ∈ C(R) × C1[0,T ) × C1(R) × C1(R) when p ≥ 0 and g ≤ 0. And when p < 0 and g > 0, g
′
t and the inner

product g
′
q · q′t are non-negative, while g

′
p < 1.

(iv) When x ∈ D, ∇(h(ϕ)∇ϕ) + f (x, 0, ϕ(x),∇ϕ) ≥ 0.

2. Non-negative property of solutions for problem (I)

In order to discuss the blowing up solutions for finite problem (I), we first prove two properties of solutions, that is

Lemma 1. If the conditions (i)-(iii) satisfy, the solution of (I) u(x, t) ≥ 0((x, t) ∈ D × [0,T )).

Proof. If it isn’t, then suppose the solution u(x, t) of (I) can be taken negative number, there exists a point P0(x0, t0) ∈
D × [0,T ) such that u(P0) is the negative minimum. From the initial condition (1.3) and condition (i), t0 � 0. Noting the

expression of H(x, t) in condition (ii), it is obviously that H(x, t) takes the negative minimum in P0 too.

If P0 ∈ D× (0,T ) and since u(P0) and H(P0) are the negative minimums, then ΔH(P0) ≥ 0, ∂H
∂xi
|P0
= 0(i = 1, 2, · · · , n) and

∂H
∂t |P0

≤ 0. But for h(u) > 0 and from ∂H
∂t |P0

= h(u) ∂u
∂t |P0

, ∂u
∂t |P0

≤ 0 is gotten, therefore, [ ∂u
∂t −∇(h(u))∇u]P0

= [ ∂u
∂t −�H]P0

≤
0, which is a contradiction that f is nonnegative in condition (ii).

If P0 ∈ ∂D × (0,T ), ∂u
∂v |P0

≤ 0. From the left side of the boundary condition (1.2) [h(u) ∂u
∂v + u]P0

< 0, which is contrast
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with g > 0 in condition (iii). So for any (x, t) ∈ D × [0,T ), u(x, t) ≥ 0. The proof is proven.

Lemma 2. If conditions (i)-(iv) satisfy, then ∂u
∂t ≥ 0((x, t) ∈ D × [0,T )).

Proof. Express the definite solution problem (I) by the following form:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t = h′ (u)(∇u)2 + h(u)�u = f (x, t, u,∇u) D × (0,T )

h(u) ∂u
∂v + u = g(x, t, u,"u) ∂D × (0,T )

u(x, 0) = ϕ(x) D
(1)

Take the derivation for variable t, denoted by ∂u
∂t = V(x, t), then we obtain the initial boundary problem what V(x, t)

satisfies:

(II)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∂V
∂t = h(V)(�V) + 2h

′
(u)(∇u) · (∇V) + [h

′′
(u)(∇u)2 + h

′
(u)(�u) + f

′
u]V

+ f
′
t + f

′
∇u · ∂(∇u)

∂t D × (0,T )

h(u) ∂V
∂v + [h(u) ∂u

∂v + 1 − g
′
u]V = g

′
t + g

′
∇u · ∂(∇u)

∂t ∂D × (0,T )

V(x, 0) = ∇(h(ϕ)∇ϕ) + f (x, 0, ϕ,∇ϕ) D

Similar with Lemma 1, we can prove that for any (x, t) ∈ D × [0,T ), the solution of mixed problem (II) V(x, t) ≥ 0,

therefore,
∂u
∂t
≥ 0((x, t) ∈ D × [0,T ))

The proof is proven.

In addition, we also need a conclusion in paper [Zhongwei Zha(1992)], that is:

Lemma 3. Suppose that E(t) is a doubly differentiable function and E(0) > 0, E
′
(0) < 0, E

′′ ≤ 0, then there exists T0 such

that E(T0) = 0, where 0 < T0 < − E(0)

E′ (0)
.

3. Blow-up of solution in problem (I)

When the hypothesis conditions (i)-(iv) satisfy, the mixed problem (I) doesn’t exist global smooth solution, i.e. the

solution must appear blow-up within definite time, which is the following theorem:

Theorem If the conditions (i)-(iv) hold and u(x, t) is the smooth solution of (I), then there exists time T0(0 < T0 < +∞),
such that lim

t→T−
0

sup
x∈D

u(x, t) = ∞.

Proof. Since H(u) =
∫ u(x,t)

0
h(τ)dτ, H

′
(u) = h(u) > 0. Noting that the definite problem (I) can be expressed the following:

(III)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u
∂t = �H(u) + f (x, t, u,∇u) D × (0,T ) (3.1)

h(u) ∂u
∂v + u = g(x, t, u,∇u) ∂D × (0,T ) (3.2)

u(x, 0) = ϕ(x) D (3.3)

(2)

So we only need to prove the solutions of mixed problem (III) appear blow-up within definite time under the assumed

condition.

Denote

G(u) =

∫ u

0

H(ζ)dζ (3)

F(t) =
∫

D

1

1 + β
[G(u)]1+βdx (4)

where β is a constant in condition (ii), then G(u) > 0, F(t) < 0 and

F(0) =

∫
D

1

1 + β
[G(ϕ)]1+βdx > 0 (5)

F
′
(t) =

∫
D

GβH(u)
∂u
∂t

dx (6)

F
′
(0) =

∫
D

GβH(u)
∂u
∂t
|t=0 > 0 (7)
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Take equation (3.1) into equation (6), we have

F
′
(t) =

∫
D

GβH�Hdx +
∫

D
GβH f dx (8)

Apply integration by parts to the first integral of the right side in equation (8) and noting the boundary condition (3.2) in

(III), we have

F
′
(t) =

∫
∂D

GβH[h(u)
∂u
∂v

]ds −
∫

D
∇(GβH) · ∇Hdx +

∫
D

GβH f dx

=

∫
∂D

GβH(g − u)ds −
∫

D
∇(GβH) · ∇Hdxı +

∫
D

GβH f dx (9)

where ds is the area element of ∂D. Derivative the two sides of (9) about t, we have:

F
′′
(t) =

∫
∂D

(βGβ−1H2 +GβH
′
)(g − u)

∂u
∂t

ds +
∫
∂D

GβH[g
′
t + g

′
u
∂u
∂t

+g
′
∇u
∂(∇u)

∂t
− ∂u
∂t

]ds +
∫

D
(βGβ−1H2 +GβH

′
) f
∂u
∂t

dx

−
∫

D
{[β(β − 1)Gβ−2H3H

′
(∇u)2 + 2βGβ−1G(∇H)2]

∂u
∂t

+[βGβ−1H2∇(
∂u
∂t

) + βGβ−1H
∂H
∂t
∇u + 2Gβ∇(

∂H
∂t

)] · ∇H

+βGβ−1H2(∇u) · ∇(
∂u
∂t

)}dx +
∫

D
GβH[ f

′
t + f

′
u
∂u
∂t
+ f

′
∇u ·

∂(∇u)

∂t
]dx. (10)

On the other side, if derivativing the two sides of (6) about t directly, we have:

F
′′
(t) =

∫
∂D

(βGβ−1H2 +GβH
′
)(
∂u
∂t

)2dx +
∫

D
GβH

∂2u
∂t2

dx. (11)

We derivative the equation (3.1) about t , take the results into (11) and apply integration by parts, then

F
′′
(t) =

∫
D

(βGβ−1H2 +GβH
′
)(
∂u
∂t

)2dx +
∫

D
GβH[ f

′
t + f

′
u
∂u
∂t
+ f

′
∇u
∂(∇u)

∂t
]dx

+

∫
∂D

GβH[g
′
t + g

′
u
∂u
∂t
+ g

′
∇u ·

∂(∇u)

∂t
− ∂u
∂t

]ds

−
∫

D
(βGβ−1H2∇u +Gβ∇H) · ∇(

∂H
∂t

)dx (12)

Double(12) and then use it to subtract(10):

F
′′
(t) = 2β

∫
D

Gβ−1H2(
∂u
∂t

)2dx + 2

∫
D

GβH
′
(
∂u
∂t

)2dx+

∫
D

GβH[ f
′
t + f

′
∇u ·

∂(∇u)

∂t
]dx +

∫
D

Gβ−1[GH f
′
u − (βH2 +GH

′
) f ]

∂u
∂t

dx

∫
∂D

GβH[g
′
t + g

′
∇u ·

∂(∇u)

∂t
]ds +

∫
∂D

GβH(1 − g
′
u)
∂u
∂t

ds

+

∫
∂D

Gβ−1(βH2 +GH
′
)(u − g)ds +

∫
D
βGβ−1H[H(∇H) · ∇(

∂u
∂t

)

+(∇H) · (∇u)
∂H
∂t
− H(∇u) · ∇(

∂H
∂t

)]dx. (13)

Noting the last integral in the right side of (13) can be expressed :∫
D
βGβ−1H[H(∇H) · ∇(

∂u
∂t

) + H
′2(∇u)2 ∂u

∂t
− HH

′′
(∇u)2 ∂u

∂t
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−H(∇H) · ∇(
∂u
∂t

)]dx =
∫

D
βGβ−1H(H

′2 − HH
′′
)(∇u)2 ∂u

∂t
dx ≥ 0.

In fact, since h(u) is monotone decreasing positive continuous function about u, and from the expression of h(u) and

H(u) > 0,H
′
(u) = h(u) > 0, while H

′′
(u) = h

′
(u) < 0, therefore, in the above equation H

′2 − HH
′′
> 0.

Due to the conditions (ii)-(iii) and from the conclusions of Lemma 1 and Lemma 2, each integral in the right side of (13)

is non-negative , so

F
′′
(t) ≥ 2β

∫
D

Gβ−1H2(
∂u
∂t

)2dx. (14)

The two sides of (14) both are multiplied by F(t) and apply Schwarz inequality, we have:

F
′′
(t)F(t) ≥ 2β

β + 1

∫
D

Gβ−1(H
∂u
∂t

)2dx ·
∫

D
Gβ+1dx

≥ 2β

β + 1
(

∫
D

GβH
∂u
∂t

dx)2 =
2β

β + 1
[F

′
(t)]2 (15)

Let E(t) = [F(t)]−
β−1
β+1 = [F(t)]−β0 , where β0 =

β−1

β+1
> 0. From (5) and (7),

E(0) = [F(0)]−β0 > 0, E
′
(0) = −β0[F(0)]−(β0+1)F

′
(0) < 0.

In addition, from inequality (15), E
′′
(t) ≤ 0. Based on Lemma 3, there exists T0(0 < T0 < − E(0)

E′ (0)
) such that E(T0) = 0, so

lim
t→T−

0

E(t) = lim
t→T0

[F(t)]−β0 = 0, i.e. lim
t→T−

0

F(t) = ∞. Noting the form of F(t),

lim
t→T−

0

G(u(x, t)) = ∞ (16)

Therefore lim
t→T−

0

sup
x∈D

u(x, t) = ∞.

In fact, if sup
x∈D

u(x, t) ≤ M(constant), then

G(u) =

∫ u

0

H(ζ)dζ ≤
∫ M

0

H(ζ)dζ ≤
∫ M

0

[

∫ u

0

h(τ)dτ]dζ ≤
∫ M

0

[

∫ M

0

h(τ)dτ]dζ � ∞,

which is a contradiction with (16).
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