
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

On The Bounded Oscillation of Certain Second-order Nonlinear
Neutral Delay Dynamic Equations with Oscillating Coefficients

Da-Xue Chen (Corresponding author)

College of Science, Hunan Institute of Engineering

88 East Fuxing Road, Xiangtan 411104, Hunan, China

E-mail: cdx2003@163.com

Guang-Hui Liu

College of Science, Hunan Institute of Engineering

88 East Fuxing Road, Xiangtan 411104, Hunan, China

E-mail: lgh233@163.com

Received: November 24, 2010 Accepted: December 10, 2010 doi:10.5539/jmr.v3n2p193

This work was supported by the Science and Technology Program of Hunan Province of P. R. China (Grant No. 2010FJ6021).

Abstract

We investigate the bounded oscillation of the second-order nonlinear neutral delay dynamic equation with oscillating
coefficients (

r(t)
∣∣∣∣[x(t) + p(t)x(τ(t))

]Δ∣∣∣∣α−1[
x(t) + p(t)x(τ(t))

]Δ)Δ
+ q(t)|x(t)|β−1x(t) = 0

on an arbitrary time scale T, where p is an oscillating function defined on T and α, β > 0 are constants, and obtain several
sufficient conditions for the oscillation of all bounded solutions of the equation when β > α, β = α and β < α, respectively.
Our results extend and complement some known results where p(t) ≡ 0 and α, β are quotients of odd positive integers.

Keywords: Bounded oscillation, Neutral delay dynamic equation, Oscillating coefficient

1. Introduction

In the last decade, the study of dynamic equations on time scales has been a very active area of research and there has
been much research activity concerning the oscillation and nonoscillation of solutions of various dynamic equations on
time scales, and we refer the reader to (Agarwal et al., 2003; Chen & Liu, 2008; Chen, 2010; Erbe et al., 2007; Grace et
al., 2008; Grace et al., 2009; Han et al., 2007; Hassan, 2008; Medico & Kong, 2004; Saker, 2005) and the references cited
therein. Saker (2005) established some oscillation criteria for the second-order half-linear dynamic equation(

r(t)
(
xΔ(t)
)α)Δ
+ q(t)xα(t) = 0 (1)

on time scales, where α > 1 is an odd positive integer, and r and q are positive rd-continuous functions.

Hassan (2008) considered the same Equation (1), where α is a quotient of odd positive integers, and obtained some
sufficient conditions for the oscillation. Hassan (2008) improved and extended the results of Saker (2005).

Recently, Grace et al. (2008, 2009) studied the oscillation of the second-order nonlinear dynamic equation(
r(t)
(
xΔ(t)
)α)Δ
+ q(t)xβ(t) = 0 (2)

on time scales, where α, β are quotients of odd positive integers, and r and q are positive rd-continuous functions. Grace
et al. (2008, 2009) gave some new oscillation results for (2) when β > α, β = α and β < α, respectively.

Following the above-mentioned research trend, in this paper we consider the oscillation of all bounded solutions of the
nonlinear second-order neutral delay dynamic equation with oscillating coefficients(

r(t)
∣∣∣∣[x(t) + p(t)x(τ(t))

]Δ∣∣∣∣α−1[
x(t) + p(t)x(τ(t))

]Δ)Δ
+ q(t)|x(t)|β−1x(t) = 0 (3)

on an arbitrary time scale T. Here, and in what follows, the following conditions are assumed to hold: p is an oscillating
function defined on T, limt→∞ p(t) = 0, α, β > 0 are constants, r and q are positive rd-continuous functions on time scale
interval [t0,∞), and τ : T → T satisfies limt→∞ τ(t) = ∞. Since the oscillatory behavior of solutions near infinity is our
primary concern, we make the assumption that sup T = ∞.
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It is easy to see that (1) and (2) are special cases of (3), and all the results of Saker (2005), Hassan (2008) and Grace et al.
(2008, 2009) can not be applied to (3) when p(t) � 0 or α, β are not equal to quotients of odd positive integers. Therefore,
it is of great interest to study the oscillation of (3) when p is an oscillating function and α, β > 0 are constants. The
purpose of this paper is to establish some new oscillation criteria for (3). Our results extend and complement the results
of Saker (2005), Hassan (2008) and Grace et al. (2008, 2009).

Recall that a solution of (3) is a nontrivial real function x such that x(t) + p(t)x(τ(t)) ∈ C1
rd

[tx,∞) and r(t)
∣∣∣∣[x(t) +

p(t)x(τ(t))
]Δ∣∣∣∣α−1[

x(t) + p(t)x(τ(t))
]Δ ∈ C1

rd
[tx,∞) for a certain tx ≥ t0 and satisfying (3) for t ≥ tx. Our attention is

restricted to those solutions of (3) which exist on the half-line [tx,∞) and satisfy sup{|x(t)| : t > t∗} > 0 for any t∗ ≥ tx.
A solution x of (3) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is
nonoscillatory. Equation (3) is said to be oscillatory if all its solutions are oscillatory.

In what follows, for convenience, when we write a functional inequality without specifying its domain of validity we
assume that it holds for all sufficiently large t.

2. Some preliminaries on time scales

For completeness, we recall the following concepts related to the notion of time scales. More details can be found in
(Bohner & Peterson, 2001; Bohner & Peterson, 2003).

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We assume throughout that T has the
topology that it inherits from the standard topology on the real numbers R. Some examples of time scales are as follows:
the real numbers R, the integers Z, the positive integers N, the nonnegative integers N0, [0, 1] ∪ [2, 3], [0, 1] ∪ N, hZ :=
{hk : k ∈ Z, h > 0} and qZ := {qk : k ∈ Z, q > 1} ∪ {0}. But the rational numbers Q, the complex numbers C and the open
interval (0, 1) are no time scales. Many other interesting time scales exist, and they give rise to plenty of applications (see
(Bohner & Peterson, 2001)).

For t ∈ T, the forward jump operator and the backward jump operator are defined by:

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t},

where inf ø = sup T (i.e., σ(t) = t if T has a maximum t) and sup ø = inf T (i.e., ρ(t) = t if T has a minimum t), here ø
denotes the empty set.

Let t ∈ T. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t, we say that t is left-scattered. Points that are
right-scattered and left-scattered at the same time are called isolated. Also, if t < sup T and σ(t) = t, then t is called
right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense. The graininess function μ : T → [0,∞) is defined by

μ(t) := σ(t) − t.

We also need below the set Tκ: If T has a left-scattered maximum m, then Tκ = T − {m}. Otherwise, Tκ = T. Let
f : T → R, then we define the function f σ : Tκ → R by

f σ(t) := f (σ(t)) for all t ∈ Tκ,

i.e., f σ := f ◦ σ.

For a, b ∈ T with a < b, we define the interval [a, b] in T by

[a, b] := {t ∈ T : a ≤ t ≤ b}.

Open intervals and half-open intervals, etc. are defined accordingly.

Fix t ∈ Tκ and let f : T → R. Define f Δ(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighbourhood U of t such that

|[ f (σ(t)) − f (s)] − f Δ(t)[σ(t) − s]| ≤ ε|σ(t) − s| for all s ∈ U.

In this case, we say that f Δ(t) is the (delta) derivative of f at t and that f is (delta) differentiable at t.

Assume that f : T → R and let t ∈ Tκ. If f is (delta) differentiable at t, then

f (σ(t)) = f (t) + μ(t) f Δ(t). (4)

A function f : T → R is said to be right-dense continuous (rd-continuous) provided it is continuous at each right-dense
point in T and its left-sided limits exist (finite) at all left-dense points in T. The set of all such rd-continuous functions is
denoted by

Crd(T) = Crd(T,R).
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The set of functions f : T → R that are (delta) differentiable and whose (delta) derivative is rd-continuous is denoted by

C1
rd(T) = C1

rd(T,R).

We will make use of the following product and quotient rules for the (delta) derivative of the product f g and the quotient
f /g of two (delta) differentiable functions f and g:

( f g)Δ = f Δg + f σgΔ = f gΔ + f Δgσ (5)

and ( f
g

)Δ
=

f Δg − f gΔ

ggσ
, (6)

where gσ = g ◦ σ and ggσ � 0.

For a, b ∈ T and a (delta) differentiable function f , the Cauchy (delta) integral of f Δ is defined by∫ b

a

f Δ(t)Δt = f (b) − f (a).

The integration by parts formula reads∫ b

a

f (t)gΔ(t)Δt = f (b)g(b) − f (a)g(a) −
∫ b

a

f Δ(t)gσ(t)Δt (7)

or ∫ b

a

f σ(t)gΔ(t)Δt = f (b)g(b) − f (a)g(a) −
∫ b

a

f Δ(t)g(t)Δt. (8)

The infinite integral is defined as ∫ ∞

a

f (s)Δs = lim
t→∞

∫ t

a

f (s)Δs.

Lemma 1. ((Bohner & Peterson, 2001), p. 32, Theorem 1.87) Let f : R → R be continuously differentiable and suppose
g : T → R is delta differentiable. Then f ◦ g : T → R is delta differentiable and satisfies

( f ◦ g)Δ(t) =
{ ∫ 1

0
f ′(g(t) + hμ(t)gΔ(t))dh

}
gΔ(t).

3. Main results

Theorem 1. Let β > α, and suppose that the following conditions hold:∫ ∞

t0

( 1
r(t)

)1/α
Δt = ∞, (9)

∫ ∞

t

q(s)Δs < ∞ f or t ∈ [t0,∞), (10)

and ∫ ∞

t0

r−
1
α (s)Hσ(s, c)Δs = ∞, (11)

where H(t, c) :=
[
Q(t) + c

∫ ∞
t

r−
1
α (s)
(
Qσ(s)
)(1+α)/α

Δs
]1/α

, here c is an arbitrary positive constant, Q(t) := εβ
∫ ∞

t
q(s)Δs

and ε ∈ (0, 1) is an arbitrary constant. Then every bounded solution of (3) is oscillatory.

Proof. Suppose that x is a bounded nonoscillatory solution of (3). Without loss of generality, we may assume that x is a
bounded eventually positive solution of (3). Then there exists t1 ∈ [t0,∞) such that

x(t) > 0, t ∈ [t1,∞). (12)

Let
y(t) := x(t) + p(t)x(τ(t)), t ∈ T. (13)
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It is easy to see that y is bounded. It follows from (3), (13) and (12) that

(r(t)|yΔ(t)|α−1yΔ(t))Δ = −q(t)xβ(t) < 0, t ∈ [t1,∞). (14)

Thus, r(t)|yΔ(t)|α−1yΔ(t) is strictly decreasing on [t1,∞) and is eventually of one sign. We claim

yΔ(t) > 0, t ∈ [t1,∞). (15)

Assume on the contrary, then there exists t2 ∈ [t1,∞) such that yΔ(t2) ≤ 0. Take t3 > t2. Since r(t)|yΔ(t)|α−1yΔ(t) is strictly
decreasing on [t1,∞), we have

r(t)|yΔ(t)|α−1yΔ(t) ≤ r(t3)|yΔ(t3)|α−1yΔ(t3) := M < r(t2)|yΔ(t2)|α−1yΔ(t2) ≤ 0

for t ∈ [t3,∞). Thus, we obtain yΔ(t) ≤ −(−M)
1
α
( 1

r(t)
)1/α for t ∈ [t3,∞). Integrating both sides of the last inequality from

t3 to t, we get

y(t) − y(t3) ≤ −(−M)
1
α

∫ t

t3

( 1
r(s)
)1/α
Δs, t ∈ [t3,∞).

Letting t → ∞ and noticing (9), we see that limt→∞ y(t) = −∞. This contradicts the fact that y is bounded. Hence, (15)
holds. From (15) we find that y(t) is strictly increasing on [t1,∞) and is eventually of one sign. We now claim that y(t) is
eventually positive, i.e., there exists t4 ∈ [t1,∞) such that

y(t) > 0, t ∈ [t4,∞). (16)

Assume on the contrary, then y(t) is eventually nonpositive and there exists t5 ∈ [t1,∞) such that y(t) ≤ 0 for t ∈ [t5,∞).
Therefore, from (13) and (12) we conclude

p(t)x(τ(t)) = y(t) − x(t) < 0. (17)

Since p is an oscillating function on T and x(τ(t)) > 0, we find a contradiction to (17). Thus, (16) holds. From (15), (16)
and the property that y is bounded, we get limt→∞ y(t) := L > 0. Hence, from (13) we have x(t) = y(t)− p(t)x(τ(t)) > εy(t)
for ε ∈ (0, 1). In view of (14) and (15), there exists t6 ∈ [t4,∞) such that

[r(t)(yΔ(t))α]Δ ≤ −εβq(t)yβ(t), t ∈ [t6,∞). (18)

Define the function w by

w(t) =
r(t)(yΔ(t))α

yβ(t)
, t ∈ [t6,∞). (19)

It is easy to see that w(t) > 0 for t ∈ [t6,∞). By the product and quotient rules (5) and (6) for the delta derivative and then
from (18) and (19), we get

wΔ = (r(yΔ)α)Δ
1
yβ
+ (r(yΔ)α)σ(

1
yβ

)Δ

≤ −qεβ − (r(yΔ)α)σ
(yβ)Δ

yβ(yβ)σ

= −qεβ − wσ (yβ)Δ

yβ
on [t6,∞). (20)

By Lemma 1, for t ∈ [t6,∞) we obtain

(yβ(t))Δ = β
{ ∫ 1

0
[y(t) + hμ(t)yΔ(t)]β−1dh

}
yΔ(t)

= β
{ ∫ 1

0
[(1 − h)y(t) + hyσ(t)]β−1dh

}
yΔ(t)

≥
{
β(y(t))β−1yΔ(t), β > 1,
β(yσ(t))β−1yΔ(t), 0 < β ≤ 1.

Thus, on [t6,∞) we have

(yβ)Δ

yβ
≥
{ β yΔ

y
, β > 1,

β (yσ)β−1

yβ
yΔ, 0 < β ≤ 1.

(21)
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Noticing the fact that y is an increasing function on [t6,∞) and t ≤ σ(t), we get y(t) ≤ yσ(t) for t ∈ [t6,∞). Therefore, it
follows from (21) that

(yβ)Δ

yβ
≥ β

yΔ

yσ
on [t6,∞) for β > 0. (22)

Using (22) in (20), we obtain

wΔ ≤ −qεβ − βwσ yΔ

yσ
on [t6,∞). (23)

Since r
1
α yΔ is a decreasing function on [t6,∞) and t ≤ σ(t), we conclude r

1
α yΔ ≥ (r

1
α yΔ)σ on [t6,∞). Hence, from (19) we

obtain
yΔ ≥ r−

1
α (wσ)

1
α (yσ)

β
α on [t6,∞). (24)

Substituting (24) in (23), we have

wΔ ≤ −qεβ − βr−
1
α (wσ)1+ 1

α (yσ)
β
α−1 on [t6,∞).

Integrating both sides of the last inequality from t to u (u ≥ t ≥ t6) and letting u → ∞, we obtain

w(t) ≥ εβ
∫ ∞

t

q(s)Δs + β

∫ ∞

t

r−
1
α (s)(wσ(s))1+ 1

α (yσ(s))
β
α−1Δs, t ∈ [t6,∞).

It is clear that w(t) ≥ Q(t) := εβ
∫ ∞

t
q(s)Δs for t ≥ t6. Thus, we get

w(t) ≥ Q(t) + β
∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

α (yσ(s))
β
α−1Δs, t ∈ [t6,∞). (25)

Since β > α and y is an increasing function on [t6,∞), there exist a t7 ≥ t6 and a positive constant c1 such that

(yσ(s))
β
α−1 ≥ c1, s ∈ [t7,∞). (26)

Using (26) in (25), we see

w(t) ≥ Q(t) + βc1

∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

αΔs := Hα(t, c), t ∈ [t7,∞),

where c := βc1. Since r(yΔ)α is decreasing on [t7,∞) and t ≤ σ(t), we have r(yΔ)α ≥ (r(yΔ)α)σ on [t7,∞). Therefore, we
obtain

r(yΔ)α

(yσ)β
≥ (r(yΔ)α)σ

(yσ)β
= wσ ≥ (Hα(t, c))σ on [t7,∞),

which implies
(yσ)−δyΔ ≥ r−

1
α Hσ(t, c) on [t7,∞), (27)

where δ := β/α > 1. Applying Lemma 1, we get

(y1−δ)Δ(t) = (1 − δ)
{ ∫ 1

0
[y(t) + hμ(t)yΔ(t)]−δdh

}
yΔ(t)

= (1 − δ)
{ ∫ 1

0
[(1 − h)y(t) + hyσ(t)]−δdh

}
yΔ(t)

≤ (1 − δ)(yσ(t))−δyΔ(t) on [t7,∞).

Thus, we obtain
(y1−δ)Δ

1 − δ ≥ (yσ)−δyΔ on [t7,∞). (28)

From (27) and (28), we conclude
(y1−δ)Δ/(1 − δ) ≥ r−

1
α Hσ(t, c) on [t7,∞).

Integrating both sides of the last inequality from t7 to t (t ≥ t7), we have∫ t

t7

r−
1
α (s)Hσ(s, c)Δs ≤ (y1−δ)(t7)

δ − 1
.

Letting t → ∞, we see
∫ ∞

t5
r−

1
α (s)Hσ(s, c)Δs ≤ (y1−δ)(t5)

δ−1 < ∞, which contradicts (11). Hence, the proof is complete.

Published by Canadian Center of Science and Education 197



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 2; May 2011

Theorem 2. Let β = α, and suppose that (9) and (10) hold. If

lim sup
t→∞

( ∫ t

t0

r−
1
α (s)Δs

)
H(t, α) > 1, (29)

where H is defined as in Theorem 1, then all bounded solutions of (3) are oscillatory.

Proof. Assume that x is a bounded nonoscillatory solution of (3). Without loss of generality, we may assume that x is a
bounded eventually positive solution of (3). Proceeding as in the proof of Theorem 1, we find that (25) takes the form

w(t) ≥ Q(t) + α
∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

αΔs

= Hα(t, α), t ∈ [t6,∞). (30)

Since r
1
α yΔ is decreasing on [t6,∞), we have

y(t) = y(t6) +
∫ t

t6

yΔ(s)Δs = y(t6) +
∫ t

t6

r−
1
α (s)
(
r

1
α (s)yΔ(s)

)
Δs

≥ r
1
α (t)yΔ(t)

∫ t

t6

r−
1
α (s)Δs, t ∈ [t6,∞).

Therefore, we obtain
r

1
α (t)yΔ(t)

y(t)
≤
( ∫ t

t6

r−
1
α (s)Δs

)−1
, t ∈ [t6,∞). (31)

From (30), (19) and (31), we get

H(t, α) ≤ w
1
α (t) =

r
1
α (t)yΔ(t)

y(t)
≤
( ∫ t

t6

r−
1
α (s)Δs

)−1
, t ∈ [t6,∞).

Thus, we find ( ∫ t

t6

r−
1
α (s)Δs

)
H(t, α) ≤ 1, t ∈ [t6,∞).

Taking lim sup of both sides of the last inequality as t → ∞, we get a contradiction to (29). The proof is complete.

Theorem 3. Let β < α, and suppose that (9) and (10) hold. If

lim sup
t→∞

Q(α−β)/(αβ)(t)
( ∫ t

t0

r−
1
α (s)Δs

)[
Q(t) + c

∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

βΔs

]1/α
= ∞ (32)

for every constant c > 0, where Q is defined as in Theorem 1, then every bounded solution of (3) is oscillatory.

Proof. Suppose that x is a bounded nonoscillatory solution of (3). Without loss of generality, we may assume that x is
a bounded eventually positive solution of (3). Proceeding as in the proof of Theorem 1 to obtain (12)–(16) and (25). It
follows from (25) that w(t) ≥ Q(t) on [t6,∞). Therefore, from (19) we have r1/αyΔ ≥ yβ/αQ1/α on [t6,∞). Since r1/αyΔ is
a decreasing function on [t6,∞), there exist k > 0 and t7 ≥ t6 such that k ≥ r1/αyΔ ≥ yβ/αQ1/α on [t7,∞). Thus, we get

y ≤ kα/βQ−1/β on [t7,∞). (33)

Hence, we obtain
(yσ)(β−α)/α ≥ k(β−α)/β(Qσ)(α−β)/(αβ) on [t7,∞). (34)

Using (34) in (25) and noticing the definition of w, we see

(y(t))(α−β)/α r1/α(t)yΔ(t)
y(t)

≥
[
Q(t) + c

∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

βΔs

]1/α
, t ∈ [t7,∞), (35)

where c := βk(β−α)/β. Using (31) and (33) in (35), we find

k(α−β)/βQ(β−α)/(αβ)(t)
( ∫ t

t6

r−
1
α (s)Δs

)−1
≥
[
Q(t) + c

∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

βΔs

]1/α
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for t ∈ [t7,∞). Therefore, we have

k(α−β)/β ≥ Q(α−β)/(αβ)(t)
( ∫ t

t6

r−
1
α (s)Δs

)[
Q(t) + c

∫ ∞

t

r−
1
α (s)(Qσ(s))1+ 1

βΔs

]1/α
for t ∈ [t7,∞). Taking lim sup of both sides of the last inequality as t → ∞, we get a contradiction to (32). The proof is
complete.
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