
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

On the Solution of the Black-Sholes Equation with Jump Process

A. Kananthai & C. Bunpog

Department of Mathematics, Chiang Mai University

Chiang Mai 50200, Thailand

&

Center of Excellence in Mathematics, Faculty of Science at Mahidol University

272 Rama 6 Road, Phayathai Campus, Ratchathewi, Bangkok, 10400, Thailand

E-mail: malamnka@science.cmu.ac.th

The research is financed by Center of Excellence in Mathematics Postgraduate Education and Research Development
Office Faculty of Science at Mahidol University for financial support.(Sponsoring information)

Abstract

In this paper, we study the well known equation that is the Black-Scholes equation by considering its solution for the case

of jump processes, particularly the jumps of prices of the stock models can be interpreted by the concepts of distribution

theory.
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1. Introduction

In the year 1973, F. Black and M. sholes has first introduced the well known equation that can be solved for the call option

of the stocks. Such equation is named the Black-Scholes equation which is given by

∂

∂t
u(s, t) + rs

∂

∂s
u(s, t) +

σ2s2

2

∂2

∂s2
u(s, t) − ru(s, t) = 0 (1)

with the terminal condition

u(sT ,T ) = (sT − k)+ (2)

denotes (sT − k)+ = max(sT − k, 0), for 0 ≤ t ≤ T where u(s, t) is the option price at time t, r is the interest rate, s = s(t)
is the price of stock at time t, sT is the price of stock on the expiration date at time T , k is the strike price and σ is the

volatility of stock. They obtain such solution
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k
)
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2
σ2)(T − t)

σ
√
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)
− ke−r(T−t)Φ

( ln
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k
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2
σ2)(T − t)

σ
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)
(3)

which is call the Black-Sholes Formula where Φ denote by

Φ(y) =
1√
2π

∫ y

−∞
e−

z2

2 dz,

(J.Michael, 2001). In this paper, we study such solution for the case of the jumps of s. Let s = s(t) be the prices of the stock

having the jumps of magnitude a1, a2, a3, . . . , am at time t = t1, t2, t3, . . . , tm respectively for 0 < t1 < t2 < t3, . . . < tm < T.
By using the jumps in the distributional sense (I.M, 1964, p22) and the method of option prices with the stock model. We

let

x(t) = s(t) −
m∑

i=1

aiH(t − ti)

where

H(t − ti) =
{

1, for ti < t;
0, for t < ti.

is a Heaviside function, and x(t) is a continuous functions for all t. Thus

s(t) = x(t) +
m∑

i=1

aiH(t − ti).
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If we put

u(s, t) = u
(
x(t) +

m∑
i=1

aiH(t − ti), t
)
= v(x(t), t),

we obtain the Black-Sholes in (1) for the jump processes in the form

∂

∂t
v(x(t), t) + r

(
x(t) +

m∑
i=1

aiH(t − ti)
) ∂
∂x

v(x(t), t)+

σ2

2

(
x(t) +

m∑
i=1

aiH(t − ti)
)2 ∂2

∂x2
v(x(t), t) − rv(x(t), t) = 0 (4)

with the terminal condition

v(x(T ),T ) =
(
x(T ) +

m∑
i=1

aiH(T − ti) − k
)+
, (5)

we obtain

v(x(t), t) =
(
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m∑
i=1

aiH(t − ti)
)

Φ
[ ln
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i=1 aiH(t−ti)
k

)
+

(
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2
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(T − t)

σ
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]

− ke−r(T−t)Φ
[ ln

( x(t)+
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i=1 aiH(t−ti)
k

)
+

(
r − σ2

2

)
(T − t)

σ
√

T − t

]
(6)

as a solution of (3) for the case of jump processes. For the case of no jumps that is ai = 0, equation (6) reduces to (1) and

(5) reduces to (2).

2. Preliminaries

Let us consider the stock model

ds = μsdt + σsdB (7)

where s = s(t) is the price of a stock at time t, μ is a drift and σ is a volatility of the stock s and B is the Wiener process

or Brownian motion. Suppose s(t) has jumps of magnitude a1, a2, a3, . . . , am at time t = t1, t2, t3, . . . , tm respectively. Let

x(t) = s(t) −
m∑

i=1

aiH(t − ti) (8)

where

H(t − ti) =
{

1, for ti < t;
0, for t < ti.

is a Heaviside function.

Now x(t) is a continuous functions for all t and the derivative dx(t)
dt =

ds(t)
dt except t = t1, t2, t3, . . . , tm. Differentiable both

sides of (8) and obtain

dx(t)
dt
=

ds(t)
dt

−
m∑

i=1

aiδ(t − ti) (9)

where ds(t)
dt is the derivative of s(t) in the distributional sense.

Now from (7), (8) and (9) we obtain

dx(t) +
m∑

i=1

aiδ(t − ti)dt = μ
[
x(t) +

m∑
i=1

aiH(t − ti)
]
dt

+ σ
[
x(t) +

m∑
i=1

aiH(t − ti)
]
dB,

dx(t) =μx(t)dt + σx(t)dB + μ
m∑

i=1

aiH(t − ti)dt

+ σ

m∑
i=1

aiH(t − ti)dB −
m∑

i=1

aiδ(t − ti)dt.
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Let

J(t) = μ
m∑

i=1

aiH(t − ti)dt + σ
m∑

i=1

aiH(t − ti)dB −
m∑

i=1

aiδ(t − ti)dt. (10)

Thus

dx(t) = μx(t)dt + σx(t)dB + J(t). (11)

Now from (1) we have u(s, t) is the option price at time t. Let

u(s, t) = u
(
x(t) +

m∑
i=1

aiH(t − ti), t
)

= v(x(t), t).

By using Itô chain rule, we have

dv(x(t), t) =
∂v(x(t), t)

∂t
dt +

∂v(x(t), t)
∂x

dx(t) +
1

2

∂2v(x(t), t)
∂x2

(dx(t))2.

By (11),

dv =
∂v
∂t

dt +
∂v
∂x

[μx(t)dt + σx(t)dB + J(t)]

+
1

2

∂2v
∂x2

[μx(t)dt + σx(t)dB + J(t)]2

dv =
∂v
∂t

dt +
∂v
∂x

[
μx(t)dt + σx(t)dB + J(t)

]
+

1

2

∂2v
∂x2

[
μ2x2(t)(dt)2 + σ2x2(t)(dB)2 + J2(t)

+ 2μσx2(t)dtdB + 2μx(t)dtJ(t) + 2σx(t)dBJ(t)
]
.

Since, we have (dB)2 ≈ dt, thus dtdB ≈ (dt)3/2. Now, (dt)2 and (dt)3/2 are not first order, so we discard the terms (dt)2

and dtdB.

From (10), we have

J2(t) =μ2
( m∑

i=1

aiH(t − ti)
)2

(dt)2 + σ2
( m∑

i=1

aiH(t − ti)
)2

(dB)2

+
( m∑

i=1

aiδ(t − ti)
)2

(dt)2 + 2μσ
( m∑

i=1

aiH(t − ti)
)2

dtdB

− 2μ

m∑
i=1

aiH(t − ti)
m∑

i=1

aiδ(t − ti)(dt)2

− 2σ

m∑
i=1

aiH(t − ti)
m∑

i=1

aiδ(t − ti)dtdB

since (dB)2 ≈ dt and the terms (dt)2 and dtdB are cancelled, Thus

J2(t) = σ2
( m∑

i=1

aiH(t − ti)
)2

d.t

Now consider the term dtJ(t) and dBJ(t), the same as before, dtJ(t) = 0 and

dBJ(t) = σ
m∑

i=1

aiH(t − ti)dt.

Thus

dv =
∂v
∂t

dt +
∂v
∂x

[
μx(t)dt + σx(t)dB + J(t)

]
+

1

2

∂2v
∂x2

[
σ2x2(t)dt

+ 2σ2x(t)
m∑

i=1

aiH(t − ti)dt + σ2
( m∑

i=1

aiH(t − ti)
)2

dt
]
,
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or

dv =
∂v
∂t

dt +
∂v
∂x

[
μx(t)dt + σx(t)dB + J(t)

]
+
σ2

2

∂2v
∂x2

[
x(t) +

m∑
i=1

aiH(t − ti)
]2

dt. (12)

Let u(s, t) = φs + ψp where φ is a number of shares of stock and ψ is a number of bonds and p is the value of a bond.

Now, we have du(s, t) = φds + ψdp and

ds = dx(t) +
m∑

i=1

aiδ(t − ti)

= μ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dt + σ

(
x(t) +

m∑
i=1

aiH(t − ti)
)
dB.

Thus

du(s, t) = du
(
x(t) +

m∑
i=1

aiH(t − ti), t
)

= φ
[
μ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dt

+ σ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dB

]
+ ψrpdt

where dp = rpdt, r is the interest rate. We set u(s, t) = v(x(t), t) thus

dv =φ
[
μ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dt

+ σ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dB

]
+ ψrpdt (13)

we equate the dv from (12) and (13) and

μx(t)dt + σx(t)dB + J(t)

= μ
(
x(t) +

m∑
i=1

aiH(t − ti)
)
dt + σ

(
x(t) +

m∑
i=1

aiH(t − ti)
)
dB

and choose φ = ∂v
∂x , we then obtain

∂v
∂t

dt +
σ2

2

∂2v
∂x2

[
x(t) +

m∑
i=1

aiH(t − ti)
]2

dt = ψrpdt. (14)

Now

u(s, t) = u
(
x(t) +

m∑
i=1

aiH(t − ti)
)
= v(x(t), t)

= φs + ψp =
∂v
∂x

(
x(t) +

m∑
i=1

aiH(t − ti)
)
+ ψp

thus

ψp = v(x(t), t) − ∂v
∂x

(
x(t) +

m∑
i=1

aiH(t − ti)
)

rψpdt =
(
rv(x(t), t) − r

(
x(t) +

m∑
i=1

aiH(t − ti)
)∂v
∂x

)
dt. (15)
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From (14) and (15)

(∂v
∂t

dt +
σ2

2

(
x +

m∑
i=1

aiH(t − ti)
)2 ∂2v
∂x2

)
dt

=
(
rv − r

(
x +

m∑
i=1

aiH(t − ti)
)∂v
∂x

)
dt

thus

∂v
∂t
+ r

(
x +

m∑
i=1

aiH(t − ti)
)∂v
∂x

+
σ2

2

(
x +

m∑
i=1

aiH(t − ti)
)2 ∂2v
∂x2

− rv = 0 (16)

Equation (16) is the Black-Sholes P.D.E with jump processes.

Now Put

R = x +
m∑

i=1

aiH(t − ti),

thus
∂v
∂x
=
∂v
∂R

· ∂R
∂x
=
∂v
∂R

and
∂2v
∂x2
=
∂2v
∂R2

· ∂R
∂x
=
∂v2

∂R2

thus (16) becomes

∂v(R, t)
∂t

+ rR
∂v(R, t)
∂R

+
σ2

2
R2 ∂

2v(R, t)
∂R2

− rv(R, t) = 0 (17)

which is the Black-Scholes equation with R = x(t) +
∑m

i=1 aiH(t − ti) and 0 ≤ t ≤ T . From (2), we have the terminal

condition u(s,T ) = (sT − k)+, k is the strike price. Since sT = x(T ) +
∑m

i=1 aiH(T − ti), thus

v(R,T ) = (RT − k)+ (18)

RT = x(T ) +
∑m

i=1 aiH(T − ti) is the price of stock at time t = T .

In this work, we study the equation (17) with the terminal condition (18). So, we can say that the equation (1) with the

terminal condition (2) is the Black-Sholes equation with no jump. If we have jump processes, we obtain (16). If we put

R = x(t) +
∑m

i=1 aiH(t − ti), we obtain (17) with the terminal condition (18). We next study the Black-Sholes formula with

jump process. Recall that, for the call option price today is

v(s,T ) = s0N(d+(T, s0)) − ke−rT N(d−(T, s0))

which is called the Black-Sholes formula where s0 = s(0), sT = s0 exp
[
(r − σ

2
)T + σB(T )

]
, for t = T , 0 ≤ t ≤ T ,

B(T ) is the Brownian motion at time t = T , r is the interest rate, σ is the volatility of the stock s, d±(T, s0) =
1

σ
√

T

[
ln

(
s0

k

)
+

(
r ± σ2

2

)
T

]
, k is the strike price and N is the cumulative standard normal distribution function

N(y) =
1√
2π

∫ y

−∞
e−z2/2dz =

1√
2π

∫ ∞

−y
e−z2/2dz.

For the jump processes, we have s(t) = x(t) +
∑m

i=1 aiH(t − ti).
Now, for t = T , s(T ) = sT = x(T ) +

∑m
i=1 aiH(T − ti)

and t = 0, s(0) = x(0), since
∑m

i=1 aiH(−ti) = 0 for ti > 0

or s0 = x0 = x(0). Thus for the call option to day, we obtain

v
(
x(T ) +

m∑
i=1

aiH(T − ti),T
)
= x0N(d+(T, x0)) − ke−rT N(d−(T, x0)).

Thus, we see that the call options to day for the jump and no jump are the same and can be computed from the same

Black-Sholes formula.
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We next study the solutions of the Black-sholes equation given by (17) with the given terminal condition (18). From the

Black-Sholes formula we try the solution

v(R, t) = RN(d+(T − t,R)) − ke−r(T−t)N(d−(T − t,R)) (19)

where

d± =
1

σ
√

T − t

[
ln

(R
k

)
+

(
r ± σ2

2

)
(T − t)

]
, (20)

0 ≤ t ≤ T . We show that v(R, t) satisfies (17).

At first we can verify that

ke−r(T−t)N′(d−) = RN′(d+) (21)

see [1, p.193], where R = x(t) +
∑m

i=1 aiH(t − ti), N′(d±) is the derivative of N(d±). From (19), (20)and (21), we can

compute
∂v(R, t)
∂R

= N(d+),
∂2v(R, t)
∂R2

=
1

σR
√

T − t
N′(d+)

and also
∂v(R, t)
∂R

= rke−r(T−t)N(d−) − σR

2
√

T − t
N′(d+) see[1, p.159]

substitute into (17),

rke−r(T−t)N(d−) − σR

2
√

T − t
N′(d+) + rRN(d+)

+
σ2

2
R2 · 1

σR
√

T − t
N′(d+) − rRN(d+) − rke−r(T−t)N(d−) = 0

thus lefthand side are cancelled to be zero. That implies (17) holds. It follows that v(R, t) given by (19) is the solution of

(17).

3. Main results

The work in the preliminaries section, starting form (7)-(21) leading to the main theorem.

Theorem 1. Given the Black-Scholes equation

∂v(R, t)
∂t

+ rR
∂v(R, t)
∂R

+
σ2

2
R2 ∂

2v(R, t)
∂R2

− rv(R, t) = 0 (22)

with the terminal condition
v(R,T ) = (RT − k)+ (23)

where R = x(t)+
∑m

i=1 aiH(t− ti) and RT = x(T )+
∑m

i=1 aiH(T − ti) is the price of stock at time t = T for the jump processes,
r is the interest rate and σ is the volatility of the stock. Then we obtain the unique solution of (22) satisfies (23) which is
given by

v(R, t) = RN(d+(T − t,R)) − ke−r(T−t)N(d−(T − t,R)), (24)

and

R = x(t) +
m∑

i=1

aiH(t − ti), (25)

thus, for the jumps case, we obtain

v
(
x(t)+

m∑
i=1

aiH(t − ti), t
)

=
(
x(t) +

m∑
i=1

aiH(t − ti)
)
N(d+) − ke−r(T−t)N(d−) (26)

as the solution of the Black-Sholes equation with jump processes.

Proof.

Now, we have

H(t − ti) =
{

1, for ti < t;
0, for t < ti.

i = 1, 2, . . . ,m
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Thus for ti < t in (25) we obtain the solution

v =
(
x(t) +

m∑
i=1

ai

)
N(d+) − ke−r(T−t)N(d−)

where
∑m

i=1 ai is the sum of magnitude of the jumps of the prices of stock for m times of jumps at time t1, t2, t3, . . . , tm.

We can also show that v(R, t) a unique solution of (22) which satisfies (23). Consider

N(d±(T − t,R)) =
1√
2π

∫ d±(T−t,R)

−∞
e−y2/2dy

where d±(T − t,R) = 1

σ
√

T−t

[
ln

(
R
k

)
+

(
r ± σ2

2

)
(T − t)

]
.

Thus lim
t→T

d±(T − t,R) = ∞ for R > k

and lim
t→T

d±(T − t,R) = −∞ for 0 < R < k see[1,p.193].

Thus lim
t→T

N(d±(T − t,R)) = 1√
2π

∫ ∞
−∞ e−y2/2dy =

√
2π√
2π
= 1 for R > k

and lim
t→T

N(d±(T − t,R)) = 1√
2π

∫ −∞
−∞ e−y2/2dy = 0 for 0 < R < k.

Thus, from (24) we obtain

v(R, t) =
{

RT − k, for R > k;

0, for 0 < R < k.

where RT is the price of stock at t = T . Thus v(R, t) = (RT − k)+.

It follows that v(R, t) satisfies the terminal condition (23). That implies v(R, t) is the unique solution of (22). �
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