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Abstract

Some local convergent derivative-free methods are suggested for solving nonlinear scalar equations. The error equations
are given theoretically to show that the proposed techniques have third- and sixth-order convergence. Per cycle, the
novel cubically schemes comprise three evaluations of the function while the sixth-order method includes four function
evaluations. The theoretical results are supported by numerical tests to illustrate the accuracy of the contributed methods.
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1. Prerequisites

Consider that the scalar function f has a simple zero in the domain D. Finding proper approximations for the roots
of nonlinear equations is in the focus of many researchers. The famous Newton’s method which is given by xn+1 =

xn − f (xn)/ f ′(xn), has quadratic convergence and requires one evaluation of the function and one evaluation of the first
derivative per cycle. To circumvent on the derivative calculation in Newton’s iteration, Steffensen first coined the following
scheme

xn+1 = xn − f (xn)2

f (xn + f (xn)) − f (xn)
, (1)

by replacing the derivative in Newton’s iteration with forward finite difference. (1) possesses the second-order of conver-
gence. In similar ways, many derivative-free or derivative-involved methods have already been given to literature; see e.g.
(Traub, 1964) and (Soleymani, 2011).

Now in such situation at least an index; e.g. convergence rate or efficiency index, is required to evaluate the performance
of different methods. The concept of efficiency index can be described as follows: an iterative process of order p which
comprises n evaluations per iteration has the efficiency index p1/n (Traub, 1964). Accordingly, Steffensen’s method (1)
has the efficiency index 1.414, just like Newton’s method.

The main advantage of Steffensen’s method is that it has quadratic convergence like Newton’s method - that is, both
methods find roots to the function f just as quickly. But the formula for Newton’s iteration requires a separate function for
the derivative; Steffensen’s method does not. Therefore, Steffensen’s method can be programmed for a generic function.

For comparison, the Secant method needs only one function evaluation per step, thus with two function evaluations the
secant method can do two steps, and two steps of the secant scheme increase the number of correct digits by a factor of
1.6. The equally time-consuming single step of Steffensen’s (or Newton’s) method increases the correct digits by a factor
of 2.

Generalization of iterative processes for solving system of nonlinear equations is also of grave importance. To discuss
more, it is well-known that there are some close connections between finding a local minimum and solving a system of
nonlinear equations. For instance, given a set of n equations with n unknowns; seeking a solution x∗ is equivalent to
minimizing the sum of squares when the residual is zero at the minimum, hence there is a particularly close connection
to the Gauss-Newton methods. In fact, the Gauss-Newton step for local minimization and the Newton step for nonlinear
equations are exactly the same. Also, for a smooth function, Newton’s method for local minimization is the same as
Newton’s method for the nonlinear scalar equations. Not surprisingly, then, many aspects of the algorithms are similar
(Prentice, 2010).

As we mentioned, Newton’s and Steffensen’s schemes have 1.414 as the efficiency index. In practical studies, this ef-
ficiency index is not quite reliable and hence so many methods of higher orders have been proposing to the world of
Numerical Analysis; see e.g. (Soleymani, 2010b).

In this work, we are concerned with simple roots of nonlinear scalar equations by iterative processes in which there are no
derivative evaluation per iteration in the vicinity of the root α. For this reason, studying multiple roots of such equation
(Soleymani and Sharifi, 2010), solving system of nonlinear equations (Prentice, 2010) and derivative-involved methods
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(Saeed and Khthr, 2010) are beyond our study. Now let us review some important derivative-free methods for calculating
α.

The derivative-free method of Sidi (Sidi, 2008) of order at most two is given in the form below

xn+1 = xn − f (xn)
p′

n,k
(xn)

, n = k, k + 1, . . . (2)

whence x0, x1, . . . , xk are initial approximations to be provided by user. And also by defining

pn,k(x) = f (xn) +
k∑

i=1

f [xn, xn−1, . . . , xn−i]Πi−1
j=0(x − xn− j), (3)

and

p′
n,k(x) = f [xn, xn−1] +

k∑
i=2

f [xn, xn−1, . . . , xn−i]Πi−1
j=1(x − xn− j), (4)

where f [xn, xn−1, . . . , xn−i] are divided differences of f (x). This scheme is far away from a good efficiency index, because
with three points per iteration (as an example case), it possesses 1.839 as the convergence rate and 1.225 as the efficiency
index.

In 2007, a cubically derivative-free method (Jain, 2007) in which there is three evaluations of the function per cycle had
been proposed in what follows ⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)2

f (xn+ f (xn))− f (xn) ,

xn+1 = xn − f 3(xn)
[ f (xn+ f (xn))− f (xn)][ f (xn)− f (yn)] ,

(5)

wherein the efficiency index is 1.442.

In 2010, Dehghan and Hajarian (Dehghan and Hajarian, 2010) suggested another cubically derivative-free scheme in the
form below which also includes three evaluations of the function per iteration⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)2

f (xn+ f (xn))− f (xn) ,

xn+1 = xn − f (xn)[ f (yn)+ f (xn)]
f (xn+ f (xn))− f (xn) ,

(6)

and it possesses 1.442 as the efficiency index too.

In 2011, the quartically Cordero et al. method (Cordero et al., 2011) was given in the form below which is free from
derivative calculation to reach the convergence rate four while it consists of four evaluations of the function to possess
1.414 as its efficiency index ⎧⎪⎪⎨⎪⎪⎩ yn = xn − 2 f (xn)2

f (xn+ f (xn))− f (xn− f (xn)) ,

xn+1 = xn − 2 f (xn)2

f (xn+ f (xn))− f (xn− f (xn))
f (yn)− f (xn)

2 f (yn)− f (xn) .
(7)

2. Construction of new schemes

In this paper, we seek for accurate derivative-free methods in which there are three and four evaluations of the function
per iteration to possess the efficiency indices 1.442 and 1.565 respectively. A celebrated acceleration technique comprises
composing two iterative methods of orders p and q to each other for obtaining a new method of order pq. Anyhow, this
process increases the number of evaluations per cycle. Hence, in order to improve the efficiency index of the composed
method, the idea is to introduce estimations that reduce the number of evaluations, maintaining the convergence rate as
high as possible.

Let us take into consideration the one variable function f to be sufficiently differentiable in the domain D = (a, b). We
take into account the follow-up two-step cycle ⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)

f ′(xn) ,

xn+1 = yn − f (yn)
f ′(yn) ,

(8)

in which there are four evaluations per iteration. It is easy to check that the scheme (8) has 1.414 as the efficiency index. To
achieve our goal, we must solve two problems in the cycle (8). The problems are as follows. First, it has four evaluations
per iteration and second, it includes two derivative evaluations. For these reasons, we approximate the first derivative of
the function in the second step f ′(yn) using the method of un-determined coefficients. In this way, we consider that an
estimation of f ′(yn) could be attained such that (8) is written in the following form⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)

f ′(xn) ,

xn+1 = yn − a( f (xn))b+c f (xn) f (yn)+d( f (yn))e

g( f (xn))h

f (yn)
f ′(xn) .

(9)
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It is obvious that (9) requires three evaluations per cycle. But the main challenge is to obtain the unknown parameters
a, b, c, d, e, g, and h as the convergence order remains unchanged. Toward this aim, we find the Taylor expansion of (9)
around the simple root α. Hence by finding the error equation of (9), we get to know that we must select

a = g = 1, b = h = c = 2, d = e = 0, (10)

to derive the highest possible order. Now we have a simplified fourth-order method with two evaluations of the function
and one evaluation of the first derivative as comes next⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)

f ′(xn) ,

xn+1 = xn − f (xn)
f ′(xn) [1 +

f (yn)
f (xn) (1 + 2 f (yn)

f (xn) )].
(11)

Our goal is not achieved yet, because (11) is not derivative-free. To overcome on this drawback, we should estimate
the first derivative f ′(xn) efficiently. Steffensen, Jain, Dehghan and Hajarian, and lots of other researchers have used
the forward finite difference approximation to estimate f ′(xn) in their researches. As a consequence, the forward finite
difference approximation

f ′(xn) =
f (xn + h) − f (xn)

h
+ O(h), (12)

with h = f (xn) is taken into consideration in the cycle (11) to estimate f ′(xn) effectively. Therefore, we obtain the
following contributed derivative-free method⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)

f [xn,wn] ,

xn+1 = xn − f (xn)
f [xn,wn] [1 +

f (yn)
f (xn) (1 + 2 f (yn)

f (xn) )],
(13)

wherein wn = xn + f (xn), f [xn,wn] is divided differences of f (xn), f (wn) = f (xn + f (xn)) and can be given by

f [xn,wn] =
f (wn) − f (xn)

wn − xn

. (14)

The novel method (13) comprises three evaluations of the function per cycle while it is derivative-free and reaches the
order of convergence three. Theorem 1 demonstrates its error equation.

Theorem 1. Let the scalar function f be sufficiently smooth in the real open domain D. Further assume that α is its

simple zero. Then the method (13) satisfies in the follow-up error equation

en+1 = − (1 + c1)
c1

c2
2e3

n + O(e4
n). (15)

Proof. To demonstrate that − (1+c1)
c1

c2
2 is the asymptotic convergence constant of (13) wherein c j =

f ( j)(α)
j! , j ≥ 1, we expand

any terms of (13) around the simple root α in the nth iterate. Thus, we write

f (xn) = c1en + c2e2
n + c3e3

n + c4e4
n + O(e5

n), (16)

and also

wn = xn + f (xn) = −(−1 + c1 + en(c2 + en(c3 + c4en)))(c1 − c2en(−1 + c1 + en(c2 + en(c3 + c4en)))en + c3e2
n +O(e3

n). (17)

Hence, we obtain

xn − f (xn)2

f (xn + f (xn)) − f (xn)
= α + (1 +

1
c1

)c2e2
n +

(−(2 + (−2 + c1)c1)c2
2 + c1(1 + c1)(2 + c1)c3)

c2
1

e3
n + O(e4

n). (18)

In the same vein, we have

f (yn) = (1 + c1)c2e2
n + (−

(2 + c1(2 + c1))c2
2

c1
+ (1 + c1)(2 + c1)c3)e3

n + O(e4
n). (19)

Now using (18) and (19), we attain

f (xn)
f [xn,wn]

[1 +
f (yn)
f (xn)

(1 + 2
f (yn)
f (xn)

)] = en − (1 + c1)
c1

c2
2e3

n + O(e4
n). (20)

Finally, the Taylor expansion in the last step of (13) using relation (20) gives us

en+1 = xn+1 − α = − (1 + c1)
c1

c2
2e3

n + O(e4
n), (21)
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which shows that method (13) is of order three with only three evaluations of the function per iteration. As a consequence,
the efficiency index of (13) is 1.442 which is bigger than 1.225 of the example case of (2), 1.414 of (1), (7) and Newton’s
iteration, and is equal to 1.442 of (5) and (6). This completes the proof. �
It is remarked that for attaining an optimal two-step method with three evaluations, the convergence rate should be 4. And
the order of (13) is one unit lower. We also pull the attention towards this fact that, one can replace (12) with backward
finite difference. If we consider a more complicated variant of backward finite difference for approximating f ′(xn) as
follows

f ′(xn) ≈ f (xn) − f (xn − θ f (xn))
θ f (xn)

, (22)

then by assuming f (wn) = f (xn −θ f (xn)), another novel family of third-order methods could be constructed as comes next⎧⎪⎪⎨⎪⎪⎩ yn = xn − f (xn)
f [xn,wn] ,

xn+1 = xn − f (xn)
f [xn,wn] [1 +

f (yn)
f (xn) (1 + 2 f (yn)

f (xn) )],
(23)

where θ ∈ R − {0} and its error equation is en+1 = xn+1 − α = (1−c1θ)θc2
2

c1
e3

n + O(e4
n). Experimental results show that for very

small values of θ the attained numerical results are very good.

Now we can achieve more convergence rate and index of efficiency by developing (13). In order to obtain a sixth-order
derivative-free method with better efficiency index, we perform a new Newton’s iteration after the second step of (13).
Clearly, the attained method has five evaluations per full cycle to reach the convergence rate 6 and due to this, that method
is inefficient. At this moment, the main challenge is to replace the new-appeared first derivative of the function at the third
step such that the convergence rate does not fall down. To do this, we consider the following three-step iteration in which
there are only four functional evaluations per cycle. Theorem 2 is given to demonstrate its sixth-order convergence⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yn = xn − f (xn)
f [xn,wn] ,

zn = xn − f (xn)
f [xn,wn] [1 +

f (yn)
f (xn) (1 + 2 f (yn)

f (xn) )],
xn+1 = zn − f (zn)

f [yn,zn] (1 − 1+ f [xn,wn]
f [xn,wn]

f (zn)
f (wn) ),

(24)

where f [yn, zn] = f (zn)− f (yn)
zn−yn

, f [xn,wn] = f (wn)− f (xn)
wn−xn

and wn = xn + f (xn). Note that in fact (24) is attained by composition
of some already known facts, i.e. an approximation of the first derivative and the weight function to gain the sixth-order
convergence.

Theorem 2. Let the scalar function f be sufficiently smooth in the real open domain D. Further assume that α is its

simple zero. Then the method (24) is a sixth-order derivative-free method that satisfies in the follow-up error equation

en+1 = xn+1 − α =
(1 + c1)2c3

2(−(5 + c1(11 + 4c1))c2
2 + c1(1 + c1(3 + c1))c3)

c5
1

e6
n + O(e7

n). (25)

Proof. Same assumptions and symbolic calculations as done in the proof of Theorem 1, results in relations (16)-(21).
Thus, it is needed to go on by providing the Taylor Series expansion of f (zn) around the solution. Hence, we have
f (zn) = −(1 + c1)c2

2e3
n + (((5 + c1(15 + c1(13 + 4c1)))c3

2 − c1(1 + c1)(1 + c1(5 + 2c1))c2c3)e4
n)/c2

1 + (1/(c3
1))(−(36 + c1(99 +

c1(99+c1(46+9c1))))c4
2+c1(32+c1(105+2c1(59+6c1(5+c1))))c2

2c3 −c2
1(1+c1)(2+c1)(1+c1(3+c1))c2

3)e5
n+ (1/(c4

1))((1+
c1)(170 + c1(313 + c1(243 + c1(95 + 16c1))))c5

2 − c1(262 + c1(824 + c1(1027 + 2c1(334 + 9c1(13 + 2c1)))))c3
2c3 + c2

1(66 +
c1(239 + c1(329 + c1(230 + c1(83 + 12c1)))))c2c2

3)e6
n + O(e7

n).

Now using this relation, we obtain f [yn, zn] = c1+ ((1+c1)c2
2e2

n)/c1+ ((−(2+c1(3+2c1))c3
2+c1(1+c1)(2+c1)c2c3)e3

n)/c2
1+

(((1 + c1)(9 + c1(11 + 5c1))c4
2 − c1(7 + c1(14 + c1(13 + 4c1)))c2

2c3)e4
n)/c3

1 + O(e5
n).

Furthermore, we have 1 − 1+ f [xn,wn]
f [xn,wn]

f (zn)
f (wn) = 1 + ((1 + c1)c2

2e2
n)/c2

1 + ((−(5 + c1(18 + c1(17 + 5c1)))c3
2 + c1(1 + c1)1 + c1(5 +

2c1))c2c3)e3
n)/c4

1 + (1/(c5
1))((51 + 2c1(78 + c1(82 + c1(38 + 7c1))))c4

2 − c1(35 + c1(128 + c1(152 + c1(77 + 15c1))))c2
2c3 +

c2
1(1+c1)(2+c1)(1+c1(3+c1))c2

3)e4
n+1/c6

1(−(313+c1(956+c1(1135+3c1(229+c1(73+10c1)))))c5
2+c1(385+c1(1311+

c1(1699 + c1(1111 + c1(381 + 56c1)))))c3
2c3 − c2

1(76 + c1(295 + c1(421 + 5c1(59 + 3c1(7 + c1)))))c2c2
3)e5

n + O(e6
n).

Therefore, using the obtained relations, we attain

en+1 = xn+1 − α =
(1 + c1)2c3

2(−(5 + c1(11 + 4c1))c2
2 + c1(1 + c1(3 + c1))c3)

c5
1

e6
n + O(e7

n), (26)

which shows that (24) is a sixth-order derivative-free method, consuming four functional evaluations per full iteration to
reach the index of efficiency 1.565. This ends the proof. �
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Note that if one chooses backward finite difference approximation as done in (22) instead of forward finite difference in
(24), then a novel family of sixth-order derivative-free methods will be attained, but with a different weight function. Due
to similarity, we do not bring this case into separate formulations.

3. Numerical implementations

The practical utilities of (13), (23), and (24) are given by solving a couple of numerical examples and comparison with
other well-known methods of different orders in this section. Scientific computations in many areas of science and
engineering demand high-order root solvers. We have used the second-order method of Steffensen (SM2), the third-order
technique of Jain (JM3), the third-order scheme of Dehghan and Hajarian (DHM3), the fourth-order scheme of Cordero et
al. (CM4) and our novel contributed techniques (SH3)=(13), (SH3(2))=(23) with θ = 1, (SH6)=(24). The test functions
and their roots are given as follows:

f1(x) =
√

x4 + 8 sin( π
x2+2 ) + x3

x4+1 −
√

6 + 8
17 , α = −2,

f2(x) =
√

x2 + 2x + 5 − 2 sin(x) − x2 + 3, α ≈ 2.331967655883964,
f3(x) = sin−1(x2 − 1) − x

2 + 1, α ≈ 0.594810968398369,
f4(x) = x5 + 23x − 6, α ≈ 0.260817090224163,
f5(x) = (1 + cos x)(ex − 2), α ≈ 0.693147180559945.

The results are summarized in Table 1, in terms of required number of iterations to obtain an approximation of the root
which is correct up to 15 decimal places. In our numerical comparisons we have used the stopping criterion |xn| ≤ 10−15.
As Table 1 manifests, our contributed methods are efficient in contrast to the other high-order schemes in terms of required
number of iterations. Note that method of Cordero et al. includes four function evaluations per cycle while (13) and (23)
consist of three evaluations per iteration. We have used ”Div.” when the iteration is divergence for the considered starting
point.

Thus from Table 1 and above analysis in Section 2, we can see that the new proposed methods are free from any derivative
evaluation of the function f in computing process. And subsequently, the new iterative formulas can be used as an
alternative to the existing methods or in some cases where existing methods are not successful. Our remark is concerned
with an important problem appearing in practical application of multi-point methods. As emphasized in (Traub, 1964),
a fast convergence, one of the advantages of multi-point methods, can be attained only if starting points are sufficiently
close to the sought roots; otherwise, it is not possible to realize the expected convergence speed in practice. For this
reason, in applying multi-point root-finding methods, a special attention should be paid to finding suitable starting points.

4. Concluding remarks

Multi-point iterative methods for solving nonlinear equations were extensively studied in Traub (1964). This class of root
solvers is of grave importance since it circumvents the theoretical limits of one-point methods regarding the convergence
rate and index of efficiency. It is worth mentioning that the interest for multi-point methods has renewed in the first decade
of the 21st century. In this article, we have attained simple and elegant methods of orders three and six by using additional
evaluations of the function at the point iterated by Steffensen’s method for solving nonlinear equations. Thus, one requires
three evaluations of the function f per full step to gain the efficiency index 1.442 as well as four functional evaluations
per full cycle to gain 1.565 as the efficiency index. The superiority of the presented derivative-free schemes was also
corroborated by numerical results displayed in the Table 1. Finally, we conclude that the methods presented in this paper
are some efficient derivative-free methods.
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