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Abstract 

In 1872, Lazarus Fuchs used a new tool which is The Invariant Theory to construct the minimal polynomial of an 

algebraic solution of a differential equation of second order. He expressed the coefficient of the equation in terms of the 

(semi-)invariants of its differential Galois group. In this paper we will give another method to obtain Fuchs Relation:  
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for the octahedral groupe 2

4

SL
S by using Groebner Basis; a tool which is introduced in 1965 nearly two century after 

Fuchs Relation.  
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1. Introduction  

This section is a recall of some definitions in the theories that we will depond on in our study.  

In the second section we will give an Algorithm to obtain Fuchs Relation and in the third section we will expose the codes 

Maple and Magma we have used. 

In 1872, Lazarus Fuchs used a new tool which is the Invariant Theory to construct the minimal polynomial of an algebric 

solution of a differential equation of second order whose solutions space is generated by  1 2,y y (Baldassarri, F. & 

Dwork, B., 1979; Kovacic,. J.. 1985). He expressed the coefficient of the equation in terms of the (semi-)invariants ,I S
and differential semi-invariant ,  S S of its differential Galois group . L. Fuchs found this relation:  
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such that w is the wronskian and 0a  is the coefficient in the ordinairy linear differential equation:  

  0L y y a y   

over a differential field  ,k   whose field of constants C  is algebraically closed of characteristic 0. 

I and S are the invariant and the semi-invariant: 8 4 4 8

1 1 2 214I y y y y   , 5 5

1 2 1 2S y y y y  of the group 2

4

SL
S generated 

by the matrices A and B  such that:  
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(for more knowledge about Representation Theory refer to (Fulton, W. & Harris, J., 1991), (Weyl, H., 1946)). 

  



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 4; 2018 

50 

2. Invariants Theory  

Definition 1. Let V be a finite dimensional K -vector space and G  be a linear subgroup of  GL V . An invariant is a 

polynomial function  f K V which remains unchanged under the group action, i.e f f g  for all g G . If, for 

some g G , f and f g differ from each other only by a constant factor then the polynomial function f  is called a 

semi-invariant (or a relative invariant) (for more knowledge about Invariant Theory refer to (Benson, D. J., 1993), (Cox, 

D. J., 1992), (Sturmfels,. B., 1993)).  

Remark. The computation of Reynold Operator and Molien series which is needed to find invariants is implemented in 

different Programs such as Mathematica and Magma.  

Differential Galois Theory  

Definition 1. A differential field  ,k  is a field k together with a derivation   in k . The set of all constants 

 ,  0C a k a    is a subfield of  ,k  . 

Let C  be a field algebraically closed and  ,k  a differential field be of characteristic0 . Consider the following ordinary 

homogeneous linear differential equation:  

         1

1 1 0  0               1
n n

n iL y y a y a y a y a k



        

over  ,k   with a system  1, ,  ny y of fundamental solutions. By extending the derivation   to a system of 

fundamental solutions and by adjunction of these solutions and their derivatives to  ,k   in a way the field of constants 

does not change, one gets 1, ,  nK k y y , the so-called Picard-Vessiot extension (PVE) of   0L y  . With these 

assumptions, the PVE of   0L y 
 

always exists and is unique up to differential isomorphisms. This extension plays 

the same role for a differential equation as a splitting field for a polynomial equation.  

The set of all automorphisms of K , which fix  ,k   elementwise and commute with the derivation in K , is a group, 

the differential Galois group    /K k LS S  of   0L y  . 

Definition 2. Let
 

1, ,  ny y  be elements in a differential field  ,k  . The Wronskian of these elements is the matrix:  

       
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(for more knowledge about Differential Galois theory refer to (Magid,. A., 1994), (Kolchin, E. R., 1948)).  

Theorem(Kolchin, E. R., 1948) A differential equation   0L y   with coefficients in k has Only solutions which are 

algebraic over k  if and only if  LS  is a finite groupe.  

Groebner Basis  

Definition 1. A monomial ordering on  1,  , nk x x  is any relation on 0

n

 , or equivalently, any relation  

on the set of monomials x  , 0

n  , satisfying :  

i.  is a total (or linear) ordering on 0

n

 .  

ii. If    and 0

n  , then      .  

iii. is a well-ordering on 0

n

 .  

Definition 2. ((Cox, D. J., 1992), p.77). Fix a monomial order. A finite subset  1,   ,gtG g  of an ideal I  is said to 

be a Groebner basis if  

     1LT ,   ,LT g LTtg I  
Equivalently, but more informally, a set    1 1,   ,g  ,  , t ng I k x x 

 
is a Groebner basis of I

 
if and only if 

the leading term of any element of I  is divisible by one of the  LT gi
.  

Corollary ((Cox, D. J., 1992), p.77). Fix a monomial order. Then every ideal  1,  , nI k x x  other than  0 has 

a Groebner basis. Further more, any Groebner basis for an ideal I  is a basis of I .
 
 

Definition 3. Given  1 1, ,    , ,  s nI f f k x x  , the l th elimination ideal lI  is the ideal of 

 1, ,  l nk x x
defined by: 
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 1, ,  l l nI I k x x  . 

Thus, lI  consists of all consequences of 1  0sf f   which eliminate the variables 1, ,  lx x . 

Theorem (The Elimination Theorem). (Theorem2 (Cox, D. J., 1992), p.116)Let  1,  ,  nI k x x  be an ideal and 

let G be a Groebner basis of I  with respect to lex  order where 1 2   nx x x . Then, for  

every 0 l n  , the set: 

 1,  ,  l l nxG k xG    

is a Groebner basis of the l th elimination ideal lI . 

Remark. an ordinairy linear differential equation over a differential field  ,k   whose field of constants C is 

algebraically closed of characteristic 0: 

         1

1 0 1 0,   ,  ,          1
n n

n nL y y a y a y a a k


       

can be transformed by the variable transformation 

1

2exp
a

dx

y z


  to an equation of the form: 

               2

2 0                     2
n n

SL nL y y a y a y


     

(see procedure transfereL, III), without losing the Liouvillian character of the solutions (cf. (Kolchin, E. R., 1948), p.184). 

Indeed, the differential Galois group of  2  is unimodulair (cf. (Kaplansky, I., 1957), p.41), so we will deal with the form 

 2 (for more knowledge about Liouvillian solutions of second order homogeneous Linear Differential Equations refer to 

(Fakler, W., 1996)). 

2. Compute L. Fuchs Relation by using Groebner Bases 

In this section, we compute the relation of L. Fuchs by using Groebner Bases (for more knowledge about Groebner Basis 

refer to (Adams, W., & Loustaunau, P., 1994), (Cox, D. J., 1992)).  

Let   0L y y a y  be an ordinairy linear differential equation over a differential field  ,k  whose field of constants 

C is algebraically closed of characteristic 0, with differential Galois group 2

4

SL
SS= . L. Fuchs has found this relation: 

2 2

02

1 36 6

5 5
I a S SS S

w

 
    

   

Which relates (semi-)invariants S , I , differential semi-invariants S  andS  , the wronskian w  and the coefficient 

0a . In fact, we will prove in this paper that we can obtain this relation by using Groebner Bases, in particular the 

elimination ideal ((Cox, D. J., 1992), p.115).  

Before giving The Algorithm, we will recall this proposition from (Cox, D. J., 1992): 

Proposition1 (Cox, D. J., 1992), Proposition 7.3.3.Suppose that  1 1, ,    , ,  m nf f k x x  are given.  Fix a 

monomial order in  1 1, ,  ,  ,  ,  n mk x x y y where any monomial involving one of 1, ,  nx x is greater than all 

monomials in  1,  ,  mk y y . Let G  be a Groebner basis of the ideal 1 1,  ,   m mf y f y 

 1 1 , ,  ,  ,  ,  n mk x x y y . Given  1  , ,  nf k x x , let 
G

g f  be the remainder of f  on division by G . 

Then:  

(i)  1,  ,  mk ff f  if and only if  1,  ,  mg k y y . 
(ii) If  1,  ,  mk ff f , then  1,  ,  mf g f f  is an expression of f as a polynomial in 1,  ,  mf f  

The Algorithm is as follow: 

1. Take the ring  1 10,  , R F y y with the lex order, Such that  0F F x , 0F is the cyclotomic field 120th. 

2. Eliminate the variable iy , for 4 1,i  , from the ideal , , , ,I S I S S w  that is to calculate the Groebner 

basis for the ideal  5 10, , , , , ,I S I S S w F y y    (Proposition1, (Fuchs Relation, III). 

In this section we provide two codes in Magma and in Maple. 
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We can test the Algorithm in section two on Magma:  

// Fuchs Relation 

Q:=RationalField(); 

L<a>:=CyclotomicField(8*5*3); 

s2 :=a^(15)-a^(45); 

i :=a^(30); 

M :=GeneralLinearGroup(2,L); 

U :=M![(1+i)/s2,0,0,(1-i)/s2]; 

S :=M ![(i-1)/2,(i-1)/2,(i+1)/2,(-i-1)/2]; 

s4 :=MatrixGroup<2,L|S,U>; 

P<x1,x2,x3,x4,r,f1,f2,f3,f4,f5>:=PolynomialRing(L,10); 

S :=x1^5*x2-x1*x2^5; 

I :=x1^8+14*x1^4*x2^4+x2^8; 

ID:=InvariantDifferentie(S); 

S1 :=ID[1]; 

S2 :=ID[2]; 

W :=x1*x3-x2*x4; 

id :=ideal<P|f1-S,f2-I,f3-S1,f4-S2,f5-W>; 

EliminationIdeal(id,{r,f1,f2,f3,f4,f5}); 

Code Maple  

transfereL is a procedure to transform an ordinairy linear differential equation over a differential field k whose field of 

constants 𝐶 is algebraically closed of characteristic 0 from the form:  

  𝐿(𝑦) = 𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + ⋯ + 𝑎0𝑦, 𝑎𝑛−1, ⋯ , 𝑎0 ∈ 𝑘                         (1) 

to the form:  

  𝐿𝑆𝐿(𝑦) = 𝑦(𝑛) + 𝑎𝑛−2𝑦(𝑛−2) + ⋯ + 𝑎0𝑦,                                     (2) 

with(DEtools):_Envdiffopdomain:=[Dx,x]: 

transfereL:=proc(E,n) 

local a,b; global x,y,L; 

L:=de2diffop(E,y(x),[Dx,x]); 

a(x):=coeff(L,Dx,n-1); 

b:=simplify(exp(-int(a(x),x)/n)); 

L:=diffop2de(L,y(x)); 

L:=eval(subs(y(x)=y(x)*b,L)); 

L:=de2diffop(L,y(x),[Dx,x]); 

L:=collect(L*(1/coeff(L,Dx,n)),Dx); 

L:=diffop2de(L,y(x)); 

return(L); 

end: 
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