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Abstract

We give a characterization of the Orlicz Sobolev spaces W!® (€) when Q c RY is a open subset, N > 1 and ® € A%,
Keywords: Orlicz Spaces, Orlicz Sobolev Spaces, Non-local functionals

1. Introduction

In (Gagliardo, 1957) Gagliardo has introduced the semi-norm

— P
o= [ [ et
Q Q

besides he has studied the fractional Sobolev spaces W*? (Q) with 0 < s < 1 and p > 1. It is well known that | f]WA,,,(Q)

»
does not converge to [ f]y1,q) = [ﬂfIV fIP dLN (x)) when s — 17. Moreover, if Q is a smooth bounded domain, then in

(Bourgain et al.), Bourgain, Brezis and Mironescu have proved that
slinlfl’ (1 S) [f]Wv p(Q) p N [f]sVLl’(Q)

for all f € WLr (Q), with p > 1. In (Leoni & Spector, 2011), Leoni and Spector have given an alternative characteization
of the Sobolev spaces using the not-local semi-norm

f )= FOIIP ’

lx — yI?

[flwir = [ dL (x)dL" ()

Q Q
Particularly, in (Leoni & Spector, 2011), Leoni and Spector have shown the following theorem.

Theorem 1.1. Let Q c RN be open, let f € LY (Q). Then f € W', (Q) if and only if

loc

f If () = fOIP

lx —yIP

pe(x —=y) dLN (y)dLY (x) < +00 (1.1)

lim lim sup
=0 g0+

Q Q)

moreover

-0t

=Ky, [IVf (X)I” dL (x).
Q

lim; o lim sup f (ﬂf VIO b (x = y) dLY () |dLY (x) =
(1.2)

where p. is a ”good” family of mollifiers.

In this article we will extend such results in the case of Orlicz Sobolev Spaces.

The Orlicz spaces have been introduced both as generalization of the spaces L?, both for physical motivations see (Adams,
1975; Astarita & Marrucci, 1974; Diening & Ruzika, 2007; Gosez, 1974; Lieberman, 1991; Krasnosel’skij & Rutickii,
1961; Rao & Ren, 1991). Particularly, from the nineties many results of regularity are gotten for minima of functionals
with general growths defined on Orlicz Sobolev spaces, see (Breit et al., 2011; Cianchi & Fusco, 1999; Dall’ Aglio et al.,
1998; Diening et al, 2009; Fuchs, 2011; Fusco & Sbordone, 1990; Granucci, 2017; Klimov, 2000; Talenti, 1990; Young,
1912). The following ipoptesis will be at the base of our results.
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H-1; @ is a N-function and ® € A,on(0, +0).

H-2; p, is a family of mollifiers such that

pe 20, fpgdLN =1, (1.3)
RN
lim f pdLN =0 forallé>0. (1.4)
|x|>6

v is linearly independent,

=1,.,N = & ¢ et~ U okl wmiat A el v = o W) B DR W =1,

where
C(;(v)z{weRN—{O}:rv' %M—a} (1.5)
and
liminf f pedLN >0 (1.6)
Cs(vi)
foralli=1,...N

H-4; p, is radial, that is p, (x) = p (|x]) for all x € RV,

The purpose of our article is to show the followings results.

Theorem 1.2. Let Q c RN be open, let ® and p, satisfy H-1, H-2 and H-3, let f € L - (Q). Then f € w! le Q) if and
only if
ﬁlm lim supff (Lﬁl(w')pé( -y) ary o) dLN (x) < +co. (1.7)
&e—0 8 8,
Moreover, if pe satisfy H-4 and ® € AT on (0, +00), then there exist kyy > 0 such thnat
: . Lf)=fOI f())l N N —
Jim, Jim, / (ﬂf © (L) o (x =) dL (y)] dL (x) = s
= knN f<1>(|Vf () dLN (x).
Q
Theorem 1.3. Let Q c RN be open, let ® and p, satisfy H-1, H-2, H-3 and H-4, let f € L lm (Q). Assume
lim sup f f (lf ) - f(y)l)pg (da (x,)) dLN () d LN (x) < +o0. (1.9
e—0* dQ( y)

then f € W'L? (Q).

ZUL
The Theorem 1.2 and the Theorem 1.3 are an alternative characterization of the spaces of Orlicz Sobolev using non
local relations, such relations are at the base of numerous results for not local functionals with standard growths and for
functionals defined on fractional Sobolev space, see (Bourgain et al., 2001; Di Castro et al., 2016; Di Castro et al., 2014;
Maz’ya & Shaposhnikova, 2002; Mengesha & Spector; Milman, 2005; Ponce, 2004; Schikarra et al.; Shieh & Spector).
The generalization of these theorems seems to point out the possibility to also extend such results in more general cases.

2. N-function and Orlicz Spaces

Definition 2.1. A continuous and convex function @ : [0, +c0) — [0, +00) is called N-function (or Young function) if it
satisfies
D®0)=0and ®(t) >0ift>0;

1) _
lim =% = 0; 2.1)
lim 22 = foo.
t—+00
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For exemple the function ®, 4 (¢) = I (1 +1¢),forp>1andB>0orp=1andp >0, is a N-function.
Actually, only the growth at infinity really matters in the definition of N-function.

Indeed, given a continuous and convex function A : [0, +c0) — [0, +00) satisfying

At
im A9 _ oo

t—+o0 f

there exist a N-function ®@ and ¢y, > 0 such that for every ¢ > 1y there holds
A)=D().

The function A is called principal part of the N-function ®. For exemple there exists a N-function ® such that ® (¢) = /®
near infinity or there exists a N-function ® such that @ () = #In(¢) near infinity.

The function A is called principal part of the N-function ®. For exemple there exists a N-function ® such that ® (¢) = £
near infinity or there exists a N-function ® such that ® (¢) = 7In(¢) near infinity.

Definition 2.2. If ®; and ®, are two N-functions we say that ®, dominates ®, near infinity if there exists positive
constants » and ty such that
D, (1) < @ (320)

forallt > t.

Definition 2.3. If ®| and ©, are two N-functions we say that ®, and ®, are equivalent near infinity (®; ~ ®,) if and
only if there exists positive constants s, », and ty such that

Dy (511) < Oy (1) < Dy (320)
forall t > ty.

Remark 2.4. If0 < lim g;—g; < 400 then @y and ®©, are equivalent near infinity.
t—+00

Let us introduce two important classes of N-functions.
Definition 2.5. A N-function @ is of class £, (D € Ay) if exist k > 1 and ty > 0 such that
O Q2 <kD(1) Yt € (ty, +0). (2.2)
Definition 2.6. A N-function @ is of class Al (@ € A?), with m > 1, if exists ty > 0 such that for every 1 > 1
O A < A" (1) Vi € (ty, +00). (2.3)
Definition 2.7. A N-function ® is of class &, globally in (0, +c0) if (2.2) holds for every t > 0.

Definition 2.8. A N-function @ is of class A% globally in (0, +oc0), with m > 1, if (2.3) holds for every t > 0.

Remark 2.9. If ® is a N-function and ® € A; then there exists a N-function ®, such that ® ~ ®| and ®| € A, globally
in (0, +00), see (Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991).

Definition 2.10. A N-function @ is of class V, (® € V,) if exist [ > 1 and ty > 0 such that

D) < % Vt € (ty, +0). (2.4)

Definition 2.11. A N-function @ is of class V} ((D € V;) with r > 1, if exists ty > 0 such that for every A > 1

AD@) < D) Vt € (ty, +00). (2.5)
Definition 2.12. A N-function @ is of class V, globally in (0, +o0) if (2.4) holds for every t > 0.
Definition 2.13. A N-function ®@ is of class V’, globally in (0, +00), with r > 1, if (2.5) holds for every t > 0.

Remark 2.14. If ® is a N-function and ® € V, then there exists a N-function @, such that ® ~ ®| and ®, € V, globally
in (0, +00), see (Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991).
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The N-functions ®@ € A7 are characterized by the following result.

Lemma 2.15. Let ® be a N-function and let ®, be its right derivative. For m > 1 the following properties are equivalent:

(i) O ) < A"D (1), for every t > 00, for every A > 1;

(ii) 1D, (1) < m® (1), for everyt > 0;
(1)

(i) the function =;

is nonincreasing on (0, +0).
Proof. See (Dall’ Aglio et al., 1998; Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991). O

The N-functions @ € V/, are characterized by the following result.

Lemma 2.16. Let ® be a N-function and let ®_ be its left derivative. For r > 1 the following properties are equivalent:

i) O ) > O (1), for every t > 0, for every 1 > 1;

(i)’ tD_ (1) > r® (1), for every t > 0;

D(r)
I

(iii)> the function is nondecreasing on (0, +co).

Proof. See (Dall’ Aglio et al., 1998; Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991). O
Remark 2.17. We observe that
Ay = U A’;
m>1
and
vo={ Vs
r>1

Remark 2.18. If ® is a N-function then td_ (t) > r® (¢) for every t > 0. By Lemma 2.16 it follows that ® € Vé on (0, +00).

Now we give some alternative characterizations of the N-funtions of class A7’ globally in (0, +00) and of class V/, globally
in (0, +00).

Proposition 2.19. ® is a N-function of class A} globally in (0, +c0) if and only if O (aw) < an® ' (w) for every
w € (0, +00) and a € (0, 1).

Proof. If @ is a N-function of class A7 globally in (0, +00), then we have ® (A7) < A" ® (¢) for every ¢ € (0, +o0) and A > 1.
Let us put 7 = 3 then we have 29 < CD(%) and @' (%) < 3 for every s € (0,+c0) and A > 1. Let us put s = ®~! (w)

/I/II ﬂm
then we have ®~! (%m) < m for every w € (0, +00) and 2 > 1. Let us put -; = a then we have @' (aw) < an® ! (w)
for every w € (0, +o00) and a € (0, 1). The converse follows in a similar manner. O

Proposition 2.20. ® is a N-function of class AL globally in (0, +00) if and only if AD! (s) < d1(A™s) for every s €
(0, +00) and A > 1.

Proof. If @ is a N-function of class A%’ globally in (0, +0), then @ (1f) < A" ® (¢) for every t € (0, +o0) and 4 > 1. It
follows that At < ®~' (1"® (¢)) then if 1 = &' (s5) we get AD~! (5) < ! (X™s) for every s € (0,+c0) and 2 > 1. The
converse follows in a similar manner. m]

Now we get the following characterization of the N-functions of class A7’ globally in (0, +00), this characterization is not
present in the bibliography note to the author and we will use it in the paper.

Proposition 2.21. @ is a N-function of class A% globally in (0, +c0) if and only if a"® (s) < @ (as) for every s € (0, +00)
and a € (0,1).

Proof. If @ is a N-function of class A7 globally in (0, +o0), then @ (A7) < A" ® (¢) for every ¢ € (0,+o0) and 4 > 1. It

follows that )%CD(/U) < ®(t)thenifr = /ﬁl we get /llmCD(s) < CD(%) for every s € (0,+o0)and A > 1. If we puta = % €(0,1)

we get a” D (s) < O (as) for every s € (0, +00) and a € (0, 1). The converse follows in a similar manner. ]
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Now we get the following characterization of the N-functions of class V/ globally in (0, +o0), this characterization is not
present in the bibliography note to the author.

Proposition 2.22. ® is a N-function of class V), globally in (0, +0) if and only if

0! (&1) > (D_IA(W) 2.6)

for everyw € (0,+00) and A > 1.

Proof. 1f @ is a N-function of class V7 globally in (0, +c0), then we have A"® (1) < © (Az) for every ¢ € (0, +o0) and 4 > 1.

(Dﬂ(f) > CD(ﬁ) and @~! (%) > 2 for every s € (0,+c0) and A > 1. Let us put s = ' (w)

Let us put = 4 then we have

-1
then we have ®~! (/lﬁ) > w for every w € (0, +c0) and A > 1. The converse follows in a similar manner. m]

Remark 2.23. Ifwe choose A = k+ > 1 then we can write the inequality (2.6) this way

o (%) > % 2.7

foreveryw € (0, +o0) and k > 1.

Another characterization of the functions N-function of class V} globally in (0, +o0), it is the following.

Proposition 2.24. @ is a N-function of class V', globally in (0, +00) if and only if ® (at) < a"® (¢) for every t € (0, +00)
and a € (0,1).

Proof. If @ is a N-function of class V/, globally in (0, +c0), then we have A"® (r) < @ (A¢) for every ¢ € (0, +o0) and A > 1.
If we put 1 = § we get @ (%) < %(D (s), thenif a = % it follows that @ (as) < a"® (s) for every s € (0, +0c0) and a € (0, 1).
The converse follows in a similar manner. m]

Proposition 2.25. @ is a N-function of class V), globally in (0, +c0) if and only if O (aw) > ar @ (w) for every
w € (0, +00) and a € (0, 1).

Proof. If @ is a N-function of class V7 globally in (0, +oc0), then we have 1"® (1) < @ (Ar) for every t € (0, +o0) and A > 1.

Let us put 7 = 4 then we have (Dl(f) > CD(%) and ®~! (%) > 3 for every s € (0,+c0)and A > 1. Let us put s = ®~! (w)

then we have @~! (%) > w for every w € (0,+00) and 2 > 1. Let us put 1- = a then we have ®~! (aw) > ar® ! (w)

for every w € (0, +c0) and a € (0, 1). The converse follows in a similar manner. m]

Proposition 2.26. @ is a N-function of class V', globally in (0, +oo) if and only if O (A's) < AD7! (s) for every s €
0, +00) and A > 1.

Proof. T ® is a N-function of class V), globally in (0, +c0), then we have "® (r) < ® (A¢) for every t € (0, +o0) and 4 > 1.
It follows that ®~! (@ (¢)) < At then if t = 7! (5) we get ®~! (1's) < AD~! (s) for every s € (0,+00) and A > 1. The
converse follows in a similar manner. ]

Remark 2.27. f® is a N-function and ® € A, then there exists a N-function @ such that ® ~ ®; and ®y, is a N-function
of class A% globally in (0, +00).

Lemma 2.28. Let g (1), h(t) be a non-negative and increasing functions on [0, +0) then

g h(s) <g@h()+g(s)h(s)

forevery s, t € [0, +00).

Proof. If s < tthen g(H)h(s) < g(Oh(@) < g@h@) +g(s)h(s). If t < sthen g(H)h(s) < g()h(s) < g@®h() +
g()h(s). O
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Remark 2.29. Since ® (t) < &, (¢) for every t > 0, where & () is the weak derivative of ® and ®, (1) is the right derivative
of @, then by Lemma 2 and Lemma 4 we have

ad (b) < ad, (b) < ad, (a) + bd, (b) < m (D (a) + O (D).
Now we can introduce Orlicz spaces and Orlicz Sobolev Spaces, L® and W'L®. Let Q € R" be a bounded and open set,

the Orlicz class K® (Q) is the set of all measurable functions u : Q — R (equivalence classes modulo equality £V a.e. in
Q) satisfying f @ (Ju]) dLN < +00. The Orlicz space L (Q) is defined to be the linear hull of K® (Q), thus it consists of
Q

all measurable functions u such that Au € K® (Q) for some 1 > 0. Moreover, the equality K® () = L? (Q) holds if and
only if ® € A,.

Definition 2.30. IfQ c RY is a bounded open set and ® € A, then we define
WILP Q) = {u € L (Q) : du € L*(Q) fori=1,...N|
where O;u are the weak derivatives of u fori =1,...,N.

Theorem 2.31. Let @ € Ay, then L® (Q) and W'L® (Q) are Banach spaces with the following norms

”lfi”q)Q = 1nf(k >0: fq)(%) d,LN <1

Q
and
N
o0 = lulog + ) 0o
i=1
We observe that if @ (r) = 7, with p > 1, then |lullp o = llull,q, Where |lull, o = f|u|" dLN. In general, however, so
Q

simple relationships do not be had among the Luxemburg norm |ul|e o, and the integral f @ (|u]) dLV, this creates some
Q
difficulties to use the Luxemburg norm and the Holder inequality then we are forced to introduce some suitable tricks

to proceed. For greater details on Orlicz spaces, Orlicz-Sobolev spaces and Luxemburg norm we refer (Adams, 1975;
Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991)

3. Lemmas

Fix y € C (RN ) such that f Y dx =1 and supp(¥) € By (0). For 6 > 0 define
]RN

ww=$d9

Given a open set Q ¢ RV and a function f € L}OC (Q), forevery x € Qs = {x € Q : dist (x,0Q) > 8} define the mollification
of the function f by

ﬁurmhmmm=ffwwu—w@
RN

Remark 3.1. Since @ is a convex function then
Dw)> D)+ D) w-a)
for every u,a > 0. Since Y5 (x —y) > 0 we get
Yo (x =)@ () 2 s (x =) @ (@) + Y5 (x — y) D () (u ~ @)
If we choose u = |f (y)| and a = f |f @) s (x — 2) dz and if we integrate on RY, since f Vs (z—y)dz =1, it follows

RN RN

jﬁ®<uxynw5cx—)0)dyz<b JAUTyNW6C¥—y)dW]
RN N

for every x € Q with dist (x,0Q) > 6.
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Lemma 3.2. Let p, satisfy H-2 and H-3, let {u.} ¢ M (S N _1) the measure defined by
+00
He (F) = ffps (to) N dr dHN ! (o) (3.1
F 0

for every Borel subset F C SN~\. Then there exist a subsequence &j, with g >0 ueM (S N") such that ., = uin

M (S N_l)for g; — 0*. Moreover, for every N-function ® € A,, there exists a.p > 0 such that for every v € RN we have

f O (lv- o) du () > ao® (V). (32)

SN-1

Proof. Using polar coordinates and H-2 we have

+00
pe(55) = [ [ oottt tarart o) = [ poar =1
SN-1 0 RN

.....

be the linearly independent set of vectors given in H-3, We claim there exists gy > 0 with the property that for all v € RY
there exists an 7 such that
[v-ol> gyl

for all o € C5 (v;)NS™N~1. By rescaling we restrict ourselves to the case v € S¥~!, and we proceed by contradiction. If not,
then there exist a sequence {&; };cy tending to zero, wy € S N-1 and oix € Cs(v), i =1,...,N, so that up to a subsequence,
which we will not relabel, w, — wo € S¥~! and o3 — o9 € Cs(v;), with |wo . 0’i,0| =0foralli = 1,... N. However,

,,,,,

Definne
¢= min liminf f pe, d ry

i=1,...N j—o+oo

Cs(vi)

then ¢ > 0. Given v € R, let i such that [v - 0| > &y |v| for all o € Cs (v;}) N SV, then

[ @Wv-oh)dus, (@) = [ @(v-ol) dus, (o)
syl Cs(vNSN-!

> [ ®(eolv]) dps, (0)
Cs(vi)nS N1

= ® (g0 M) e, (C5 ) N SV)

=@M [ [ peto) N drdHY (o)
Cs(v)NNSN-1 0

By Tonelli’s theorem we get
f O (|v- o) due;, = O (g9 IVI) f pe; dLY > c® (g V)
SN-1 Cs(vi)
Letting j — +oo, since yy — p in M (SN‘I), it follows

f O (v - o) du (o) = e (s Iv])

SN-1

since @ is a N function, then by Remark refR1 @ e Vé and using Lemma 2.16 (i) and Proposition 2.21 we have

f O(v-ol) du(o) = c(g) D (V)

SN-1

where ¢ (g9) = ¢ min {80, s’g'} ]
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Definition 3.3. For every fixed n > 0 we define

P = PeXB,(0)- (3.3)
We hav the following properties of p!!
PE < Pes (3.4
pizo. [part<t. (35)
RN
11%3 pldLN =0 foralls >0, (3.6)
e
lim f x| p (x) dLY (x) =0 (3.7)
Ok
for every E ¢ R" bounded and measurable. Now we can define the measure
+00
e = [ [t arast o (38)
F 0
for every Borel subset F ¢ SV¥~!. Applying the Randon Nikodym theorem, for H"~! a.e. o € SV~!
+00 n
Wen oy = [ g0 ¥ e = (to) ¥ dr (3.9)
JENT @)= [ pelio = | p:(to . .
0 0

Lemma 3.4. Let p, satisfy H-2, Let {u.} C M(SN‘I) the measure defined in (3.1). If ue; A ueM (SN‘I)for g — 0"
then, for everyn >0, ug, A neMmM (S N_l), where (i, are the measures defined in (3.8).

Proof. We begin by proving that y;,,, — s, = 0in M (S N"). For feC (SN"), with || f]l., = 1 we have

SN-1

= Lf Tof(o')pz (to) N1 dt dHN! (o)

N-1 7

L[ fd,ué‘j,n - f fdﬂsj

< [ [ pe, (to) V" dtdHN (o)
sN1og
= [ ps (0 dL"

|x|>n
then
||ﬂsj,r7 _,Usj“M(SN_,) < fpsj (x) ary o

1xl>n
for j — +oo, thus e, — pe; > 0in M (SN_I). Since y,, S uin M (SN‘I), it follows that s, Spuin M (SN‘l). o
Remark 3.5. By the definition (3.3) of p.. we hace the following properties

pe =0
[Pl dLN <1
RN

lim [ plx)dLN =0  forall6>0
&20" s

111})1 [1xlpl(x) dLY =0  for every E C RY bounded and measurable.
£ *E

Definition 3.6. We define
E"={xeR" : dist(x,E) < r} (3.10)

and

1
E,:{xeRN:|x|<—;dist(x,aE)>r} (3.11)
r
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Lemma 3.7. Let A ¢ RY be open and bounded and let f € C? (ﬂ) for some n > 0, then

F)=FO) =V ) (x=yI<Crlx—»fF (3.12)

forall x € Aandy € A" where Cy > 0 depends upon ||f||c2(ﬁ)'

Proof. See (Leoni & Spector, 2011). m]

Lemma 3.8. Let Q c RY be open, let ® and pe satisfy H-1, H-2, H-3, let A C Q be open and bounded with dist (A, 0Q) >
0, let f € C? (ﬁ) where 0 <n < dist(A,0Q), let ; — 0" and assume that ., SN unin M (SN‘I); then for every x € A we

have
Jlim, f <I>('f()|2—:§|@)')pzf (x=y) dL () = f ® (1 () ol) da (o) (3.13)
SN*I

where ij is the family introduced in (3.3).

Proof. SetMy = ||Vf||Lw(Aq), letO < 5,1 < Mythen|®(s) — @ (1) < d (&) |s — 1|, choose s =

f(X) fO) and t = |Vf(x)%

Tl
then
JfO)-fO) : fO-fO)
lq)(‘ =y )) (‘ Gl |')‘ < o (m)] =] 'f()pc y|H
< ( )f(X) SO -Vf(x)(x-y)
B lx =yl
Using Lemma 3.7 it follows
S)-fO)
o[22 -olfer o) < e

therefore

/

o = EACERFVIOE
An
<@ (M) Cy [ 1x=ylpl, (x—y) dLV ()

[@-10) ) (
x=y

An
By Remark 3.5 we get
lim sup f@( - f(;) )pa, (x—y)dLN () =
]—>+Do Al
= limsup [ ® (|Vf @ &2)el, -9 dL¥ o)
j4)+00 AY]

Since pf, (x —y) = 0 if |x — y| > n then

f (’Vf(x) ||)pg,<x W dLY ) f (‘Vf(x) l’)pgl(x 9 drh o)

AN By(x)

f V- ah f Pl o) N dtdHY ! (o)

SN-1

f O (VF () - 1) dyte, (@)

SN-1

Since @ (|V f (x) - o) is continuous by Lemma 3.4 it follows

hmf (‘Vf ) J)Peix »dLY () = f VS () - o) du ().

SN-1
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Lemma 3.9. Let Q c RY be open, let ® and p, satisfy H-1, H-2, H-3, let A € Q be open and bounded with dist (A, 0Q) >
0, let f € W'L® (Q); then for all 0 < 5 < %dist (A, 0Q) we have

f(A (D(|f(X) f(})|>pg(x y) dLN(y))d.ﬁN (.X) <

[x=yl
Al

(3.14)
</ [ [ o (lVf () & i)pg (h) d.LY (h)) L (x).
A21 \B,(0)
Proof. Making the change of variables y = x + A, since ij (y—x)=0if [y — x| > np then
J (Af (L=t o (v = 2 d LY (y)) Ly (x)
A1 \An
= [| [ o(B= L) ol () dLY (h)] dLN (x)
A \B,(x)
ForO0<d<n< M the function f; is well defined in A", then we have
f f @ (\fa(y})} {;Is(x)l) 7 (y - x) dry (Y)) dry (x) =
n
— f f @ (l.fﬁ(x"'flzl—ﬁi(x)\)pg (h) dry (h)] dry (%)
An \B,(0)
1
=l [ d)(f|Vfé~ (x + th) - Ihﬂdt)pz (h) dLN (h)]dLN (x)
A \B,0 \0
=1
Using Jensen’s inequality we get
1
1< f f f (‘Vﬁ; (x + th) - T )dtpg (h) dLN (W |dLN (x)
A \B,0) 0
Since |h| < i by Tonelli’s theorem it follows
h
1< [| [ o(wnor oo azrmlazro
A21 \B,(0)
and
J L  (LBGER) pl (y — x) d.LY (y)) dLY (x) <
A" \An
<[|f ( (V45 0)- ) e w aL” (h)] aL )
A21 \B,(0)
letting 6 — 0 by Fatou’s lemma and Lebesgue dominated convergence theorem we obtain (3.14). O

Lemma 3.10. Let Q c RY be open, let ® and p, satisfy H-1, H-2, H-3, let A C Q be open and bounded with dist (A, 0Q) >
0, let f € L® (Q); then forall0 <6 <n < %dist (A, 0Q2) we have

f f(b |fh(x) fo(})\ pg (x _ y) dLN (y)] dLN (x) <

[x=yl

(3.15)

S o (L)l (x - y) dLY (y)] ALY (x)
AN n

=y

where fs is the mollification of f.
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Proof. Let us consider

I°‘f{fq’(lfé()|2 ff(y)') Pl (x—y) dLY () |dLY ()
J y
then, we get
Lf Ys (@D f(x—2)—f(y—2) dz
Iozf f(D 5(0) ,OZ(X—)’) d-LN(y) dLN(.X)
lx =yl
A A
and
I"Sf fq) f‘f”é@ |f(x_|2:§|(y_@|dz ol (x—y) dLY o) |dLY ().
A \A

\B5(0)

Since @ is a convex function, using Remark 3.1, it follows

Iosff fw6<z>q>('f(x‘Z)_f(y_Z)')dz e = y) dLY ()| d LY )

lx =yl
A \A 5(0)

Using Tonelli’s theorem we get

If(x=2) = f( -2 N
o < ff[f( o )pZ(x—y)dL 0

B;(0) A

U5 @) dLY (x) dz

Then making the change of variables w = x + z, u = y + z, for z € Bs (0), since the integrand is non-negative, we have

dLY w)ys(2) dz

< ff[f (If(w) f(u)l) w0 dV )
lw—ul

Bs(0) A \A

Since [ s (z—y)dz = 1, it follows

o= ]

L (w)

fq)(lf(w) f(u)l) w1 dL ()
A

w—ul

4. Proof of Theorem 1.2

Theorem 4.1. Let Q c RN be open, let ® and p, satisfy H-1, H-2, H-3, let ® € Ay, let f € L?ﬁ)c (Q). Assume

hmhmsupff (|f(x) f(y)l) pe(x =) dLY () d LY (x) < +oo.

-0t

Q

Then f € W'L?
foreveryO <n< % then

loc

lim,o limnf | [ [ o (L) p,, (x - y) dLY () |dLY (x) >

o o [x=yl
Qo

> [ L [ @(Vf () -0l du (rr)] ALV (x).
O \gr-1
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(Q) and Vf € L® (Q). Moreover there exist gj — 0% and a probability measure p in M (SN 1) such that

4.2)
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Proof. We define
C = £1m lim supff (M)pb( -y dLN ) d LV (x) < +o0

e—0* y |

. . . /l
by the monotonicity of the integrals over €2; we have that for any n < %,

lim sup f f (M)m “y) L (dLY (x) < C

e—0* y |
QH 2r]

where Q) = (Q,)", since p;! < p,, we get

lim sup f f ('f W= f @)') “ydLdL W<

-0t

Fix 0 < 77 < 4, for any 0 < 6 < i apply Lemma 3.10 we obtain

Lsﬁff®(w>p2(x—y) aL dr (v

2i
A

where

L ‘ff (|f6(x> fa(y)l) Yoy a2 (0 d LY (o)

lx — ¥l

Q7 Q7
Q) Q)

Let u. be the measures defined in (3.1). By Lemma 3.2 there exist a subsequence {s j}, with &; — 0, and a probability

measure u € M (S N _1) such that g, SN puin M (S N _1). Since f; € C? (Qi") with Qi” open and bounded, by Lemma 3.8 ,

for every x € Q,,
lim f ¢(W) -y dLN () = f O (V5 () - o) dp (@)

Jj—+oo
i N-1
i S

Applying Fatou’s lemma we have

fo (VS5 (x) - o) du (rf)]dLN (x) <

Q;r N-1
<liminf [ [ @ (LR ol (=) dLY ) d LY ()
<[ cp('f <f;_g<>>‘) Y (x=y) dLN () d LN (x) < C

rz 2,,
so that

f f OV () - o) du () |dLY (v) < €

o, N-1

Then Lemma 3.2 implies

RIAO

f‘D(IVfa () dLY (x) < =

Q
for some @ > 0, independent of A. Using the P-D theorem we get Vf5 — Vin L}Uc (Q). Sinceas 6 = 0, fs — fin Llloc (Q)
then f € W'LP (Q) and Vf = V € L (Q,,R"). Finally, letting A — 0 we have Vf € L? (Q, RY). o

loc
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Theorem 4.2. Let Q C RY be open, let ® and p, satisfy H-1, H-2, H-3, let f € W'L? (Q)and Vf € L® (Q RN) then it
follows

f fq)(lf(X) f(Y)\)pg(x ) d.EN(y)]d.EN()C) <
o\t

=y
< f O (Vf () dLY (x)+ 4.3)
+— f (f DALY (x) [ pe(h) dLY (h)
[hI>n

Proof. Fix0 < A< 1and0 < n < %; consider

drN (x) =

lx=yl

f fq)(\f(x) f(y)l)pg(x ¥) dLN(y)
Q!

[1 [ o(=)pe - y)d-EN(y)]dLN(X)+

[x=yl
Q7 \x—yl<n

f f (D(|f(x) f(\)|)p8(x y) d.EN(y)]dLN(X)

Jx=y1
Q7 \x—yl>n

Considering

dLN (x)

B = f[f @(M)pgu—wdﬂw
|x =yl

Q1 W-yl>n

. d.LY (x)
n

2m—l
— {.f (@ (f ) + D (f W) pe (x—y) dLY ()
QI

—y>n
By Fubini and Tonelli Theorems we get

2m—l
B o< — ®(If(x)|)prg(x—y)d£N(y)
&

—yl>n

drN (x) +

2m—l
o ®(|f(y)|)Lf pe (x—y) dLN (x)
Q’l

—y>n

dL¥ (y)

and
B < —f‘I)(If(x)I)dLN (x) fps (h) dL (h)

[hl>n

Moreover applaying Lemma 3.9 we get

J L [ o (L) o (x—y) dLY (y))dLN €]

[x=yl
Q7 \x-yl<n

< fL f (\f(x) f(y)l)pg(x y) d.EN(y)]dLN(x)

lx=yl
Q7 \x—yl<n

<[l [ CI)(|Vf(x) ‘h||)pg(h) dLN(h)]dLN(x)

Q' \B,(0)

< f(D(IVf D dLY (x)
Q

then we get (4.3). O
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Now we can show the Theorem 1.2

Proof. (Proof of Theorem 1.2) Let f € L?;C (), assume

Jim lim sup f f (M)pa(x ) dLY (y)d LY (x) < +o0

-0 o+ |
Q Q

then applaying Theorem 4.1 we have f € WngC (Q)and Vf e L® (Q, RV ) Moreover we get

Jjotoo dLN (x) =
Q) o2

liminf [ [ J o (L) oy (x =) dLY ()

4.4)
> [ L [ @(Vf ) -0l du (a)) dL (x).
O \gnr-1

Conversely let f € W!'LP (@) and Vf € L? (Q, RY ); then using Theorem 4.2 we have

[ (L) (- LY )L 0 <

f

Qn
< f O (VF (D dLY (1) +
f O(f DALY (x) [ pe(h) dLY (h)

Ih>n

Since, by Remark 3.5, hm f s (W) dLY (h) = 0 we get
\hl>n

limsupf IQ(M)% (x=y) dLY () [dLY (0 < fCD(IVf(X)I)dLN (x)
Q

e—0* 4 4 |-x - yl
Q/l Q/l

and

lim lim supf f@(w)pg (x-y) ary » dLN (x) < +0

=07 o0+ lx =yl
A

Moreover, since, by Lemma 3.9,

J E [ o (B p, (x - y) dL” (y))d.zN @

Q" \x—yl<n

< fL f (\f(/‘?c ;TM)PE(X y) dLN(y)]dLN(x)

Q7 \x—yl<n

<ffd)(

Q' \B,(0)

) ety aLy (h)] L (x)

we have

hmmff( f CD(lf(x) ﬂ))l)ps, (x—y)dLV (y)]d.EN (x)
Q]

[x=yl
x—yl<n

< liminf f

Jjotoo 2]

[ o(vre- )t i ary (h)]dﬂv )
B, (0)
(4.5)

—hmmf [ L [ @S () - o) dl, (a)]dJ_‘N (%)

2; N-1

- [ L [ ®AVf- ol du(a)]dﬂv(x)

21 \gN-1
Q/{
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Conbining (4.4) and (4.5) we get

f L f OV () - o) dut ()

o, N-1

lim inf f f @(M)p8.<x—y>d£N(y>
imiy T

Q7 Nxyl<n

limsupf f@(w)pg-(x—y)dﬂv(y)
Jjo+oo |x—y| ’

Q7 Ve-yl<n

f L f O (VS () - o) dut (o)

Q \gn-1

dL" (x)

IA

dLM (x)

IA

dr” (x)

dLM (x)

IA

sending 4 — 0 it follows

A-=0* e=0*

lim lim [ ka o (LL) o, (x - y) dLY (y)] dLr (x) =
Q) \Q

4.6)
=/ L [ @Wvf @) -0 du (a)] dL (x)
Q \gnN-1
When p, satisfy H-4 we get u = HV~! then
\Y
f O (VS (x) - o) du () = f <I>(IVf ol | () a') dHY () @.7)
Vf (ol
SN—l SN—]
Since Igﬁgl € SV-1 using the rotational invariance of H"~! then
f OV () - o) du () = f O (V7 ()lex - o) dHY (o)
SN-1 SN-1
Since |e; - 0| < 1, by Remark 2.18, we get
f O (V7 (Dller - o) dHY () < DV (0D f le1 - o dHY () 4.8)
SN-1 SN-1

Moredover by Jensen inequality we have

1 Y
mewf(x)llelvl) dHN! (a)2®(7% flemrl dﬂ”‘l(a)]
SNfl SN-1

If we suppose @ € on (0, +0), since msll ley - o dHN! (o) < msil lerllor] dHY1 (o) < 1, using

Proposition 2.21 it follows

1
HT(SVT f O (VS (W)ller - o) dHN " () = @V (O (Ay)™
SN-1

where Ay = m f le; - ol dHN! (o), then
SNfl

f OAVS lfer - o) dH (@) > Wy - D (VS (0D f o1 - o dHY (o) 4.9)
SNfl

SN-1
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m—1
where w,, y = f ley - o] dHN! (0')] > 0. Using (4.8) and (4.9) it follows

__ 1
N-1 N-1
HN-I(S )5N7l

i L [ @V () ol) du <cr>]d£” (x)

Q N-1 <1

[ ler ol dHN-1 (o) [@(Vf (0)) dLN (x) ~
Q

SN-1

Wy <
then there exits I',,,, € [Wyy, 1] such that

f f O (VS () - o) dyt (o) |dLY () = T, f le1 - o dHY (o) f ®(Vf (0N dLY (x)
Q

Q \gn-1 SN-1

(1.8) follows if we define k,,y = [}y, f lei - o dHN! (o).
gN-1

The proof of the Theorem 1.3 follows the ideas introduced in [17], we introduce it only for completeness.

Proof. (Proof of Theorem 1.3) Let f € L? (Q) satisfy (1.9) then for every 1 € (O ) and every Q, C Q we get

lim sup ff ('f ) =~ f O )pz (do (x, ) dLY (y)d LY (x) < +o0
€0 i o da (x,y)

Since p! (do (x,¥)) = 0if dg (x,y) > gpand |x — y| < dg (x,y) <71 <3 then for x € Q” andy € Q) 2 the segment containing

x and y is conteined in Q, it follows that dg (x,y) = |x — y| and

limsupff (M)m (x =y dLY (¢ dLV (x) < +o0
QW 2

e—0 y|
n

then by Theorem 1.2 f € whe (Q).

Now we observe as the hypothesis H-1 is technical and as we are able weakened.

Remark 4.3. If ® € AY on (1, +00) with ty > O then there exists ®1 € AT on (0, +00) such that ® ~ ®,. Moreover there

exist ¢y, ¢, C3,c4 € RT such that
CD(Z‘) <c1d; (l‘) +

for everyt > 0 and
D (1) Sc3D(F) + ¢y

for everyt > 0. Let us consider

[ [oFRL o -y st ar

lx =yl
Q) Q
and
f f , (W)p (x—y) dLY ) dLY (x)
Q O

using (4.10) and (4.11) we get

[x=y1 [x=y1

+0) f f pe (x=y) dLY () d LV (x)

Q,Q,

J Lo (B ps -y dLY ) dLY @) < S (F5) e (x =) dLY ) dLY ()
Q,Q
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and

[ [ (B o, (x—y) dL¥ dLY (v) <3 [ [ (L) p, (x - y) dLY () dLY (x)

. [x=y1
o T 4.13
e [ [ pex—y) dLY () dLN (x) (4.13)
QQ

Since W'L?(Q) = W' L (Q), see (Adams, 1975; Krasnosel’skij & Rutickii, 1961; Rao & Ren, 1991), then, by (4.12) and
(4.13), Theorem 1.2 holds olso if ® is a N-function and ® € A, on (ty, +00) with ty > 0.
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