Some Results on Prime and k-Prime Labeling

S. K. Vaidya (Corresponding author)
Department of Mathematics, Saurashtra University
Rajkot 360005, India
E-mail: samirkvaidya@yahoo.co.in
U. M. Prajapati
Department of Mathematics, St. Xavier's College
Ahmedabad 380009, India
E-mail: udayan64@yahoo.com

Abstract

A graph $G=(V, E)$ with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the labels of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. In the present work we investigate some classes of graphs which admit prime labeling. We also introduce the concept of k-prime labeling and investigate some results concern to it. This work is a nice combination of graph theory and elementary number theory.

Keywords: Graph Labeling, Prime labeling, Prime graph, k-prime labeling, k-prime graph

1. Introduction

We begin with simple, finite, undirected and non-trivial graph $G=(V, E)$ with the vertex set V and the edge set E. The number of elements of V, denoted as $|V|$ is called the order of the graph G while the number of elements of E, denoted as $|E|$ is called the size of the graph G. In the present work C_{n} denotes the cycle with n vertices and P_{n} denotes the path of n vertices. In the wheel $W_{n}=C_{n}+K_{1}$ the vertex corresponding to K_{1} is called the apex vertex and the vertices corresponding to C_{n} are called the rim vertices. The graph $f_{n}=P_{n-1}+K_{1}$ is called a fan and the vertex corresponding to K_{1} is called the apex vertex of the fan. For various graph theoretic notations and terminology we follow (Gross, J. \& Yellen, J., 2004) whereas for number theory we follow (Burton, D. M.,1990). We will give brief summary of definitions and other information which are useful for the present investigations.
Definition 1.1 If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling.

For latest survey on graph labeling we refer to (Gallian, J. A., 2009). Vast amount of literature is available on different types of graph labeling and more than 1000 research papers have been published so far in last four decades. For any graph labeling problem following three features are really noteworthy:

- a set of numbers from which vertex labels are chosen;
- a rule that assigns a value to each edge;
- a condition that these values must satisfy.

The present work is aimed to discuss one such labeling known as prime labeling.
Definition 1.2 A prime labeling of a graph G is an injective function $f: V \rightarrow\{1,2, \cdots,|V|\}$ such that for every pair of adjacent vertices u and $v, \operatorname{gcd}(f(u), f(v))=1$. The graph which admits prime labeling is called a prime graph.
The notion of prime labeling was originated by Entringer and was discussed in (Tout, A., 1982, p. 365-368). Many researchers have studied prime graphs. It has been proved by (Fu, H. L., 1994, p. 181-186) P_{n} on n vertices is a prime graph. It has been proved by (Lee, S. M., 1988, p. 59-67) wheel graph W_{n} is a prime graph if and only if n is even. In (Deretsky, T. D., 1991, p. 359-369) cycle C_{n} is a prime graph.
Definition 1.3 The graph $G=<W_{n}: W_{m}>$ is the graph obtained by joining apex vertices of wheels W_{n} and W_{m} to a new vertex w.
Definition 1.4 A t-ply $P_{t}(u, v)$ is a graph with t paths, each of length at least two and such that no two paths have a vertex in common except for the end vertices u and v.
Definition 1.5 Two prime integers are said to be twin primes if they differ by 2 .

2. Some Results on Prime Graphs

Theorem 2.1 Let n_{1} and n_{2} be two even positive integers such that $n_{1}+n_{2}+3=p$ where p and $p-2$ are twin primes. Then the graph $G=<W_{n_{1}}: W_{n_{2}}>$ is a prime graph.
Proof: Let $u_{1}, u_{2}, \cdots, u_{n_{1}}$ be the consecutive rim vertices of $W_{n_{1}}$ and $v_{1}, v_{2}, \cdots, v_{n_{2}}$ be the consecutive rim vertices of $W_{n_{2}}$. Let u_{0} and v_{0} be the apex vertices of $W_{n_{1}}$ and $W_{n_{2}}$ respectively which are adjacent to a new common vertex w.
Define $f: V \longrightarrow\{1,2,3, \cdots,|V|\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=1+i, \forall i=0,1,2, \cdots, n_{1} ; \\
& f\left(v_{0}\right)=p ; \\
& f\left(v_{j}\right)=1+n_{1}+j, \forall j=1,2,3, \cdots, n_{2} \text { and } \\
& f(w)=p-1 .
\end{aligned}
$$

Then clearly f is an injection.
For an arbitrary edge $e=a b$ of G we claim that $\operatorname{gcd}(f(a), f(b))=1$.
To prove our claim the following cases are to be considered.

1. If e is an edge of $W_{n_{1}}$ then we have the following possibilities:

- if $e=u_{j} u_{j+1}$ for some $j \in\left\{1,2, \cdots, n_{1}-1\right\}$ then $\operatorname{gcd}\left(f\left(u_{j}\right), f\left(u_{j+1}\right)\right)=\operatorname{gcd}(1+j, 1+j+1)=\operatorname{gcd}(j+1, j+2)=1$ as $j+1$ and $j+2$ are consecutive positive integers;
- if $e=u_{n_{1}} u_{1}$ then $\operatorname{gcd}\left(f\left(u_{n_{1}}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}\left(n_{1}+1,2\right)=1$ as $n_{1}+1$ is an odd integer;
- if $e=u_{0} u_{j}$ for some $j \in\left\{1,2, \cdots, n_{1}\right\}$ then $\operatorname{gcd}\left(f\left(u_{0}\right), f\left(u_{j}\right)\right)=\operatorname{gcd}(1, j+1)=1$.

2. If $e=u_{0} w$ then $\operatorname{gcd}\left(f\left(u_{0}\right), f(w)\right)=\operatorname{gcd}(1, p-1)=1$.
3. If $e=v_{0} w$ then $\operatorname{gcd}\left(f\left(v_{0}\right), f(w)\right)=\operatorname{gcd}(p, p-1)=1$ as p and $p-1$ are consecutive positive integers.
4. If e is an edge of $W_{n_{2}}$ then we have the following possibilities:

- if $e=v_{j} v_{j+1}$ for some $j \in\left\{1,2,3, \cdots, n_{2}-1\right\}$ then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(1+n_{1}+j, 1+n_{1}+j+1\right)=1$ as $1+n_{1}+j$ and $1+n_{1}+j+1$ are consecutive positive integers;
- if $e=v_{n_{2}} v_{1}$ then $\operatorname{gcd}\left(f\left(v_{n_{2}}\right), f\left(v_{1}\right)\right)=\operatorname{gcd}\left(1+n_{1}+n_{2}, n_{1}+2\right)=$ $\operatorname{gcd}\left(p-2, n_{1}+2\right)=1$ as $p-2$ is a prime number greater than $n_{1}+2$;
- if $e=v_{0} v_{j}$ for some $j \in\left\{1,2, \cdots, n_{2}\right\}$ then $\operatorname{gcd}\left(f\left(v_{0}\right), f\left(v_{j}\right)\right)=$ $\operatorname{gcd}\left(p, 1+n_{1}+j\right)=1$ as p is a prime number greater than $1+n_{1}+j$.

Thus in each of the possibilities the graph G under consideration admits a prime labeling. i.e. G is a prime graph.
Illustration 2.2 A prime labeling of $\left\langle W_{10}: W_{6}\right\rangle$ is shown in Figure 1 .
Theorem 2.3 If $n_{1} \geq 4$ is an even integer and $n_{2} \in N$ then the disjoint union of the wheel $W_{n_{1}}$ and the path graph $P_{n_{2}}$ is a prime graph.
Proof: Let u_{0} be the apex vertex, $u_{1}, u_{2}, \cdots, u_{n_{1}}$ be the consecutive rim vertices of $W_{n_{1}}$ and $v_{1}, v_{2}, \cdots, v_{n_{2}}$ be the consecutive vertices of $P_{n_{2}}$. Let G be the disjoint union of $W_{n_{1}}$ and $P_{n_{2}}$.
Define $f: V \rightarrow\{1,2,3, \cdots,|V|\}$ as follows:
$f\left(u_{i}\right)=1+i, \forall i=0,1,2, \cdots, n_{1} ;$ and $f\left(v_{j}\right)=n_{1}+1+j, \forall j=1,2,3, \cdots, n_{2}$.
Then obviously f is an injection.
For an arbitrary edge $e=a b$ of G we claim that $\operatorname{gcd}(f(a), f(b))=1$ due to following reasons:

1. If e is an edge of $W_{n_{1}}$ such that $e=u_{0} u_{i}$ for some $i \in\left\{1,2,3, \cdots, n_{1}\right\}$ then $\operatorname{gcd}\left(f\left(u_{0}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(u_{i}\right)\right)=1$;
2. If e is an edge of $W_{n_{1}}$ such that $e=u_{i} u_{i+1}$ for some $i \in\left\{1,2,3, \cdots, n_{1}-1\right\}$ then $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(1+i, 1+$ $i+1)=1$ as every pair of consecutive positive integers are relatively prime;
3. If e is an edge of $W_{n_{1}}$ such that $e=u_{n_{1}} u_{1}$ then $\operatorname{gcd}\left(f\left(u_{n_{1}}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}\left(n_{1}+1,2\right)=1$ because $n_{1}+1$ is an integer;
4. If e is an edge of $P_{n_{2}}$ such that $e=v_{j} v_{j+1}$ for some $j \in\left\{1,2, \cdots, n_{2}-1\right\}$. Then $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(n_{1}+1+\right.$ $\left.j, n_{1}+1+j+1\right)=1$ as $n_{1}+1+j$ and $n_{1}+1+j+1$ are consecutive positive integers.

Thus in each of the possibilities the graph G under consideration admits a prime labeling. i.e. G is a prime graph. Illustration 2.4 A prime labeling of the disjoint union of W_{8} and P_{6} is shown in the Figure 2.
Theorem 2.5 If $n_{1} \geq 4$ is an even integer and $n_{2} \in N$ then the graph obtained by identifying any of the rim vertices of a wheel $W_{n_{1}}$ with an end vertex of a path graph $P_{n_{2}}$ is a prime graph.
Proof: Denote the apex vertex of $W_{n_{1}}$ by u_{0} and the consecutive rim vertices of $W_{n_{1}}$ by $u_{1}, u_{2}, \cdots, u_{n_{1}}$. Let $v_{1}, v_{2}, \cdots, v_{n_{2}}$ be the consecutive vertices of $P_{n_{2}}$. Without loss of generality assume that the end vertex v_{1} of $P_{n_{2}}$ is identified with the rim vertex $u_{n_{1}}$ of $W_{n_{1}}$. Define $f: V \rightarrow\{1,2,3, \cdots,|V|\}$ as follows: $f\left(u_{i}\right)=1+i, \forall i=0,1,2, \cdots, n_{1}$; and $f\left(v_{j}\right)=n_{1}+j$, $\forall j=2,3,4, \cdots, n_{2}$. Then obviously f is an injection. For an arbitrary edge $e=a b$ of G we claim that $\operatorname{gcd}(f(a), f(b))=1$ due to following reasons:

1. If e is an edge of $W_{n_{1}}$ such that $e=u_{0} u_{i}$ for some $i \in\left\{1,2,3, \cdots, n_{1}\right\}$ then $\operatorname{gcd}\left(f\left(u_{0}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(u_{i}\right)\right)=1$;
2. If e is an edge of $W_{n_{1}}$ such that $e=u_{i} u_{i+1}$ for some $i \in\left\{1,2,3, \cdots, n_{1}-1\right\}$ then for $i \neq n_{1}-1, \operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=$ $\operatorname{gcd}(i+1, i+2)=1$ as $i+1$ and $i+2$ are consecutive positive integers;
3. If e is an edge of $W_{n_{1}}$ such that $e=u_{n_{1}} u_{1}$ then $\operatorname{gcd}\left(f\left(u_{n_{1}}\right), f\left(u_{1}\right)\right)=\operatorname{gcd}\left(n_{1}+1,2\right)=1$ as $n_{1}+1$ is an odd positive integer;
4. If e is an edge of $P_{n_{2}}$ such that $e=v_{j} v_{j+1}$ for some $j \in\left\{1,2, \cdots, n_{2}-1\right\}$. In this case $\operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=$ $\operatorname{gcd}\left(n_{1}+j, n_{1}+j+1\right)=1$ as $n_{1}+j$ and $n_{1}+j+1$ are consecutive positive integers.

Thus in each of the possibilities the graph G under consideration admits a prime labeling. Which implies that G is a prime graph.
Illustration 2.6 A prime labeling of the graph obtained by identifying an end vertex of P_{6} with a rim vertex of W_{8} is shown in the following Figure 3.
Theorem 2.7 If n_{1} is even then the graph G obtained by identifying the apex vertex of a wheel graph $W_{n_{1}}$ with an end vertex of $P_{n_{2}}$ is a prime graph.
Proof: Let u_{0} be the apex vertex, $u_{1}, u_{2}, \cdots, u_{n_{1}}$ be the consecutive rim vertices of $W_{n_{1}}$ and $v_{1}, v_{2}, \cdots, v_{n_{2}}$ be the consecutive vertices of $P_{n_{2}}$. Without loss of generality assume that the end vertex v_{1} of $P_{n_{2}}$ is identified with the apex vertex u_{0} of $W_{n_{1}}$. Define $f: V \rightarrow\{1,2,3, \cdots,|V|\}$ as follows: $f\left(u_{i}\right)=1+i, \forall i=0,1,2, \cdots, n_{1}$; and $f\left(v_{j}\right)=n_{1}+j, \forall j=2,3,4, \cdots, n_{2}$. For an arbitrary edge $e=a b$ of G we claim that $\operatorname{gcd}(f(a), f(b))=1$. Following reasons prove the claim.

1. if e is an edge of $W_{n_{1}}$ then the restriction of f on $\left\{1,2, \cdots, \mid V\left(W_{n_{1}}\right)\right\}$ admits a prime labeling of $W_{n_{1}}$ as reported in (Lee, S. M., 1988). Thus $\operatorname{gcd}(f(a), f(b))=1$ for this edge e.
2. if e is an edge of $P_{n_{2}}$ such that $e=v_{j} v_{j+1}$ for some $j \in\left\{1,2, \cdots, n_{2}\right\}$. In this case:

- for $j \neq 1, \operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(n_{1}+j, n_{1}+j+1\right)=1$ as $n_{1}+j$ and $n_{1}+j+1$ are consecutive positive integers.
- for $j=1, \operatorname{gcd}\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(f\left(v_{1}\right), f\left(v_{2}\right)\right)=\operatorname{gcd}\left(1, n_{1}+2\right)=1$.

Thus in each of the possibilities the graph G under consideration admits a prime labeling. Which implies that G is a prime graph.
Illustration 2.8 A prime labeling of the graph defined by identifying an end vertex of P_{6} with the apex vertex of W_{8} is shown in the Figure 4.
Theorem 2.9 Let G_{1} be a prime graph of order n_{1} with a prime labeling f and having vertices u_{1} and $u_{n_{1}}$ with the labels 1 and n_{1} respectively. Then the graph G obtained by identifying an end vertex of a path $P_{n_{2}}$ with either u_{1} or $u_{n_{1}}$ of G_{1} is a prime graph.
Proof: Let the vertices of a prime graph G_{1} be $u_{1}, u_{2}, \cdots, u_{n_{1}}$ and the prime labeling f of G_{1} be such that $f\left(u_{1}\right)=1$ and $f\left(u_{n_{1}}\right)=n_{1}$. Let $v_{1}, v_{2}, \cdots, v_{n_{2}}$ be the consecutive vertices of $P_{n_{2}}$. We have the following two cases:

1. The graph G is obtained by identifying an end vertex v_{1} of $P_{n_{2}}$ with the vertex $u_{n_{1}}$ of G_{1}. (The proof is similar if the other end vertex $v_{n_{2}}$ of $P_{n_{2}}$ is identified with the vertex $u_{n_{1}}$ of G_{1}.) Define a labeling function g on G as follows:
$g\left(u_{i}\right)=f\left(u_{i}\right), \forall i=1,2,3, \cdots, n_{1}$; and $g\left(v_{j}\right)=n_{1}+j-1, \forall j=2,3,4, \cdots, n_{2}$.
Obviously g is an injection. Also g is an extension of the prime labeling function f on G, it is enough to prove the following cases:
(a) $\operatorname{gcd}\left(g\left(u_{n_{1}}\right), g\left(v_{2}\right)\right)=1$. To prove this we have $\operatorname{gcd}\left(g\left(u_{n_{1}}\right), g\left(v_{2}\right)\right)=$ $\operatorname{gcd}\left(f\left(u_{n_{1}}\right), g\left(v_{2}\right)\right)=\operatorname{gcd}\left(n_{1}, n_{1}+1\right)=1$ as n_{1} and $n_{1}+1$ are consecutive integers.
(b) For each $j \in\left\{2,3, \cdots, n_{2}-1\right\}, \operatorname{gcd}\left(g\left(v_{j}\right), g\left(v_{j+1}\right)\right)=1$. To prove this we have $\operatorname{gcd}\left(g\left(v_{j}\right), g\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(n_{1}+\right.$ $\left.j-1, n_{1}+j\right)=1$ as $n_{1}+j-1$ and $n_{1}+j$ are consecutive integers.
2. The graph G is obtained by identifying the other end vertex v_{1} of $P_{n_{2}}$ with the vertex u_{1} of G_{1}. (The proof is similar if the other end vertex $v_{n_{2}}$ of $P_{n_{2}}$ is identified with the vertex u_{1} of G_{1}.)
Define a labeling function g on G as follows:
$g\left(u_{i}\right)=f\left(u_{i}\right), \forall i=1,2,3, \cdots, n_{1} ;$ and $g\left(v_{j}\right)=n_{1}+j-1, \forall j=2,3,4, \cdots, n_{2}$.
Obviously g is an injection. Also g is an extension of the prime labeling function f on G, it is enough to prove the following cases:
(a) $\operatorname{gcd}\left(g\left(u_{1}\right), g\left(v_{2}\right)\right)=1$. To prove this we have $\operatorname{gcd}\left(g\left(u_{1}\right), g\left(v_{2}\right)\right)=\operatorname{gcd}\left(f\left(u_{1}\right), g\left(v_{2}\right)\right)=\operatorname{gcd}\left(1, n_{1}+1\right)=1$.
(b) For each $j \in\left\{2,3, \cdots, n_{2}-1\right\}$ we need to show that $\operatorname{gcd}\left(g\left(v_{j}\right), g\left(v_{j+1}\right)\right)=1$. To prove this we have $\operatorname{gcd}\left(g\left(v_{j}\right), g\left(v_{j+1}\right)\right)=\operatorname{gcd}\left(n_{1}+j-1, n_{1}+j\right)=1$ as $n_{1}+j-1$ and $n_{1}+j$ are consecutive integers.

Thus in each of the possibilities the graph G under consideration admits a prime labeling. Which implies that G is a prime graph.
Theorem 2.10 A graph G obtained by identifying all the apex vertices of m fans $f_{n_{1}}, f_{n_{2}}, \cdots, f_{n_{m}}$ (is called a multiple shell) is a prime graph.
Proof: A fan graph $f_{n}=P_{n-1}+K_{1}$ has n vertices and $2 n-3$ edges. Let the graph G is obtained by fusing all the apex vertices of $f_{n_{1}}, f_{n_{2}}, \cdots, f_{n_{m}}$. Let the common apex vertex of each of the fans $f_{n_{i}}$ after fusing all the apex vertices of all the fans $f_{n_{1}}, f_{n_{2}}, \cdots, f_{n_{m}}$ be v_{0}. For each $i \in\{1,2,3, \cdots, m\}$, denote the remaining vertices of the fan $f_{n_{i}}$ as $v_{i, 1}, v_{i, 2}, \cdots, v_{i, n_{i-1}}$ consecutively. Clearly $|V|=n_{1}+n_{2}+\cdots+n_{m}-m+1$. Without loss of generality assume that $n_{1} \leq n_{2} \leq \cdots \leq n_{m}$. Define $f: V \rightarrow\{1,2, \cdots,|V|\}$ as follows:
$f\left(v_{0}\right)=1$ and $f\left(v_{i, j}\right)=\sum_{k=1}^{i-1} n_{k}-(i-2)+j, \forall i=1,2, \cdots, m$ and $\forall j=1,2, \cdots, n_{i}-1$. Here we define $\sum_{x}^{y} a=0$ if x and y are any positive integers with $y<x$. First we will show that f is an injection. It is easy to check that $f(v)=1$ if and only if $v=v_{0}$. For $i \in\{1,2, \cdots, m-1\}, j \in\left\{1,2, \cdots, n_{i+1}-1\right\}$ and $j^{\prime} \in\left\{1,2, \cdots, n_{i}-1\right\}$, we get

$$
\begin{aligned}
f\left(v_{i+1, j}\right)-f\left(v_{i, j^{\prime}}\right) & =\left(\sum_{k=1}^{i} n_{k}-(i+1-2)+j\right)-\left(\sum_{k=1}^{i-1} n_{k}-(i-2)+j^{\prime}\right) \\
& =\left(n_{i}-1-j^{\prime}\right)+j \\
& \geq j \text { as } 1 \leq j^{\prime} \leq n_{i}-1 .
\end{aligned}
$$

Thus $f\left(v_{i+1, j}\right)-f\left(v_{i, j^{\prime}}\right)>0$. Thus if $i<i^{\prime}$ with $i, i^{\prime} \in\{1,2, \cdots, m\}$ then $f\left(v_{i, j}\right)<f\left(v_{i^{\prime}, j^{\prime}}\right), \forall j \in\left\{1,2, \cdots, n_{i}-1\right\}$ and $j^{\prime} \in\left\{1,2, \cdots, n_{i}^{\prime}-1\right\}$. If $i \neq i^{\prime}$ then without loss of generality assume that $i<i^{\prime} . i<i^{\prime} \Rightarrow f\left(v_{i, j}\right)<f\left(v_{i, j^{\prime}}\right)$. Similarly we have $i^{\prime}<i \Rightarrow f\left(v_{i^{\prime}, j^{\prime}}\right)<f\left(v_{i, j}\right)$. That is $f\left(v_{i^{\prime}, j^{\prime}}\right)=f\left(v_{i, j}\right) \Rightarrow i^{\prime}=i$. If $i=i^{\prime}$ then $f\left(v_{i, j}\right)=f\left(v_{i^{\prime}, j^{\prime}}\right) \Rightarrow f\left(v_{i, j}\right)=f\left(v_{i, j^{\prime}}\right)$. $\Rightarrow \sum_{k=1}^{i-1} n_{k}-(i-2)+j=\sum_{k=1}^{i-1} n_{k}-(i-2)+j^{\prime} \Rightarrow j=j^{\prime}$. Which shows that f is an injection. It is enough to show that f is a prime labeling. Let $e=u v$ be an edge of G. Then clearly it must be an edge of exactly one of the fans $f_{n_{i}}$ for some $i=1,2, \cdots, m$. If one of the end vertices of e is v_{0} say $u=v_{0}$ then $\operatorname{gcd}(f(u), f(v))=\operatorname{gcd}\left(f\left(v_{0}\right), f(v)\right)=\operatorname{gcd}(1, f(v))=1$. If none of the end vertices of e is v_{0} then clearly $\{u, v\}=\left\{v_{i, j}, v_{i, j+1}\right\}$ for some $i \in\{1,2, \cdots, m\}$ and $j \in\left\{1,2, \cdots, n_{i}-1\right\}$.

$$
\text { That is } \begin{aligned}
\operatorname{gcd}(f(u), f(v)) & =\operatorname{gcd}\left(f\left(v_{i, j}\right), f\left(v_{i, j+1}\right)\right) \\
& =\operatorname{gcd}\left(\sum_{k=1}^{i-1} n_{k}-(i-2)+j, \sum_{k=1}^{i-1} n_{k}-(i-2)+j+1\right) \\
& =1
\end{aligned}
$$

as consecutive integers are relatively prime. Thus f admits a prime labeling for G. i.e. G is a prime graph.

Illustration 2.11 The graph G obtained by identifying all the apex vertices of three fans f_{3}, f_{4}, f_{5} has prime labeling is shown in Figure 5.
Theorem 2.12 A graph G obtained by identifying all the apex vertices of m wheels $W_{n_{1}}, W_{n_{2}}, \cdots, W_{n_{m}}$ is a prime graph if each $n_{i} \geq 4$ is an even integer for each $i \in\{1,2, \cdots, m\}$ and $n_{i}-1$ is relatively prime with $2+\sum_{k=1}^{i-1} n_{k}$ for each $i \in\{2,3, \cdots, m\}$.
Proof: Let the common apex vertex of G be u_{0} and the consecutive rim vertices of each of the wheels $W_{n_{i}}$ be $u_{i, 1}, u_{i, 2}, \cdots$, $u_{i, n_{i}}$ for each $i \in\{1,2, \cdots, m\}$. Here we define $\sum_{x}^{y} a=0$ if x and y are any positive integers with $y<x$.
Define $f:\left\{u_{0}\right\} \bigcup\left(\bigcup_{i=1}^{m}\left\{u_{i, 1}, u_{i, 2}, u_{i, 3}, \cdots, u_{i, n_{i}}\right\}\right) \longrightarrow\left\{1,2, \cdots, 1+\sum_{i=1}^{m} n_{i}\right\}$ as

$$
f(x)= \begin{cases}1 & , \text { if } x=u_{0} \\ 1+j+\sum_{k=1}^{i-1} n_{k} & , \text { if } x=u_{i, j} \text { for some } j \in\left\{1,2, \cdots, n_{i}\right\}, i \in\{1,2, \cdots, m\}\end{cases}
$$

To prove f is injective it is enough to prove that f is surjective as the cardinality of the domain and codomain are same. For each $y \in\left\{1,2, \cdots, 1+\sum_{i=1}^{m} n_{i}\right\}$ either $y=1=f\left(u_{0}\right)$ or there exists $i \in\{1,2, \cdots, m\}$ such that $1+\sum_{k=1}^{i-1} n_{k}<y \leq 1+\sum_{k=1}^{i} n_{k}$.

$$
\begin{aligned}
\text { For letter case } j & =y-\left(1+\sum_{k=1}^{i-1} n_{k}\right), \text { then } 1 \leq j \leq n_{i} \\
\text { and } f\left(u_{i, j}\right) & =1+j+\sum_{k=1}^{i-1} n_{k} \\
& =1+y-\left(1+\sum_{k=1}^{i-1} n_{k}\right)+\sum_{k=1}^{i-1} n_{k} \\
& =y .
\end{aligned}
$$

It shows that f is surjective. Let $e=x y$ be an edge of G then it must be an edge of one of the wheels $W_{n_{i}}$ for some $i \in\{1,2, \cdots, m\}$. we have the following two possibilities:

1. If one of the end vertices of e is the apex vertex u_{0} with $x=u_{0}$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f\left(u_{0}\right), f(y)\right)=\operatorname{gcd}(1, f(y))=1$.
2. If none of the end vertices of e is the apex vertex u_{0} and

- if $\{x, y\}=\left\{u_{i, j-1}, u_{i, j}\right\}$ for some $j \in\left\{1,2, \cdots, n_{i}\right\}$ then

$$
\begin{aligned}
\operatorname{gcd}(f(x), f(y)) & =\operatorname{gcd}\left(f\left(u_{i, j-1}\right), f\left(u_{i, j}\right)\right) \\
& =\operatorname{gcd}\left(j+\sum_{k=1}^{i-1} n_{k}, 1+j+\sum_{k=1}^{i-1} n_{k}\right) \\
& =1
\end{aligned}
$$

as $j+\sum_{k=1}^{i-1} n_{k}$ and $1+j+\sum_{k=1}^{i-1} n_{k}$ are consecutive integers so they necessarily be relatively prime.

- if $\{x, y\}=\left\{u_{i, 1}, u_{i, n_{i}}\right\}$ then

$$
\begin{aligned}
\operatorname{gcd}(f(x), f(y)) & =\operatorname{gcd}\left(f\left(u_{i, 1}\right), f\left(u_{i, n_{i}}\right)\right) \\
& =\operatorname{gcd}\left(1+1+\sum_{k=1}^{i-1} n_{k}, 1+n_{i}+\sum_{k=1}^{i-1} n_{k}\right) \\
& =\operatorname{gcd}\left(2+\sum_{k=1}^{i-1} n_{k}, n_{i}-1\right) \\
& =1
\end{aligned}
$$

as it is mentioned that for each $i \in\{2,3, \cdots, m\}, n_{i}-1$ is relatively prime with $2+\sum_{k=1}^{i-1} n_{k}$.
Which shows that f admits a prime labeling i.e. G is a prime graph.
Illustration 2.13 The graph G obtained by identifying the apex vertices of two wheels W_{6} and W_{8} has prime labeling is shown in Figure 6.

Theorem 2.14 A t-ply graph $P_{t}(u, v)$ is a prime graph if the order of $P_{t}(u, v)$ is a prime number.
Proof: Suppose a t-ply $P(u, v)$ is obtained from t distinct paths P_{i}, for each $i=1,2, \cdots, t$, each of length n_{i}, such that the vertices of P_{i} are $v_{i, 0}, v_{i, 1}, v_{i, 2}, \cdots, v_{i, n_{i}}$ consecutively. Identifying all the vertices $v_{1,0}, v_{2,0}, v_{3,0}, \cdots, v_{t, 0}$ into a single vertex u and identifying all the vertices $v_{1, n_{1}}, v_{2, n_{2}}, v_{3, n_{3}}, \cdots, v_{t, n_{t}}$ into a single vertex v. The number of vertices of $P_{t}(u, v)$ is a prime number p with

$$
\begin{aligned}
p & =\left|V\left(P_{t}(u, v)\right)\right| \\
& =\sum_{i=1}^{t}\left(\left|V\left(P_{i}\right)\right|-2\right)+2 \\
& =\sum_{i=1}^{t}\left(n_{i}+1\right)-2 t+2 \\
& =\sum_{i=1}^{t} n_{i}-t+2 .
\end{aligned}
$$

Define $f: V\left(P_{t}(u, v)\right) \rightarrow\{1,2,3, \cdots, p\}$ as follows: $f(u)=1$ and $f\left(v_{i, j}\right)=j+\sum_{k=1}^{i-1}\left(n_{k}-1\right), \forall i=1,2, \cdots, t$ and $\forall j=1,2, \cdots, n_{i}-1$ and $f(v)=p$ where p is a prime number. Here we define $\sum_{x}^{y} a=0$ if x and y are any positive integers with $y<x$. First we will show that f is an injection. It is easy to check that $f(w)=1$ if and only if $w=u$ as well as $f(w)=p$ if and only if $w=v$. Suppose $f\left(v_{i, j}\right)=f\left(v_{i^{\prime}, j^{\prime}}\right)$ for some positive integers $i, j, i^{\prime}, j^{\prime}$ with $i \in\{1,2, \cdots, t\}$, $i^{\prime} \in\{1,2, \cdots, t\}$ and $j \in\left\{1,2, \cdots, n_{i}-1\right\}$ and $j^{\prime} \in\left\{1,2, \cdots, n_{i}^{\prime}-1\right\}$. If $i \neq i^{\prime}$ then without loss of generality assume that $i<i^{\prime}$, so $i \leq i^{\prime}-1$.

$$
\text { Then } \begin{aligned}
f\left(v_{i, j}\right) & =j+\sum_{k=1}^{i-1}\left(n_{k}-1\right) \\
& \leq n_{i}-1+\sum_{k=1}^{i-1}\left(n_{k}-1\right) \\
& =\sum_{k=1}^{i}\left(n_{k}-1\right) \\
& \leq \sum_{k=1}^{i^{\prime}-1}\left(n_{k}-1\right) \\
& <j^{\prime}+\sum_{k=1}^{i^{\prime}-1}\left(n_{k}-1\right) \\
& =f\left(v_{i^{\prime}, j^{\prime}}\right) .
\end{aligned}
$$

Thus we have $i<i^{\prime} \Rightarrow f\left(v_{i, j}\right)<f\left(v_{i, j^{\prime}}\right)$ and similarly $i^{\prime}<i \Rightarrow f\left(v_{i^{\prime}, j^{\prime}}\right)<f\left(v_{i, j}\right)$.
That is $f\left(v_{i, j}\right)=f\left(v_{i^{\prime}, j^{\prime}}\right) \Rightarrow \quad i=i^{\prime}$

$$
\begin{aligned}
& \Rightarrow \quad f\left(v_{i, j}\right)=f\left(v_{i, j^{\prime}}\right) \\
& \Rightarrow \quad j+\sum_{k=1}^{i-1}\left(n_{k}-1\right)=j^{\prime}+\sum_{k=1}^{i-1}\left(n_{k}-1\right) \\
& \Rightarrow \quad j=j^{\prime} .
\end{aligned}
$$

Thus $f\left(v_{i, j}\right)=f\left(v_{i^{\prime}, j^{\prime}}\right) \Rightarrow i=i^{\prime}, j=j^{\prime}$, which shows that f is injective.

It is enough to show that $\operatorname{gcd}(f(x), f(y))=1$, for every pair of adjacent vertices x and y. Let $e=x y$ be an edge of G. Then clearly it must be an edge of exactly one of the paths $P_{n_{i}}$ for some $i=1,2, \cdots, t$.

1. If one of the end vertices of e is u say $x=u$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}(f(u), f(y))=\operatorname{gcd}(1, f(y))=1$.
2. If one of the end vertices of e is v say $x=v$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}(f(v), f(y))=\operatorname{gcd}(p, f(y))=1$.
3. If none of the end vertices of e is u and v then clearly $\{u, v\}=\left\{v_{i, j}, v_{i, j+1}\right\}$ for some $j \in\left\{1,2, \cdots, n_{i}-2\right\}$.

$$
\text { i.e. } \begin{aligned}
\operatorname{gcd}(f(x), f(y)) & =\operatorname{gcd}\left(f\left(v_{i, j}\right), f\left(v_{i, j+1}\right)\right) \\
& =\operatorname{gcd}\left(j+\sum_{k=1}^{i-1}\left(n_{k}-1\right), j+1+\sum_{k=1}^{i-1}\left(n_{k}-1\right)\right) \\
& =1
\end{aligned}
$$

as any two consecutive integers are relatively prime.
Thus f admits a prime labeling for G. That is G is a prime graph.
Illustration 2.15 The 5-ply graph obtained by taking five paths of lengths 6, 6, 4, 6 and 10 respectively has prime labeling is shown in Figure 7.

3. k-Prime Labeling- a New Concept

Definition 3.1 A k-prime labeling of a graph G is an injective function $f: V \rightarrow\{k, k+1, k+2, k+3, \cdots, k+|V|-1\}$ for some positive integer k that induces a function $f^{+}: E(G) \rightarrow N$ of the edges of G defined by $f^{+}(u v)=\operatorname{gcd}(f(u), f(v))$, $\forall e=u v \in E(G)$ such that $\operatorname{gcd}(f(u), f(v))=1, \forall e=u v \in E(G)$. The graph which admits a k-prime labeling is called a k-prime graph.
One note that every prime graph is a k-prime graph for $k=1$.
Lemma 3.2 For each positive integer m the path graph P_{m} is a k-prime graph for each positive integer k.
Proof: Denote the vertices of P_{m} as $v_{1}, v_{2}, \cdots, v_{m}$ in the order. For each positive integer k, define $f: V \rightarrow\{k, k+1, k+$ $2, k+3, \cdots, k+|V|-1\}$ as $f\left(v_{i}\right)=k+i-1$ for each $v_{i} \in V$. For $\forall e=u v \in E(G), f$ induces a function $f^{+}: E(G) \rightarrow N$ defined by $f^{+}(u v)=\operatorname{gcd}(f(u), f(v))$. $\forall e=v_{i} v_{i+1} \in E(G)$ it is easy to deduce that $\operatorname{gcd}\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(k+i-1, k+i)=$ 1. Thus the path graph P_{m} is a k-prime graph.

Theorem 3.3 The graph G obtained by disjoint union of a prime graph G_{1} of order n_{1} and a $\left(n_{1}+1\right)$-prime graph G_{2} is a prime graph.
Proof: Let $f_{1}:\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\} \longrightarrow\left\{1,2, \cdots, n_{1}\right\}$ be a prime labeling of a prime graph G_{1}. Let $f_{2}:\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\} \longrightarrow$ $\left\{n_{1}+1, n_{1}+2, n_{1}+3, \cdots, n_{1}+n_{2}\right\}$ be a $\left(n_{1}+1\right)$-prime labeling of a $\left(n_{1}+1\right)$-prime graph G_{2}. Let the graph G be obtained by disjoint union of G_{1} and G_{2}.
Define $f:\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\} \longrightarrow\left\{1,2, \cdots, n_{1}+n_{2}\right\}$ as

$$
f(x)= \begin{cases}f_{1}\left(u_{i}\right) & , \text { if } x=u_{i} \text { for some } i \in\left\{1,2, \cdots, n_{1}\right\} \\ f_{2}\left(v_{j}\right) & , \text { if } x=v_{j} \text { for some } j \in\left\{1,2, \cdots, n_{2}\right\}\end{cases}
$$

Obviously f is an injection. Let $e=x y$ be an arbitrary edge of G. Then either
$e \in E\left(G_{1}\right)$ or $e \in E\left(G_{2}\right)$.

1. If $e \in E\left(G_{1}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{1}(x), f_{1}(y)\right)=1$, as f_{1} is a prime labeling of G_{1}.
2. If $e \in E\left(G_{2}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{2}(x), f_{2}(y)\right)=1$, as f_{2} is a prime labeling of G_{2}.

Thus f admits a prime labeling of G and consequently G is a prime graph.
Theorem 3.4 Let G_{1} be a prime graph of order n_{1} with a prime labeling f_{1} and having vertices u_{1} and $u_{n_{1}}$ with $f_{1}\left(u_{1}\right)=1$ and $f_{1}\left(u_{n_{1}}\right)=n_{1}$. Let G_{2} be a n_{1}-prime graph of order n_{2} with a n_{1}-prime labeling f_{2} having a vertex v_{1} with $f_{2}\left(v_{1}\right)=n_{1}$. Then the graph G obtained by identifying the vertex v_{1} of G_{2} with either to u_{1} or to $u_{n_{1}}$ of G_{1} is a prime graph.
Proof: Let $f_{1}:\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\} \longrightarrow\left\{1,2, \cdots, n_{1}\right\}$ be a prime labeling of a prime graph G_{1}. Let $f_{2}:\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\} \longrightarrow$ $\left\{n_{1}, n_{1}+1, n_{1}+2, \cdots, n_{1}+n_{2}-1\right\}$ be a n_{1}-prime labeling of a n_{1}-prime graph G_{2}.

1. Consider the graph G obtained by identifying the vertex v_{1} of G_{2} to u_{1} of G_{1}.

Define $f:\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}, v_{2}, v_{3}, \cdots, v_{n_{2}}\right\} \longrightarrow\left\{1,2, \cdots, n_{1}+n_{2}\right\}$ as

$$
f(x)= \begin{cases}f_{1}\left(u_{i}\right) & \text {, if } x=u_{i} \text { for some } i \in\left\{1,2, \cdots, n_{1}\right\} \\ f_{2}\left(v_{j}\right) & , \text { if } x=v_{j} \text { for some } j \in\left\{2,3, \cdots, n_{2}\right\}\end{cases}
$$

We claim that f is an injection because

- f_{1} is an injection from $\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\}$ with the range $\left\{1,2, \cdots, n_{1}\right\}$.
- f_{2} is an injection from $\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\}$ with the range $\left\{n_{1}, n_{1}+1, \cdots \cdots, n_{1}+n_{2}-1\right\}$ and $f_{2}\left(v_{1}\right)=n_{1}$ then the restriction of f_{2} on $\left\{v_{2}, v_{3}, \cdots, v_{n_{2}}\right\}$ is also an injection with the range $\left\{n_{1}+1, n_{1}+2, \cdots, n_{1}+n_{2}-1\right\}$.

Let $e=x y$ be an arbitrary edge of G. Then either $e \in E\left(G_{1}\right)$ or $e \in E\left(G_{2}\right)$.
(a) If $e \in E\left(G_{1}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{1}(x), f_{1}(y)\right)=1$, as f_{1} is a prime labeling of G_{1}.
(b) If $e \in E\left(G_{2}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{2}(x), f_{2}(y)\right)=1$ as f_{2} is a prime labeling of G_{2}.
2. Consider the graph G obtained by identifying the vertex v_{1} of G_{2} to $u_{n_{1}}$ of G_{1}.

Define $f:\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}, v_{2}, v_{3}, \cdots, v_{n_{2}}\right\} \longrightarrow\left\{1,2, \cdots, n_{1}+n_{2}\right\}$ as

$$
f(x)= \begin{cases}f_{1}\left(u_{i}\right) & \text {, if } x=u_{i} \text { for some } i \in\left\{1,2, \cdots, n_{1}\right\} \\ f_{2}\left(v_{j}\right) & , \text { if } x=v_{j} \text { for some } j \in\left\{2,3, \cdots, n_{2}\right\}\end{cases}
$$

We claim that f is an injection because

- f_{1} is an injection from $\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\}$ with the range $\left\{1,2, \cdots, n_{1}\right\}$.
- f_{2} is an injection from $\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\}$ with the range $\left\{n_{1}, n_{1}+1, \cdots \cdots, n_{1}+n_{2}-1\right\}$ and $f_{2}\left(v_{1}\right)=n_{1}$ then the restriction of f_{2} on $\left\{v_{2}, v_{3}, \cdots, v_{n_{2}}\right\}$ is also an injection with the range $\left\{n_{1}+1, n_{1}+2, \cdots, n_{1}+n_{2}-1\right\}$.

Let $e=x y$ be an arbitrary edge of G. Then either $e \in E\left(G_{1}\right)$ or $e \in E\left(G_{2}\right)$.
(a) If $e \in E\left(G_{1}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{1}(x), f_{1}(y)\right)=1$ as f_{1} is a prime labeling of G_{1}.
(b) If $e \in E\left(G_{2}\right)$ then $\operatorname{gcd}(f(x), f(y))=\operatorname{gcd}\left(f_{2}(x), f_{2}(y)\right)=1$ as f_{2} is a prime labeling of G_{2}.

Thus in each of the possibilities f admits a prime labeling of G consequently G is a prime graph.
Corollary 3.5 A tadpole (graph obtained by identifying a vertex of a cycle to an end vertex of a path) is a prime graph.
Proof: As we know that every cycle is a prime graph. According to Lemma 3.2 every path is k-prime graph for every positive integer k. Then using Theorem 3.4 a tadpole is a prime graph.

4. Conclusion

Here we investigate eight results corresponding to prime labeling. We introduce a new concept of k-prime labeling and derive four results. Analogous work can be carried out for other families and in the context of different types of graph labeling techniques.

References

Burton, D. M. (1990). Elementary Number Theory. 2nd ed.
Deretsky, T.D., Lee, S.M., \& Mitchem, J. (1991). On vertex prime labellings of graphs, Graph Theory, Combinatorics and Applications, Vol. 1, (Ed. J. Alvi, G. Chartrand, O. Oellerman, A. Schwenk), Proceedings of the 6th International Conference Theory and Applications of Graphs (pp. 359-369)
Fu, H. L. \& Huang, K. C. (1994). On Prime Labelings. Discrete Mathematics, North Holland, 127, 181-186
Gallian, J. A. (2009). A Dynamic Survey of Graph Labeling The Electronic Journal of Combinatorics, 16, \#DS6.
Gross, J. \& Yellen, J. (2004). Handbook of Graph Theory, CRC Press.
Lee, S. M., Wui, I. \& Yeh, J. (1988). On the amalgamation of prime graphs. Bull. Malaysian Math. Soc.(Second Series), 11, pp 59-67.
Tout, A., Dabboucy, A. N. \& and Howalla, K. (1982). Prime Labeling of Graphs. Nat. Acad. Sci. Letters, 11, pp. 365-368.

Figure 1. Prime labeling of $<W_{10}: W_{6}>$ is shown.

Figure 2. The disjoint union of W_{8} and P_{6} and its prime labeling

Figure 3. Graph obtained by identifying a rim vertex of W_{8} with an end vertex of P_{6} and its prime labeling.

Figure 4. The graph obtained by identifying the apex vertex of W_{8} with end vertex of P_{6} and its prime labeling

Figure 5 . Graph obtained by identifying the apex vertices of f_{3}, f_{4}, f_{5} and its prime labeling.

Figure 6. The graph obtained by identifying the apex vertices of W_{6} and W_{8} and its prime labeling.

Figure 7. A 5-ply and its prime labeling

