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Abstract 

In this work, the solution of the impulsive neutral integro-differential system is analysed. The Du Bois–Reymond’s 

assumptions on solution variation of piecewise smooth functions are used to establish the existence of only the impulsive 

term as a solution of the system at the points of discontinuity. The theories of infinitesimal generator of a strongly 

continuous compact semigroup is used to formulate theorems on existence and uniqueness of system solution, and 

proves are provided using an approximate piecewise continuous, compact operator and a continuous positive non 

decreasing function ),0(),0[:  . Results obtained are improvement on the qualitative analysis of impulsive neutral 

integro-differential system 

2010 Mathematical Subject Classification: 74G30, 93D20, 93B05 

Keywords: neutral system, resolvent matrix, existence, uniqueness 

1. Introduction 

An impulsive neutral integro-differential equation is an equation which involves both the integral and derivatives of the 

unknown function, with time lag incorporated in both the state and derivative of the system (which describe the historical 

value of the rate of change and the state) and a coupled impulsive term showing the abrupt changes of the state at certain 

moments of time between intervals of continuous evolution. This equation has wide application in various evolutionary 

processes including population dynamics, aeronautics, economics and engineering. There have been increasing interests 

in the analysis of the qualitative properties of the impulsive neutral integro-differential equation, mostly on the theories of 

existence and uniqueness of the system solution (see; Bainov, Myshkis & Zahariev, 1987; Bainov & Simeonov, 1985; 

Benchohra & Ntouyas, 2006; Haddad, Chellaboina & Nersesor, 2008; Hale & Kato, 1987; Igobi, Eni, Eteng & Atsu, 2011; 

Isaac & Lipscey, 2010; Jiang & Shen, 2011).  

Some researchers have employed the approximation of the impulsive neutral integro-differential equation as an 

integro-differential equation coupled with a difference equation to be satisfied at certain fixed or variable impulse times. 

The resulting solutions are thereby piecewise continuous (with discontinuity at the impulse times). This approach ensures 

that the well-established results for integro-differential equations are utilised to developed theories on existence and 

uniqueness of the system solution (Agawal & Saker, 2001; Ballinger, 1999; Benchohra & Ntouyas, 2006; Bao & Hou, 

2010; Diop, Ezzinbe & Zene, 2015; Diop, Ezzinbe & Lo, 2012; Kavilla, Arjunan & Ravichandran, 2014; Li & 

N’Guerekata, 2010). 

Alternative approach used by Halanay and Wexler (1968) and Pandit and Deo (1982) involves defining a measure 

differential equation (incorporating Dirac delta functions) where the derivative involved is a distributional derivative. The 

points at which impulses occur are fixed, generalized functions are considered and the resulting solutions are of bounded 

variation. The disadvantage of this approached is that most classical theory cannot be applied to these types of systems. 

In this research, the first approach is employed to analyse the solution of the impulsive neutral integro-differential system 

in the Banach space )(X . The Du Bois–Reymond’s assumptions on solution variation of piecewise smooth functions are 

used to establish the impulsive term as the only solution term of the system at the points of discontinuity. The theories of 

infinitesimal generator of a strongly continuous compact semigroup is used to formulate theorems on existence and 

uniqueness of system solution, and proves are provided using an approximate piecewise continuous, compact operator 

and a continuous positive non decreasing function ),0(),0[:  .   
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2. Preliminary Results 

Consider a piecewise continuous linear space  XJPC , , for XandRTtJ ),( 0
 a Banach space. Let 

 XJPCrtxxt ,[)(  defined a delay function, with a delay constant 0r , and RXJf : be a piecewise 

continuous, compact operator in X  such that for  XJPCtx ,)(   , the impulsive neutral integro-differential 

equation is of the form 
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where  ,,0

nRJPC  is the initial data at any time 0t , and for nRXJI :  , 

mktxtxtxIx kkkktt k
.,..,1:)()())((|  


, defined the impulsive term experienced at points

mktk .,..,2,1,   , such that )(),( 

kk txtx represent the right and the left limit of )(tx  at 
ktt   

respectively and D  is a differential operator of the delay function tx . A  is an infinitesimal generator of a strongly 

continuous compact semigroup (.)R  in X .  

Definition 2.0 

A matrix function  nRJPCtt ,)(   is called a matrix solution of the homogeneous linear system (2.1) if each of 

its columns is a vector solution. A matrix solution   is called the fundamental matrix solution of (2.1) if its columns 

form a fundamental set of solutions whose columns are linearly independent, and )( 0t is invertible. 

Definition 2.1 

Let A  be an infinitesimal generator of a strongly continuous compact semigroup (.)R  satisfying the 

Chapman-Kolmogorov identities 

i. IttR ),(  

ii. ),(),(),( utRusRstR   

iii. ),(),( 1 tsRstR 
. 

Then, there exists a strongly continuous exponentially bounded family 
)(1

00
0)()(),(

ttA
ettttR

    known as 

the resolvent matrix of equation (2.1)  

Definition 2.2 

The function  ,,)( XJPCtx   is said to be a mild solution of (2.1) if  

i. 
)(tx  is continuous at each 

 RTtJt ),( 0
  

ii. the derivative of )(tx  exists and satisfies equation (2.1) for ],[ ,0 kttt and 

mktxIx kktt k
,...,1)),((|  


 and 

iii. there exists a continuous function txt : and a continuous positive non decreasing function
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),0(),0[:  , such that for any ),(1
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so that 
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Hypothesis 2.1 

Assume the following Du Bois–Reymond’s assumptions on solution variation of piecewise smooth function hold   
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for ...,3,2,1),,( 0  kttt k , and ),( stR  the resolvent matrix. 

Lemma 2.1 

Let  XJPCtx ,)(   be a mild solution of system (2.1), then for all ),(),( 00 trtJttvx kt  , ),( 0ttR is 

constant at finite number of points ...,2,1:  ktt k , and 0),(
0

 dsDxstR
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Corollary 2.0 

Given an initial data  ,,[0 XJPC
 
and ),( 0ttR  satisfying definition (2.1), then the mild solution  XJPCtx ,)( 

is, 
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3. Main Result  

Hypothesis 3.0 

H1.  Let RXJ :  be a piecewise continuous, compact operator in X , such that for any continuous 
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function X , ],[,)()( 0 Tttttx    and ),(),(  txtDx tt  .  

H2. For ,: nRXJI   such that mktxIx kktt k
.,..,1));((|  


, there exists a constant 0kB

such that kk
Jt
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))((sup  and 
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Theorem 3.0 

Suppose assumptions H1, H2, H3 of (3.0) hold, such that for any continuous positive non decreasing function
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Then, there exists a mild solution )(tx  of (2.3), such that    
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By assumption (3.0) of H1, there exists a function X1  such that ],[,)()( 10 tttttx   , 

and equation (3.2) implies 
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Therefore, for each possible mild solution )(tx  of equation (2.2), 
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Hypothesis 3.1 

H4. Let RX : satisfies  H1 such that  
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exists 
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Then ))(()( txtH  satisfies the contraction mapping principle on ),( XJ , and therefore ),()( XJtx   is a unique 

fixed point which is the unique solution of equation (2.1). 

4. Conclusion 

The analysis of the solution of the impulsive neutral integro-differential system in the Banach space X  was considered. 

Theorem and prove on the existence of only the impulsive term as a solution of the system equations at the points of 

discontinuity was presented using the Du Bois–Reymond’s assumptions on solution variation of piecewise smooth 

functions. Theorems on existence and uniqueness of the system solution were formulated using the rich theories of an 

infinitesimal generator A  of a strongly continuous compact semigroup (.)R , and proves were provided using an 

approximate piecewise continuous, compact operator and a continuous positive non decreasing function

),0(),0[:  . Results obtained are improvement on the qualitative analysis of impulsive neutral integro-differential 

system 
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