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Abstract

In this paper, we propose a novel approach for solving some fully fuzzy L-R triangular multiobjective linear optimization
programs using MOMA-plus method (Kounhinir, 2017). This approach is composed of two relevant steps such as the
converting of the fully fuzzy L-R triangular multiobjective linear optimization problem into a deterministic multiobjective
linear optimization and the applying of the adapting MOMA-plus method. The initial version of MOMA-plus method is
designed for multiobjective deterministic optimization (Kounhinir, 2017) and having already been tested on the single-
objective fuzzy programs (Abdoulaye, 2017). Our new method allow to find all of the Pareto optimal solutions of a fully
fuzzy L-R triangular multiobjective linear optimization problems obtained after conversion. For highlighting the efficien-
cy of our approach a didactic numerical example is dealt with and obtained solutions are compared to Total Objective
Segregation Method proposed by Jayalakslmi and Pandia (Jayalakslmi 2014).

Keywords : Fuzzy triangular numbers; fuzzy linear programming; MOMA-plus method.
1. Introduction

A fuzzy linear program is a linear program in which all of the coefficients and/or variables or a part of those elements are
fuzzy numbers. This kind of linear program is defined in an environment where the available informations are indefinite,
imprecise and incomplete. Let’s notice that the notions about fuzzy number have been proposed first time by Zadeh
(Zadeh, 1965) since 1965 and that of decision making in the fuzzy environment by Bellman and Zadeh in 1970 (Bellman,
1970). As to the notions of linear programming in the fuzzy environment, they have been introduced by Zimmerman
(Zimmerman, 1978). Since then, several works have been done for the resolution of some fuzzy linear programs.

It should be noted that the modeling of most problems in the daily life leads to take into account of several objectives or
criteria which can be known in the stochastic way. But in general, these objectives are conflicting and lead to change the
resolution concept in which the notion of optimal solution is replaced with Pareto optimal solutions or best compromises.
Therefore, there exists many approach for solving this kind of problems but among those method we pay intention for
which try to convert the fuzzy program in deterministic program before total resolution. For the recent works on this class
of methods one can find it in the literature (Ahmed, 2017; Priyadarsini, 2017; Babita, 2011; Rasha, 2016; Krishnapada,
2015; Kiruthiga, 2015; Hadi-Vencheh, 2014; Jayalakslmi, 2014).

In this work, we are particularly interested in the multiobjective linear programming of which the coefficients and the
variables are fully fuzzy L-R triangular numbers. The method that we propose here is a combination of the conversion
technical of the fuzzy program into deterministic program proposed by Hosseinzadeh and Edalatpanah (Hosseinzadeh,
2016) and our adapted version of MOMA-plus. In fact, on the one hand, for solving a fully fuzzy linear program,
Hosseinzadeh and Edalatpanah have proposed a new approach consisting in first converting the fully fuzzy linear program
into a deterministic multiobjective linear program. This multiobjective deterministic problem obtained is thereafter solved
by the lexicographic method and also by the linear methods. Their method was very efficient and provided better solutions
than those proposed by Ezzati and al. (Ezzati, 2015) and Kumar and al. (Kumar, 2011). However, it has never been
tested in the multi-objective case. On the other hand, the MOMA-plus method is a metaheuristic for finding the good
approximation or even exact solutions of a deterministic multiobjective optimization problem (Kounhinir, 2017). By
already the MOMA-plus method has proved its capacity in the resolution of fuzzy triangular single objective linear
programs fuzzy (Abdoulaye, 2017).

Given the efficiency of the two approaches mentioned previously, namely the conversion technique of Hosseinzadeh
and Edalatpanah from the fuzzy program to a deterministic program and the adapted version of MOMA-plus to the
mono-objective case, we propose here a hybridization of these algorithms to the resolution of fully fuzzy L-R triangular
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multiobjective linear programs.

As for the rest of this paper it will be structured in five sections. Indeed, in the section two we will give the basic
terminologies about fully fuzzy L-R triangular numbers. In the section three we will describe the technique of conversion
of fully fuzzy L-R triangular mono-objective linear program into the deterministic multiobjective linear program like
mentioned above. In section four, we will present fully fuzzy L-R multiobjective optimization concepts and our technique
to convert it in deterministic multiobjective linear program. The algorithm of MOMA-plus and its adapted version will
be presented in section five. The sixth section will be devoted to an implementation of our approach and a comparative
study of our results to those given by the Total Objective Segregation method. And to finish a last and seventh section for
the conclusion.

2. Basics Terminology

In this part, we make a non-exhaustive presentation of some important notions about fuzzy L-R triangular numbers. This
is necessary for a good understanding of the rest of this work.

Definition 1 (Zadeh, 1965) : Let X be a set, called universe, whose elements are denoted x. A fuzzy subset A of
X is defined using a membership function uz defined on X and taking its values in the interval [0, 1]. A is therefore
characterized by _

A ={(x,uz(x)lx € X}. 1

The membership function may represent a degree of possibility or a degree of preference depending on the situation.

Definition 2 (Didier, 1978) : A fuzzy number m is said to be L-R if its membership function y; is defined by

LX) ifx<m,
Mz (x) = { R(%) ifx>m (2

where :

v @ > 0and g > 0 are the left and the right deviation respectively, and m its average value,
v' L and R are said reference functions of the fuzzy number checking the following properties:

e [ and R are non-increasing on [0, +oo].
e [ and R are symmetrical : L(x) = L(—x); R(x) = R(—x)
e [(0)=R(0)=1.

Remark 1 : If we add to this definition that L(1) = R(1) = 0, the support of the fuzzy number is finite. In the rest of this
work we will assume to be in this condition.

Let there be a triangular fuzzy number m then there are reals m, @ and g such that m = (m, @, 8)1x to simplify. Then the
associated membership function is represented as follows :

H(x)

0 @ m B
Graph of membership function of a fuzzy L-R triangular number.
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2.1 Operations

Theorem 1 (Didier, 1978) : Let m = (m, @, B) g and n = (n,7, 6) g two fuzzy L-R triangular numbers. So we have :

1. (m,a,B)r ® (n,y,0)Lr = (m+n,a@+vy,B+0)Lr,

2. =(m,a,B)rr = (—-m,B, @)1,

3. (ma,Br© (n,y,0)Lr = (M —n,a@+6,B+¥)Lk.
An ordinary real number m is also a fuzzy L-R triangular number denoted by (m, 0,0),x whose deviations are zero.
According to Dubois and Prad, a number m = (m, @, 8)x is positive if m > 0, negative if m < 0 and null if m = 0. Using

the left and right deviations one can say that the number  is positive if m > 0,m — @ > 0 et m + 8 > 0 (Hosseinzadeh,
2016 ).

The multiplication of fuzzy L-R triangular number obeys the equalities proposed in the below theorem :

Theorem 2 (Didier, 1978) : Let m = (m, @, B) g and n = (n,7, 6) g two fuzzy L-R triangular numbers. So, we have:

1. (m,a,B)gr © (n,y,0)g = (mn,my + na,mé + nB)r if @ and b are positive,
2. (m,a,B)r © (n,y,8)r = (mn,na —mé,nB — my)r if a negative and Zpositive,

3. (m,a,B)g © (n,y,0)g = (mn, —nB — md, —na — my)rg if T and b are negative.

2.2 Comparison
To compare two fuzzy L-R triangular numbers, we have the definition and the following theorem :

Definition 3 (Didier, 1978) : Let m = (m, a, B)g and n = (n,y, 6) g two fuzzy L-R triangular numbers. We say that 7z = 7
ifandonlyif m =n; @ =yand 8 = 6.

Theorem 3 (Krishnapada, 2015) : Let m = (m, a,B)g and n = (n,7y,0)r two triangular fuzzy numbers of the L-R type.
We say that in <t ifand only ifm <n,m—-a <n—yandm+p<n+o.

The following definition has been proposed for comparing two fuzzy L-R triangular numbers :

Definition 4 (Hosseinzadeh, 2016) : Let m = (m,a,B) g and n = (n,7y, §)1r two fuzzy L-R triangular numbers. We say
that 77 is relatively smaller than 71, and we note 71 < 7, if and only if :

1. m<n,or
2. m=nanda+B>vy+0,o0r

. m=na+B=y+dandCm—-a+p)<2n—-y+0
Remark 2 (Hosseinzadeh, 2016) : It is clear from the previous definition that
m=n, (@+B)=(+9), andCm—-a+p)=2n—-y+9) 3)

if and only if
m=n.
2.3 Ranking Function
To compare two fuzzy L-R triangular numbers, the use of the ranking function is often necessary.

Definition 5 (Hosseinzadeh, 2016) : Let R be a ranking function. On can say that R is a ranking function defined on F(R)
to R if:

R:F(R)—R

i > RG) = RI(m, @, ) el = m + P

where F(R) is the set of fuzzy numbers defined on the set of real numbers R. In other words R has a aim to transpose any
fuzzy L-R triangular number on the straight line of real where the order is easy to establish.
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Theorem 4 (Hosseinzadeh, 2016) : If m and n are two triangular numbers and R a ranking function then :

m>7n < R[m] = R[n]. “4)
3. Fully Fuzzy L-R Triangular Linear Program
3.1 Formulation
Consider the next fully fuzzy linear program with m fuzzy equality constraints and n fuzzy variables :
max(min) Z=C'®%X
i {AeT <D ®
x>0

where C = [Cilisns X = [Xjlnx1, A= [E,}]mxn, b= [l;]mxl are matrix whose the coefficients are L-R triangular numbers.
Let:

C'X = (0", (@), (€ 0)") AT = (A0, (A0, (AD") , b= (B B, B)) s

~_ m 1 u
and ¥ = (0", (@, (0") .
The following conversion method has been proposed by Hosseinzadeh and Edalatpanah.

3.2 Conversion to Deterministic Program

Using the operations techniques on the fuzzy L-R triangular numbers presented in sub section 2.1, the problem (5) can be

written as : .
max(min)  Z = ((c¢'x)", (¢'x)', (¢'x)") s

(A0, (Ax), (Ax))r = ()", (), (b)")rr
St (™ =0 (6)
o "= 20
)"+ @ =0
Using the definition 3 for the equality constraints, the problem (6) becomes :
max(min) Z = ((¢'x)™, (¢'x), (¢'x)")1x;
(Axy" =b"
Ax) =b
. (An)* = b (7
S.t: 0 >0
"= =0
@"+ @ =0

Using the definition 4 and the remark 1 on the objectives functions, the problem (7) becomes a multiobjective deterministic

problem as following :
max(min) Z™ = (c'x)"

min(max) Z' = (c'x)' + (¢'x)"
max(min) Z* = 2(c'x)" — (¢'x)! + (c'x)"

(Ax)" =b"
Ax) = (8)
. (Ax)* = b"
Sit: o0
"= >0
@™+ X" =0

In the next section, we will generalize this technique of conversion by conceiving for the first time its application to the
multiobjective linear programs with fully fuzzy triangular numbers of L-R type.
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4. Fully Fuzzy L-R Triangular Multiobjective Linear Program

4.1 Definition

Definition 6 : A fully fuzzy L-R triangular multiobjective linear program is formulated as follows :
max ZK = 5,’{@3?; k=1,---,K

€))

I
1 >

S.t:

=1 N
SN
IN

®
®
>

where Z* ,k=1,2,...,K are objective functions which must be maximized.
4.2 Optimality Concepts

Definition 7 (Nasseri, 2013) : X* is called the complete optimal solution of the fuzzy multiobjective linear program if and
only if _ _

Z"ay=7"x); k=1,--- K; VXe X
Definition 8 (Nasseri, 2013) : X* is called Pareto optimal solution of the fuzzy multiobjective linear program, if and only

if there does not exist x € X,such that _ _
7Z'@) = 7)), Yke{l,2,...,K).

Definition 9 (Nasseri, 2013) : X* is called a weak Pareto optimal solution of the fuzzy multiobjective linear program, if
and only if there does not exist x € X, such as :

7Z¥@) > ZK@), Y ke {1,2,...,K}.

4.3 Conversion into a Deterministic Program

Using the definitions of the fuzzy L-R triangular numbers of the sub-section 2.1, the problem (9) can be written in the
following form :

max(min)  Z; = (), (0L (0D k=1, ,K

(A", (A, (Ax)) g = (D), (b)Y, (B))r

(Tx)y", (Tx)', (Tx) ) < (O™ (), () )er (10)
S.t: )" >0

O"-w =0

@™+ =0
In virtue of the definition 3 and the theorem 3, the constraints of the problem (10) turn into deterministic constraints as
follows :

max(min)  Z; = (X" (0L, (€ X)s; k=1, K
(Ax)ﬂl - bm
(Ax) =
(Ax)" =b"
St: (Txy" = (Tx)} <@ - @)
(Tx)"+(Tx)" <@®O"+@@"
)" >0
)" =@ >0
)"+ @)" >0
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Using the conversion technique proposed by Hosseinzadeh and Edalatpanah to each objective function, the problem (11)
becomes a deterministic multiobjective problem of 3K objective functions as following :

max(min) Z™ =(c'x)"; k=1,---,K

min(max) Z'= (c'x) + (0 k=1,--- K
max(min) Z" = 2(c'x)]" - (c’x)f( +(0)E k=1, K
(Ax)y" = b"
(Ax)! =0
(Ax)* =b"
(Txy" < (@™ (12)
St: (Tx)" = (Tx) <@ - @'
(Tx)" + (Tx)" < ()" + ()"
)" =0
"= =0
@™+ =0

Remark 3 : Each fuzzy objective function split up into three deterministic objective functions. So, the deterministic
program resulting from a fuzzy linear program of K objective functions has 3K deterministic objective functions.

For the resolution of the obtained multiobjective program resulting from the conversion, we propose an adaptation of the
MOMA-plus algorithm.

5. MOMA-Plus Method

The algorithm of this method allows to transform a multiobjective optimization problem with several variable into a
mono-objective optimization problem with single variable and without constraint in order to make easy the reach of
global optimum. The main steps of this method can be presented in five (Kounhinir, 2017).

For the best presentation of MOMA -plus algorithm let’s consider the multiobjective optimization problem on the follow-
ing form gives in equation (13) :
min  f,(x), p=1,2,...,K

St G(x)<0, i=1,---,m (13)
o x>0.
where x = (x1, x2, ..., X,) is a positive real variable and K, m some known entire numbers.

5.1 Algorithm of MOMA-plus

STEP I : Consists in aggregation of objective functions. That allows to transform the multiple objectives into a single
objective. The problem (13) owns K objective functions and for transforming this problem into single objective
function we have used the weighted sum. It allows us to transform the problem as follows :

K
min  S(f, ) = Z (%)
p=1

o (14)
St { Gi(x)<0, i=1,---,m

x> 0.

With Ay + L+ ...+ g = 1.

LetD={x=>0:Gi(x) <0, i= I,_m} be the set of admissible solutions defined by the deterministic constraints of
(9). The obtaining of optimal Pareto solutions, relative to the method of weighted sum of the objective functions, is
guaranteed by the following theorem :

Theorem 5 (Jacques, 2003) : Either the parametric problem
mins(f,4)  (P)
K
with 1 € A = {A; € [0, 1];Z/li =1},
i=1

12
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STEP

STEP

STEP

STEP

v’ If x is an optimal solution of (P), x is an efficient solution.

v If x is an efficient solution and Zg, (image set of D) is a convex set, there exists 1 € A such as x is an optimal
solution of (P).

IT : Consists in penalization of the problem. That is the transformation of constraints optimization problem
into a without constraint optimization problem. The penalization of the problem (14) leads to a problem without
constraints. The function of penalization that we use is given in (Kounhinir, 2013) and makes it possible to obtain
the problem in the following form :

{ Glob. min L(x) (15)

xeD

where
K

L) =S (£, +7 ) (Gitx) + Gy

p=1

and 7 is a positive real defined by :

> Mm— S(f, )
D 1Gi»
i=1

Theorem 6 (Balira, 2005) Let x* be the global minimum of L(x), then x* is the global minimum of IniZI)IS f, .
X€E

and M = max S (f, ).
xeD

ITI : Consists in variables number reduction. That is the transformation of a function with several variables into
a function a single variable by using the Alienor transformation. The application of a Alienor transformation of the
Konf-Cherruault (Balira, 2005) which is in the form :

1
Xj = hj(g) = E[(bj - aj)cos(a)jﬁ + QOJ) + bj + aj]; ] = 1, e Ln and 6 € [0,27T]
with :
v (wj)j=1;n and (¢;) j=1;, are slowly increasing,
v' ajand b; are the extreme values of x;, in other words, x; € [a;; b;],

on the problem (15) makes it possible to obtain the problem in the form :

(16)

Glob. min L(6)
6 € [0, Oax]

where
L") = L(hl(e);hz(e); ...;hn(e)) with @na the largest value of the variable 6.

Theorem 7 (Kounhinir, 2011 & 2013) : If 6" is global minimum of L(0) then x* = h(6") is global minimum of L(x).

IV : Consists in global optimization. That is the using of the Nelder-Mead simplex procedure to reach the opti-
mum of the resulting function from the last step. As the problem (16) is the minimization of a function of a single
variable without constraint, we use the simplex algorithm of Nelder Mead, known as ”fminsearch” in MATLAB
software, to determine its overall minimum.

V : Consists in the configuration of the obtained solution. That is transformation of the solution obtained in above
step which in one-dimension into the solution of n-dimension for the initial problem. So, the solutions of the
Problem (13) are deduced by using the previous reductive transformation. So, we have :

X = h(6").

5.2 Adapted MOMA-plus Method

The adapted version of the MOMA-plus method to the resolution of the fuzzy multiobjective program integrates in initial
procedure three other steps which are : first the conversion of the fuzzy program into deterministic presented in paragraph
4.3, the conversion of the solutions provided by MOMA-plus in fuzzy numbers and finally the selection of non-dominated
solutions. Therefore adapted MOMA-plus version can be presented as follows:
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STEP I : Conversion of fuzzy multiobjective linear program into deterministic multiobjective linear program;
STEP II : Application of MOMA-plus;
STEP III : Deduction of the solutions of the initial fuzzy multiobjective linear program from those obtained in step 2:

STEP IV : Selection of non-dominated solutions or Pareto optimal solutions of the fuzzy triangular multiobjective linear
program.

To highlight the performance of our new algorithm, we will propose its implementation through an example already
treated by Jayalakslmi and Pandian (Jayalakslmi, 2014) by the total objective-segregation method.

6. Example Didactic
Let’s consider the following fuzzy L-R triangular multiobjective optimization program extracted from (Jayalakslmi, 2014):

max 7, = (1,2,3)% + (2,4,5)%
max 7, =(2,3,4)x; + (3,4,5x,

0,1,2)% +(1,2,3)% < (1,10,27) (17
S.t (1,2,3)% + (0, 1,2)% < (2,11,28)
fl;fg € TLR.

where TLR, here, is for L-R Triangular L-R no-negative. By transforming this problem into fully fuzzy L-R triangular
problem, we obtain : _

max  Zy = (2,1, Digy1 © (4,2, Diry2

max Z, =(3,1, I)LR’)‘;I ® 34,1, I)LRS;z

(L L, Dry1 ® (2, 1, Drgy2 < (10,9, 17) 11 (18)
S.t: 2, 1L, Dryr ® (1, 1, Drgy2 < (11,9, 1711
yi;y2 € TLR.
6.1 Adapted MOMA-plus Method
By setting Vi = (', ¥}, ¥)r and ¥ = (v, 5, ¥4) 1k, We obtain :

max  Zy = (2,1, D © 07,51, YDir © (4,2, Dig © 05 5. ¥k
max  Z, =3, 1, Dg © O ¥, YDr @ (4.1, D)r © (05, V5. V31w

(LL DO O™y Ly ® (2,1, g © 0, v5, vk < (10,9, 17) 1z (19)
S.t: 2. LD My Y e ® (1,1, D © 0, v5, vk < (11,9,17)1¢

O Y YOLR: O 5. 3k € TLR .

v By applying the techniques of conversion proposed above to the didactic example (17), we obtain :

max  zj = 2y + 4y
min  zpp = 2}’11 + 2y + 4)’12 +3y5 +2y7 +4y5
max  zj3 =4y + Tyy = 2y) — 4y, + 294 + 4y
max 221 = 3y + 4y}
min -z = 3y} + 2y + 4y, + 295 + 3y + 4y}
max 23 =6y’1"+8y’5’—3y11 _4y[2+3yblt+4yg
Y+ 2y < 10
i !
Y= =2, <1
2y + 3y5 + i + 295 <27 (20)
2y < 11
w2 i<
S.t: 3y +l2y’2" + 2y +y, <28
W-y,20
i+ y;l‘ >0
¥ =y,20
¥ +y, 20
Y0y > 0;y) > 05y > 04 > 054 >0
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v By applying the adapted algorithm of MOMA-plus that we have proposed in this work, we find the Pareto optimal

solutions. For our example some solutions in gives the following table.

We remind that the 4;, i = 1,---, 6 are weights for the objectives functions which are generated automatically by

6

the algorithm such as Z A; = 1 and precisely seven sets of weights for the objective functions are used.

i=1

No Weights X X,
1 05,0.1,0.2,0.2,0,0 (4.0000,1.3820,2.0702) (3.0000,0.3090, 3.9649)
2 0.5,0.2,0,0,0,0.3  (4.0000,0.6667,3.3333) (3.0000, 0.6667,3.3333)
3 0.6,0,0,0,0,0.4 (3.5794,0.3162,3.8240) (3.2103,0.9471,3.1931)
4 06,0,0.1,0.1,0.1,0.1 (4.0000,0.6667, 1.4756) (3.0000,0.6667,4.2622)
5 0.7,0,0,0,0,0.3 (3.6561,0.3801,3.7345) (3.1719,0.8959, 3.2187)
6 0.8,0,0,0,0,0.2 (3.7054,0.4212,3.6770) (3.1473,0.8630, 3.2351)
7 0.9,0,0,0,0,0.1 (3.5678,0.3065,3.8376) (3.2161,0.9548,3.1893)

That allows to deduce the objective functions Z, k = 1,2 and also the ranking function values R. All these results

are presented in the below table :

No Z: Z: RIZ]  RIZ:]
I (20.0000, 8.0000,27.0000) (24.0000, 12.3820,29.0702) 24.7500 28.1721
2 (20.0000, 8.0000,27.0000) (24.0000, 11.6667,30.3333) 24.7500 28.6667
3 (20.0000,8.0000,27.2103) (23.5794,11.5265,31.0343) 24.8026 28.4564
4 (20.0000,8.0000,27.0000) (24.0000, 11.6667,28.4756) 24.7500 28.2022
5 (20.0000,8.0000,27.1719) (23.6561,11.5520,30.9065) 24.7930 28.4947
6 (20.0000,8.0000,27.1473) (23.7054,11.5685,30.8243) 24.7868 28.5194
7 (20.0000,8.0000,27.2161) (23.5678,11.5226,31.0537) 24.8040 28.4506

By noting Ry, the ranking function associated to the MOMA -plus method we have :

RulZ;] > 24.75 and Ry[Z;] > 28.1721

6.2 Total Objective-segregation Method

Let’s note that for this example, the method of Jayalakslmi and Pandian gives a unique solution which is completely
optimal solution : _ _
Z{ = (4,20,43) and Z; = (7,24,49).

By bring backing this result on the L-R triangular form we obtain :
Z; =(20,16,23)x and Z; = (24,17,25) .
Also, by setting Ry the ranking function associated to the Total objective segregation method we get :

Rr[Z{] = 21.75 and R7[Z3] = 26.

6.3. Comparison

Considering the provided solutions by the two methods during the resolution of the didactic example (17) we have:

{ RulZ} > RrlZ;] RulZ12R7IZ].

RulZ; > Rr(Z;)
Therefore, one the one hand the adapted version of MOMA-plus gives better compromise solutions than the Total objective

segregation method. One the other hand we can add that the adapted version of MOMA-plus gives the possibility to a
decision maker to make some choices according to his preferences which can be translated in our case by weights.
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7. Conclusion

In this paper, we have proposed a new method for solving Fully fuzzy L-R triangular multiobjective linear programming
problems. It has consisted of the conversion of the fuzzy basic problem into a deterministic multiobjective optimization
problem in order to use our adapted version of the algorithm of the MOMA-plus method. That has allowed us to generate
better solutions of compromise or Pareto optimal solutions compared to the Total objective segregation method as testifies
the treated example. Therefore we can conclude that the extension we have proposed provides better results for the
resolution of fully fuzzy L-R triangular multi-objective linear programs.
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