On Multi-valued Weak Contraction Mappings

Kritsana Neammanee Department of Mathematics, Faculty of Science Chulalongkorn University, Bangkok 10330 Thailand E-mail: kritsana.n@chula.ac.th

Annop Kaewkhao

Department of Mathematics, Faculty of Science Chulalongkorn University, Bangkok 10330 Thailand E-mail: tor_idin@buu.ac.th

Received: December 21, 2010 Accepted: January 7, 2011 doi:10.5539/jmr.v3n2p151

Abstract

In this paper, we study fixed point theorems for multi-valued weak contractions. We show that the Picard projection iteration converges to a fixed point, give a rate of convergence and generalize Collage theorem. This work includes results on multi-valued contraction mappings studied by (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) and on multi-valued Zamfirescu mappings intrudeced by (Kaewkhao, An. & Neammanee, K., 2010).

Keywords: Fixed point, Collage theorem, Multi-valued mapping, Picard projection iteration, Weak contraction and Zamfirescu mapping

1. Introduction

Let (X, d) be a metric space and $T : X \to X$ a mapping. We say that $x \in X$ is a fixed point of T if Tx = x. T is said to be an *a*-contraction mapping if there exists a constant $a \in (0, 1)$, called a contraction factor, such that

 $d(Tx, Ty) \le ad(x, y)$ for all $x, y \in X$.

There are some well-known results on fixed point Theorems for contraction mappings. For instance,

Theorem 1.1 [Banach theorem](Banach, S., 1922) Let (X, d) be a complete metric space and $T : X \to X$ be an *a*-contraction mapping. Then *T* has a unique fixed point.

Theorem 1.2 [Collage Theorem](Barnsley, M.F., 1989) Let (X, d) be a complete metric space and $T : X \to X$ be an *a*-contraction mapping. Then for any $x \in X$,

$$d(x, x^*) \le \frac{1}{1-a} d(x, Tx),$$

where x^* is the fixed point of *T*.

Theorem 1.3 [Continuty of Fixed Points](Centore, P. & Vrscay, E.R., 1994) Let (X, d) be a complete metric space and $T_1, T_2: X \to X$ be contraction mappings with contraction factors a_1 and a_2 and fixed points x_1^* and x_2^* , respectively. Then

$$d(x_1^*, x_2^*) \le \frac{1}{1 - \max\{a_1, a_2\}} d_{\infty}(T_1, T_2),$$

where $d_{\infty}(T_1, T_2) = \sup_{x \in X} d(T_1 x, T_2 x).$

In this paper, we concern with multi-valued mapping $T : X \to \mathcal{P}(X)$, i.e., a set-valued mapping from a space X to its power set $\mathcal{P}(X)$.

Let $\mathcal{P}(X)$ be the family of all nonempty subsets of X and let T be a set-valued mapping from X to $\mathcal{P}(X)$. An element $x \in X$ such that $x \in Tx$ is called a fixed point of T. We denote by F_T the set of all fixed points of T, i.e., $F_T = \{x \in X : x \in Tx\}$. Let (X, d) be a metric space and let $\mathcal{CB}(X)$ denote the family of all nonempty bounded closed subsets of X. For $x \in X$, $A, B \in \mathcal{CB}(X)$, we write

 $d(x, A) = \inf\{d(x, a) : a \in A\}$, the distance between x and A,

 $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$, the distance between A and B,

 $h(A, B) = \sup\{d(a, B) : a \in A\}$ and

 $H(A, B) = \max\{h(A, B), h(B, A)\},\$ the Hausdorff-Pompeiu metric on $C\mathcal{B}(X)$ induced by d.

The study of fixed point theorems for multi-valued mapping has been initiated by (Markin, J.T., 1968, Nadler, S.B., 1969). Since then, extensive literatures have been developed. They consist of many theorems dealing with fixed points for multi-valued mappings, see (Mizoguchi, N. & Takahashi, W., 1989, Ciric, L.B., 2003). Most of these cases require the range of each point to be closed and bounded, in others words, to be compact, as we shall assume throughout this work.

Given a point $x \in X$ and a compact set $A \subset X$. We know that there exists $a^* \in A$ such that $d(x, a^*) = d(x, A)$. We call a^* the *projection* of x on the set A and denote by $a^* = \pi_x A$. Note that a^* is not unique but we choose one of them.

We say that $T : X \to P(X)$ is a compact multi-valued mapping if Tx is compact for all $x \in X$ and define the *projection* associated with T by $Px = \pi_x(Tx)$. For $x_0 \in X$, we define $x_{n+1} = Px_n$, n = 0, 1, 2... and call the sequence $\{x_n\}_{n=0}^{\infty}$ the *Picard projection iteration sequence* of T.

In 2007, Kunze, La Torre and Vrscay extended Theorem 1.1-Theorem 1.3 to a compact multi-valued *a*-contraction mapping. A multi-valued mapping $T : X \to P(X)$ is called an *a*-contraction mapping if there exists a constant $a \in (0, 1)$ such that

$$H(Tx, Ty) \le ad(x, y)$$
 for all $x, y \in X$.

Theorem1.4-Theorem1.6 are results of (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007).

Theorem 1.4 (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) Let (X, d) be a complete metric space and $T : X \to C\mathcal{B}(X)$ be a compact multi-valued *a*-contraction mapping. Then for any $x_0 \in X$, the Picard projection iteration $\{x_n\}_{n=0}^{\infty}$ converges to some $x^* \in F_T$.

Theorem 1.5 (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) Let (X, d) be a complete metric space and $T : X \to C\mathcal{B}(X)$ be a compact multi-valued *a*-contraction mapping. Then

$$d(x_0, F_T) \le \frac{1}{1-a} d(x_0, Tx_0),$$

for all $x_0 \in X$.

Theorem 1.6 (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) Let (X, d) be a complete metric space and $T_1, T_2 : X \to C\mathcal{B}(X)$ be compact multi-valued contraction mappings with contraction factors a_1 and a_2 , respectively. If F_{T_1} and F_{T_2} are compact, then

$$H(F_{T_1}, F_{T_2}) \le \frac{d_{\infty}(T_1, T_2)}{1 - \max\{a_1, a_2\}},$$

where $d_{\infty}(T_1, T_2) = \sup_{x \in X} H(T_1 x, T_2 x).$

In this work we extend Theorem 1.4-Theorem 1.6 to the case of multi-valued weak contraction introduced by (Berinde, M. & Berinde, V., 2007). It is known that a contraction mapping is a weak contraction. We prove that the Picard projection iteration converges to a fixed point, give a rate of convergence and generalize Collage theorem in Section2. We show that the multi-valued Zamfirescu mappings introduced by (Kaewkhao, An. & Neammanee, K., 2010), is a multi-valued weak contraction in final section. This means that the outcome of this work contain some results of (Kaewkhao, An. & Neammanee, K., 2010).

2. Multi-valued weak contraction mappings

In this section, we extend Theorem 1.4-Theorem 1.6 to the case of weak contraction and hence the results of (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) are consequences of our work.

Definition 2.1 Let (X, d) be a metric space and $T : X \to C\mathcal{B}(X)$ be a multi-valued mapping. *T* is said to be the multi-valued weak contraction or multi-valued (θ, L) -weak contraction if and only if there exist constants $\theta \in (0, 1)$ and $L \ge 0$ such that

$$H(Tx, Ty) \le \theta d(x, y) + Ld(x, Ty)$$
, for all $x, y \in X$.

Note that an *a*-contraction mapping is a (a, 0)-weak contraction.

We now state properties of metrics d and H on X and $C\mathcal{B}(X)$, respectively, used in our next results.

$$d(x,A) \le d(x,y) + d(y,A) \text{ for all } x, y \in X \text{ and } A \in \mathcal{CB}(X), \tag{1}$$

$$d(x,A) \le d(x,y) + d(y,B) + H(A,B) \text{ for all } x, y \in X \text{ and } A, B \in C\mathcal{B}(X),$$
(2)

$$d(a,A) \le d(x,B) + H(A,B) \text{ for all } x \in X \text{ and } A, B \in C\mathcal{B}(X).$$
(3)

Theorem 2.2 Let (X, d) be a complete metric space and $T : X \to C\mathcal{B}(X)$ be a compact multi-valued (θ, L) -weak contraction. Then

- (a) $F_T \neq \emptyset$;
- (b) for any $x_0 \in X$, the Picard projection iteration sequence $\{x_n\}_{n=0}^{\infty}$ converges to some $x^* \in F_T$;
- (c) the following estimates

$$d(x_n, x^*) \le \frac{\theta^n}{1 - \theta} d(x_0, x_1), \qquad n = 0, 1, 2, \dots$$
$$d(x_n, x^*) \le \frac{\theta}{1 - \theta} d(x_{n-1}, x_n), \qquad n = 1, 2, 3, \dots$$

hold.

Proof: Assume that *T* is a compact multi-valued (θ, L) -weak contraction and let x_0 be arbitrary and $\{x_n\}_{n=0}^{\infty}$ the Picard projection iteration.

For each $n \in \mathbb{N}$ we see that,

$$d(x_{n}, x_{n+1}) = d(x_{n}, Px_{n})$$

= $d(x_{n}, Tx_{n})$
 $\leq H(Tx_{n-1}, Tx_{n})$
 $\leq \theta d(x_{n-1}, x_{n}) + Ld(x_{n}, Tx_{n-1})$
= $\theta d(x_{n-1}, x_{n}),$ (4)

hence, by (4), we obtain

$$d(x_n, x_{n+1}) \le \theta^n d(x_0, x_1) \tag{5}$$

and

$$d(x_{n+k-1}, x_{n+k}) \le \theta^k d(x_{n-1}, x_n), \text{ for } k \in \mathbb{N} \cup \{0\}$$
(6)

by mathematical induction.

Then, for any $n, p \in \mathbb{N}$, (5) implies

$$d(x_{n}, x_{n+p}) \leq \sum_{k=n}^{n+p-1} d(x_{k}, x_{k+1})$$

$$\leq \sum_{k=n}^{n+p-1} \theta^{k} d(x_{0}, x_{1})$$

$$\leq \frac{\theta^{n}(1-\theta^{p})}{1-\theta} d(x_{0}, x_{1})$$

$$\leq \frac{\theta^{n}}{1-\theta} d(x_{0}, x_{1}).$$
(7)

Since $0 \le \theta < 1$, we have $\theta^n \to 0$ (as $n \to \infty$), so $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence. Therefore $\{x_n\}_{n=0}^{\infty}$ converges to some $x^* \in X$ by completeness property of (X, d). Combining (1) and (3), we get

$$\begin{aligned} d(x^*, Tx^*) &\leq d(x^*, x_{n+1}) + d(x_{n+1}, Tx^*) \\ &\leq d(x^*, x_{n+1}) + H(Tx_n, Tx^*) \\ &\leq d(x^*, x_{n+1}) + \theta d(x_n, x^*) + Ld(x^*, Tx_n) \\ &\leq d(x^*, x_{n+1}) + \theta d(x_n, x^*) + L[d(x^*, x_{n+1}) + d(x_{n+1}, Tx_n)] \\ &= d(x^*, x_{n+1}) + \theta d(x_n, x^*) + Ld(x^*, x_{n+1}), \end{aligned}$$

for all n = 0, 1, 2, ... Thus we have $d(x^*, Tx^*) = 0$ by letting $n \to \infty$. Since Tx^* is closed, $x^* \in Tx^*$. Hence (a) and (b) hold. To prove (c), we note by (6) that

$$d(x_n, x_{n+p}) \le (\theta + \theta^2 + \dots + \theta^p) d(x_{n-1}, x_n) \le \frac{\theta}{1 - \theta} d(x_{n-1}, x_n).$$
(8)

As $p \to \infty$, we get

$$d(x_n, x^*) \le \frac{\theta}{1-\theta} d(x_{n-1}, x_n).$$
(9)

Inequalities (7) and (9) prove (c).

Corollary 2.3 [Generalized Collage Theorem] Let (X, d) be a complete metric space and $T : X \to C\mathcal{B}(X)$ be a compact multi-valued (θ, L) -weak contraction mapping. Then

$$d(x_0, F_T) \le \frac{1}{1 - \theta} d(x_0, Tx_0),$$

for all $x_0 \in X$.

Proof : Let $x_0 \in X$. By Theorem 2.2(b), there exists a point $x^* \in F_T$ such that the Picard projection iteration sequence $\{x_n\}_{n=0}^{\infty}$ converges to x^* and hence by Theorem 2.2(c) we have

$$d(x_0, F_T) \le d(x_0, x^*) \le \frac{1}{1-\theta} d(x_0, x_1) = \frac{1}{1-\theta} d(x_0, Tx_0).$$

Theorem 2.4 Let (X, d) be a complete metric space and $T_1, T_2 : X \to C\mathcal{B}(X)$ be compact multi-valued weak contractions with parameters (θ_1, L_1) and (θ_2, L_2) , respectively. If F_{T_1} and F_{T_2} are closed and bounded, then

$$H(F_{T_1}, F_{T_2}) \le \frac{d_{\infty}(T_1, T_2)}{1 - \max\{\theta_1, \theta_2\}},$$

where $d_{\infty}(T_1, T_2) = \sup_{x \in X} H(T_1 x, T_2 x).$

Proof: Let $x \in F_{T_1}$. By Corollary 2.3, we have

$$(1 - \theta_2)d(x, F_{T_2}) \le d(x, T_2 x) \le H(T_1 x, T_2 x) \le d_{\infty}(T_1, T_2).$$

Take the supremum with respect to $x \in F_{T_1}$, we get

$$(1 - \theta_2)h(F_{T_1}, F_{T_2}) \le d_{\infty}(T_1, T_2).$$

Next, upon interchanging F_{T_1} with F_{T_2} we obtain

$$H(F_{T_1}, F_{T_2}) \le \frac{d_{\infty}(T_1, T_2)}{1 - \max\{\theta_1, \theta_2\}}.$$

Remark 2.5 Since an *a*-contraction is a $(\theta, 0)$ -weak contraction, Theorem 1.4 -Theorem 1.6 can be deduced from Theorem 2.2- Theorem 2.4.

Corollary 2.6 Let (X, d) be a complete metric space and $T_n : X \to C\mathcal{B}(X)$ be a sequence of compact multi-valued weak contractions with weak contractivity constants θ_n such that $\sup_n \theta_n = \theta < 1$. Suppose that $T_n \to T$ with the metric d_{∞} and T is a compact multi-valued weak contraction. Then $F_{T_n} \to F_T$ with the Hausdorff metric.

Proof: This is obvious by Theorem 2.4.

Corollary 2.6 implies the following corollary.

Corollary 2.7 (Kunze, H.E., La Torre, D. & Vrscay, E.R., 2007) Let (X, d) be a complete metric space and $T_n : X \to C\mathcal{B}(X)$ be a sequence of compact multi-valued contractions with contractivity constants a_n such that $\sup_n a_n = a < 1$. Suppose that $T_n \to T$ with the metric d_{∞} and T is a compact multi-valued contraction. Then $F_{T_n} \to F_T$ with the Hausdorff metric.

3. Multi-valued Zamfirescu mappings

Let (X, d) be a metric space and $T : X \to C\mathcal{B}(X)$ be a multi-valued mapping. T is said to be a multi-valued Zamfirescu mapping if and only if there exist real numbers a, b and c satisfying $0 \le a < 1$, $0 \le b < \frac{1}{2}$ and $0 \le c < \frac{1}{2}$, such that, for each $x, y \in X$ at least one of the following is true:

- (z_1) $H(Tx, Ty) \le ad(x, y)$
- $(z_2) H(Tx, Ty) \le b[d(x, Tx) + d(y, Ty)]$
- (z₃) $H(Tx, Ty) \le c[d(x, Ty) + d(y, Tx)].$

Next Theorem is some result of (Kaewkhao, An. & Neammanee, K., 2010).

Theorem 3.1 (Kaewkhao, An. & Neammanee, K., 2010) Let (X, d) be a complete metric space and $T : X \to C\mathcal{B}(X)$ be a multi-valued Zamfirescu mapping with Tx is compact for all $x \in X$. Then

- (1) $F_T \neq \emptyset$;
- (2) for any $x_0 \in X$, the Picard projection iteration $\{x_n\}_{n=0}^{\infty}$ converges to some $x^* \in F_T$;
- (3) the following estimates

$$d(x_n, x^*) \leq \frac{\alpha^n}{1-\alpha} d(x_0, x_1), \qquad n = 0, 1, 2, \dots$$
$$d(x_n, x^*) \leq \frac{\alpha}{1-\alpha} d(x_{n-1}, x_n), \qquad n = 1, 2, 3, \dots$$
hold, for a certain constant $\alpha < 1$.

The next theorem shows that a multi-valued Zamfirescu mapping is a multi-valued weak contraction. Hence Theorem 3.1 follows immediately from Theorem 2.2.

Theorem 3.2 Let (X, d) be a metric space and $T : X \to C\mathcal{B}(X)$ be a multi-valued Zamfirescu mapping. Then T is a multi-valued weak contraction.

Proof: Let *T* be a multi-valued Zamfirescu mapping and $x, y \in X$. Then at least one of $(z_1), (z_2)$ or (z_3) is true.

If *x* and *y* satisfy (z_2) , then we have

$$\begin{array}{lll} H(Tx,Ty) &\leq & b[d(x,Tx)+d(y,Ty)] \\ &\leq & b[[d(x,Ty)+H(Tx,Ty)]+[d(y,x)+d(x,Ty)]] \\ &= & bd(x,y)+2bd(x,Ty)+bH(Tx,Ty) \end{array}$$

and hence
$$H(Tx, Ty) \le \frac{b}{1-b}d(x, y) + \frac{2b}{1-b}d(x, Ty).$$

If *x* and *y* satisfy (z_3) , then we have

$$\begin{array}{rcl} H(Tx,Ty) &\leq & c[d(x,Ty)+d(y,Tx)] \\ &\leq & c[d(x,Ty)+[d(y,x)+d(x,Ty)+H(Tx,Ty)]] \\ &= & cd(x,y)+2cd(x,Ty)+cH(Tx,Ty) \end{array}$$

and hence $H(Tx, Ty) \le \frac{c}{1-c}d(x, y) + \frac{2c}{1-c}d(x, Ty).$

Let

$$\theta = \max\{a, \frac{b}{1-b}, \frac{c}{1-c}\}.$$

Then we have $0 \le \theta < 1$ and for all $x, y \in X$,

$$H(Tx, Ty) \le \theta d(x, y) + 2\theta d(x, Ty).$$

Hence T is the multi-valued $(\theta, 2\theta)$ -weak contraction.

The following example shows that a multi-valued weak contraction may not be a Zamfirescu mapping.

Example 3.3 Let X = [0, 1] and $Tx = \{x\}$ for all $x \in X$. Then T is a multi-valued weak contraction and is not a Zamfirescu mapping.

Proof: Recall that, for all $x, y \in X$,

$$H(Tx, Ty) = H(\{x\}, \{y\})$$
$$= d(x, y)$$
$$= \theta d(x, y) + (1 - \theta) d(x, y)$$

for $\theta \in (0, 1)$. Then *T* is a $(\theta, 1 - \theta)$ -weak contraction for all $\theta \in (0, 1)$. Suppose that *T* is a multi-valued Zamfirescu mapping. Thus there exists $\theta = \max\{a, 2b, 2c\} \in (0, 1)$ such that for all $x, y \in X$,

$$|x - y| = H(Tx, Ty)$$

$$\leq \theta \max\{d(x, y), d(x, Tx), d(x, Ty), d(y, Ty), d(y, Tx)\}$$

$$= \theta |x - y|.$$

This is a contradiction.

Acknowledgment

The authors would like to thank the Thailand Research Fund for financial support.

References

Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux equations integrales. *Fund*, *Math.*, 3, 133-181.

Barnsley, M.F. (1989). Fractals Everywhere. Academic Press, New York.

Berinde, M. & Berinde, V. (2007). On general class of multi-valued weakly Picard mapping. J. Math. Anal. Appl., 326, 772-782.

Centore, P. & Vrscay, E.R. (1994). Continuity of fixed points for attractors and invariant measures for iterated function systems. *Canad. Math. Bull.*, 37, 315-329.

Ciric, L.B. (2003). Fixed Point Theory. Contraction Mapping Principle. FME Press, Beograd.

Covitz, H. & Nadler Jr., S.B. (1970). Multi-valued contraction mappings in generalized metric spaces. *Isr. J. Math.*, 8, 5-11.

Kaewkhao, An. & Neammanee, K. (2010). Fixed point theorem of multi-valued zamfirescu Mapping. J. Math. Res., 2, 151-156.

Kunze, H.E., La Torre, D. & Vrscay, E.R. (2007). Contractive multifunctions fixed point inclusions and iterated multifunction systems. *J. Math. Anal. Appl.*, 330, 159-173.

Markin, J.T. (1968). A fixed point theorem for set-valued mappings. Bull. Amer. Math. Soc., 74, 639-640.

Mizoguchi, N. & Takahashi, W. (1989). Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl., 141, 177-188.

Nadler, S.B. (1969). Multi-valued contraction mappings. Pac. J. Math., 30, 475-488.