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Abstract

A parametric mean length is defined as the quantity LβR =
R

R−1

[
1 −

∑N
i=1 pβi D−ni( R−1

R )∑N
j=1 pβj

]
where R > 0 (� 1) , β > 0, pi > 0,

∑
pi = 1, i = 1, 2, . . . ,N. This being the mean length of code words. Lower and upper

bounds for LβR are derived in terms of R-norm information measure for the incomplete power distribution.
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1. Introduction

Boekee and Lubbe [1980] studied R-Norm information of probability distribution

P = (p1, p2, ....., pN) , pi ≥ 0, i = 1, 2, .....,N

where
N∑

i=1

pi = 1.

And

R∗ = {R : R > 0, R � 1}

given by

RH (P) =
R

R − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎜⎜⎜⎝ N∑

i=1

pR
i

⎞⎟⎟⎟⎟⎟⎠
1
R
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1.1)

The R-norm information measure (1.1) is a real function ΔN → R+, defined on ΔN where N ≥ 2 and R+ is the set of

positive real numbers. This measure is different from Shannon’s [1948], Renyi’s [1961], Havrda and Charvat [1967],

Daroczy [1970], Tsallis [1988] and Vajda [1961].

The most interesting property of this measure is that when R→1, R-Norm information measure (1.1) approaches to

Shannon’s [1948] entropy and in case R → ∞, RH (P) → (1 −max pi) , i = 1, 2, .....,N.

Setting r = 1
R in (1.1), we get

Hr (P) =
1

1 − r

⎡⎢⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎜⎜⎜⎝ N∑

i=1

p
1
r
i

⎞⎟⎟⎟⎟⎟⎠
r⎤⎥⎥⎥⎥⎥⎥⎦ , r > 0 (� 1) , (1.2)

which is a measure mentioned by Arimoto [1971] as an example of a generalized class of information measure. It may be

marked that (1.2) also approaches to Shannon’s [1948] entropy as r → 1.

Let ΔN = {P = (p1, p2, ..., pN) , pi ≥ 0,
∑

pi = 1}, N ≥ 2 be the set of all finite discrete probability distributions, for any

probability distribution (p1, p2, ..., pN) = P ∈ ΔN ,

Shannon [1948] defined entropy as:

H (P) = −
∑

pi log pi. (1.3)

Throughout this paper,
∑

will stand for
∑N

i=1 unless otherwise stated and logarithms are taken to the base D (D > 1).
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Let a finite set of N input symbols

X = {x1, x2, ..., xN}
be encoded using alphabet of D symbols, then it has been shown by Feinstien [1956] that there is uniquely decipherable

instantaneous code with length n1, n2, . . . , nN iff ∑
D−ni ≤ 1 (1.4)

where D is the size of code alphabet.

If

L =
∑

ni pi (1.5)

be the average codeword length then for a code which satisfies (1.4) it has also been shown by Feinstien [1956], that

L ≥ H (P) (1.6)

with equality iff

ni = − logD pi for i = 1, 2, . . . ,N (1.7)

and that by suitable encoded into words of long sequences, the average length can be made arbitrary close to H (P). This

is Shannon’s noiseless coding theorem.

By considering Renyi’s [1961] entropy, a coding theorem and analogous to the above noiseless coding theorem has been

established by Campbell [1965] and the authors obtained bounds for it in terms of Hα(P)= 1
1−α logD

∑
Pα

i , α > 0(� 1) .

Kieffer [1979] defined a class rules and showed Hα (P) is the best decision rule for deciding which of the two sources can

be coded with expected cost of sequences of length n when n → ∞, where the cost of encoding a sequence is assumed to

be a function of length only. Further Jelinek [1980] showed that coding with respect to Campbell [1965] mean length is

useful in minimizing the problem of buffer overflow which occurs when the source symbol are being produced at a fixed

rate and the code words are stored temporarily in a finite buffer.

Hooda and Bhaker [1997] consider the following generalization of Campbell [1965] mean length:

Lβ (t) =
1

t
logD

⎧⎪⎪⎨⎪⎪⎩
∑

pβi D−tni∑
pβi

⎫⎪⎪⎬⎪⎪⎭ , β ≥ 1

and proved

Hβ
α (P) ≤ Lβ (t) < Hβ

α (P) + 1, α > 0, α � 1, β ≥ 1

under the condition

∑
pβ−1

i D−ni ≤
∑

pβi

where Hβ
α (P) is generalized entropy of order α = 1

1+t and type β studied by Aczel and Daroczy [1963] and Kapur [1967].

It may be seen that the mean codeword length (1.5) had been generalized parametrically and their bounds had been studied

in terms of generalized measures of entropies. Here we give another generalization of (1.5) and study its bounds in terms

of generalized entropy of order α and type β.

Longo [1976], Gurdial and Pessow [1977], Singh, Kumar and Tuteja [2003], Parkash and Sharma [2004], Hooda and

Bhaker [1997], Khan, Bhat and Pirzada [2005] have studied generalized coding theorems by considering different gener-

alized measure of (1.3) and (1.5) under condition (1.4) of unique decipherability.

In this paper we study some coding theorems by considering a new function depending on parameters R and β. Our

motivation for studying this new function is that it generalizes some entropy function already existing in literature Boekee

and Lubbe [1980] which is used in physics.

2. Coding Theorem

In this section, we define information measure as

Hβ
R (P) =

R
R − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣1 −
⎛⎜⎜⎜⎜⎜⎝
∑

pRβ
i∑

pβi

⎞⎟⎟⎟⎟⎟⎠
1
R
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.1)

where R > 0 (� 1) , β > 0, pi > 0,
∑

pi = 1, i = 1, 2, . . . ,N.
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(i) When β = 1, (2.1) reduces to Boekee and Lubbe [1980] R-Norm information measure.

i.e. HR (P) =
R

R − 1

[
1 −

(∑
pR

i

) 1
R

]
. (2.2)

(ii) When β = 1, R → 1, (2.1) reduces to Shannon’s [1948] entropy.

i.e. H (P) = −
∑

pi log pi. (2.3)

(iii) When R → 1, (2.1) reduces to Mathur and Mitter’s [1972] entropy for the β- power distribution.

i.e. Hβ (P) = −
∑

pβi log pβi∑
pβi

. (2.4)

Definition: The mean length LβR with respect to information measure is defined as :

LβR =
R

R − 1

⎡⎢⎢⎢⎢⎢⎢⎣1 −
∑N

i=1 pβi D−ni( R−1
R )∑N

j=1 pβj

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

where R > 0 (� 1) , β > 0, pi > 0,
∑

pi = 1, i = 1, 2, . . . ,N.

(i) When β = 1, (2.5) reduces to Boekee and Lubbe [1980] mean codeword length.

i.e. LR =
R

R − 1

[
1 −

∑
piD−ni( R−1

R )
]
. (2.6)

(ii) When β = 1, R → 1, (2.5) reduces to a mean code length defined by Shannon [1948].

i.e. L =
∑

ni pi.

Also, we have used the condition
N∑

i=1

D−ni ≤
N∑

j=1

pβj (2.7)

to find the bounds. It may be seen that in the case when β = 1, then (2.7) reduces to Kraft Inequality (1.4).

We establish a result, that in a sense, provides a characterization of Hβ
R (P) under the condition of (2.7).

Theorem 2.1 For all integers D > 1

LβR ≥ Hβ
R (P) (2.8)

under the condition (2.7) equality holds iff

ni = − logD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pRβ

i∑N
i=1 pRβ

i∑N
j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R > 0, R � 1, β > 0. (2.9)

Proof. By Holder inequality we have ⎛⎜⎜⎜⎜⎜⎝ N∑
i=1

xp
i

⎞⎟⎟⎟⎟⎟⎠
1
p
⎛⎜⎜⎜⎜⎜⎝ N∑

i=1

yq
i

⎞⎟⎟⎟⎟⎟⎠
1
q

≤
N∑

i=1

xiyi, (2.10)

where p−1 + q−1 = 1; p( � 0) < 1, q < 0 or q( � 0) < 1 , p < 0; xi, yi > 0

for each i.

Let p = R−1
R , xi =

(
pβi∑N

j=1 pβj

)( R
R−1 )

D−ni ,

q = 1 − R and yi =

(
pRβ

i∑N
j=1 pβj

) 1
1−R

.

Putting these values in (2.10) and using (2.9), we get⎛⎜⎜⎜⎜⎜⎜⎝
∑

pβi D−ni( R−1
R )∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
R

R−1
⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1

1−R

≤
∑N

i=1 D−ni∑N
j=1 pβj

≤ 1
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it implies ⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1

1−R

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pβi D−ni( R−1
R )∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
R

1−R

. (2.11)

Here two cases arise

Case 1. When 0 < R < 1, then raising power
(

1−R
R

)
to both sides of (2.11), we have

⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1
R

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∑

pβi D−ni( R−1
R )∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
we obtain the result (2.8) after simplification for R

R−1
< 0 as 0 < R < 1.

i.e.

LβR(P) ≥ Hβ
R(P), when 0 < R < 1. (2.12)

Case 2. Similarly we can prove (2.8) for R > 1 .

Theorem 2.2 On properly choosing the lengths n1, n2, , ..........nN in the code of theorem 2.1, LβR(P) can be made to satisfy

the following inequality:

Hβ
R(P) ≤ LβR(P) < D

1−R
R H

β
R

(P) +
R

R − 1
(1 − D

1−R
R ), (2.13)

where Hβ
R(P) and LβR(P) are given by (2.1) and (2.5) respectively.

Proof: It can be proved that there is equality in (2.8) if and only if

D−ni =
pRβ

i∑N
i=1 pRβ

i∑N
j=1 pβj

, R > 0, R � 1, β > 0

or ni = − logD pRβ
i + logD

[∑N
i=1 pRβ

i∑N
j=1 pβj

]
.

We choose the codeword lengths n′i s as integers satisfying

− logD pRβ
i + logD

⎡⎢⎢⎢⎢⎢⎢⎣
∑N

i=1 pRβ
i∑N

j=1 pβj

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ ni < − logD pRβ
i + logD

⎡⎢⎢⎢⎢⎢⎢⎣
∑N

i=1 pRβ
i∑N

j=1 pβj

⎤⎥⎥⎥⎥⎥⎥⎦ + 1. (2.14)

From the left inequality of (2.14), we have

D−ni ≤ pRβ
i∑N

i=1 pRβ
i∑N

j=1 pβj

, (2.15)

taking sum over i, we get the generalized inequality (2.7). So there exists a generalized personal code with length n′i s.

Let 0 < R < 1, then (2.14) can be written as

pβ(R−1)

i

⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1−R

R

≥ D−ni( R−1
R ) > pβ(R−1)

i

⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1−R

R

D
1−R

R . (2.16)

Multiplying (2.16) by
pβi∑N

j=1 pβj
throughout, summing over i and we obtain the result (2.13) after simplification for R

R−1
< 0

as 0 < R < 1.

i.e. R
R−1

⎛⎜⎜⎜⎜⎜⎜⎝1 −
(∑N

i=1 pRβ
i∑N

j=1 pβj

) 1
R
⎞⎟⎟⎟⎟⎟⎟⎠ ≤ R

R−1

(
1 −

∑N
i=1 pβi D−ni( R−1

R )∑N
j=1 pβj

)

< D
1−R

R

⎧⎪⎪⎪⎨⎪⎪⎪⎩ R
R − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pRβ
i∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1
R
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ + R

R − 1

(
1 − D

1−R
R

)
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Hβ
R(P) ≤ LβR(P) < D

1−R
R H

β
R(P) + R

R−1
(1 − D

1−R
R ), which gives (2.13).

Similarly we can prove (2.13) for R > 1 .

Theorem 2.3 For every code with length {ni}, i = 1, 2, . . . ,N of theorem 2.1, LβR can be made to satisfy,

LβR ≥ Hβ
R (P) > Hβ

R (P) D +
R

R − 1
(1 − D) . (2.17)

Proof: Suppose

n̄i = − logD

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pRβ

i∑N
i=1 pRβ

i∑N
j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , R > 0, R � 1, β > 0. (2.18)

Clearly n̄i and n̄i + 1 satisfy ‘equality’ in Holder’s inequality (2.10). Moreover, n̄i satisfies (2.7). Suppose ni is the unique

integer between n̄i and n̄i + 1, then obviously, ni satisfies (2.7).

Since R > 0 (� 1), we have ∑N
i=1 pβi D−ni( R−1

R )∑N
j=1 pβj

≤
∑N

i=1 pβi D−n̄i( R−1
R )∑N

j=1 pβj
< D

⎛⎜⎜⎜⎜⎜⎜⎝
∑N

i=1 pβi D−n̄i( R−1
R )∑N

j=1 pβj

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.19)

Since,
∑N

i=1 pβi D−n̄i( R−1
R )∑N

j=1 pβj
=

(∑
pRβ

i∑
pβj

) 1
R

.

Hence (2.19) becomes ∑N
i=1 pβi D−ni( R−1

R )∑N
j=1 pβj

≤
⎛⎜⎜⎜⎜⎜⎜⎝
∑

pRβ
i∑

pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1
R

< D

⎛⎜⎜⎜⎜⎜⎜⎝
∑

pRβ
i∑

pβj

⎞⎟⎟⎟⎟⎟⎟⎠
1
R

which gives (2.17).

References

A. Feinstein. (1956). Foundation of Information Theory, McGraw Hill, New York.

A. Renyi. (1961). On Measure of entropy and information, Proc. 4th Berkeley Symp. Maths. Stat. Prob., Vol.1 547-561.

A.B. Khan, B.A. Bhat and S. Pirzada. (2005). Some Results on a Generalized Useful Information Measure. Journal of
Inequalities in Pure and Applied Mathematics, Vol. 6, Issue 4, Article 117.

C. Tsallis. (1988). Possible Generalization of Boltzmann Gibbs Statistics. J. Stat. Phy., 52 479.

C.E. Shannon. (1948). A Mathematical Theory of Communication. Bell System Tech.J, 27 379-423 623-656.

D.S. Hooda and U.S. Bhaker. (1997). A generalized ‘useful’ information measure and coding theorems. Soochow J.
Math, 23 53-62.

E. Boekee and J.C.A. Vander Lubbe. (1980). The R-norm Information Measure. Information and Control, 45 136-155.

F. Jelinek. (1980). Buffer overflow in variable lengths coding of fixed rate sources, IEEE, 3 490-501.

G. Longo. (1976). A Noiseless Coding Theorem for Sources Having Utilities. Siam J. Appl. Math, 30 739-748.

Gurdial and F. Pessow. (1977). On Useful Information of order α. J. Comb. Information and Syst. Sci., 2 30-35.

I. Vajda. (1961). On measure of entropy and information, Proc. Fourth Berk. Symp. in Math, Stat. and Prob, 1 547-561.

J. Aczel and Z. Daroczy. (1963). Uber Verallegemeineste quasiliniare mittelveste die mit grewinebts functionen gebildet

Sind. Pub. Math. Debrecan, 10 171-190.

J. Mitter and Y.D Mathur. (1972). Comparison of entropies of power distribution. ZAMM, 52 239-240.

J.C. Kieffer. (1979). Variable lengths source coding with a cost depending only on the codeword length. Information and
Control, Vol. 41 136-146.

J.F. Havrda and F. Charvat. (1967). Qualification Method of Classification Process, the concept of structural α-entropy.

Kybernetika, 3 30-35.

J.N. Kapur. (1967). Generalized entropy of order α and type β. Maths Seminar, Delhi, Vol. 4.

L.L. Campbell. (1965). A coding theorem and Renyi’s entropy. Information and Control, Vol. 8 423-429.

Published by Canadian Center of Science and Education 129



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

Om Parkash and P.K Sharma. (2004). Noiseless Coding Theorems Corresponding to Fuzzy Entropies. Southeast Asian
Bulletin of Mathematics, 27 1073-1080.

R.P. Singh, R. Kumar and R.K. Tuteja. (2003). Application of Holder’s Inequality in Information Theory. Information
Sciences, 152 145-154.

S. Arimoto. (1971). Information Theoretical Considerations on Estimation Problems. Information and Control, 1 181-

199.

Satish Kumar. (2009). Some More Results on R-Norm Information Measure. Tamkang Journal of Mathematics, Vol. 40

No. 1 41-58.

Z. Daroczy. (1970). Generalized Information Functions. Information and Control, 16 36-51.

130 ISSN 1916-9795 E-ISSN 1916-9809


