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Abstract

Numerical simulation of a three-dimensional semiconductor device of heat conduction is a fundamental problem in mod-
ern information science. The mathematical model is formulated by a nonlinear system of initial-boundary problem, which
is interpreted by four partial differential equations: an elliptic equation for electrostatic potential, two convection-diffusion
equations for electron concentration and hole concentration, a heat conduction equation for temperature. The electrostat-
ic potential appears within the latter three equations, and the electric field strength controls the concentrations and the
temperature. The electric field potential is solved by a mixed finite element method, and the electric field strength is
obtained simultaneously. The first order of the accuracy is improved for the latter. The concentrations and temperature
are computed by the characteristics-finite element method, where the characteristic approximation is adopted for the hy-
perbolic term and finite element method is use to treat the diffusion. The composite computational scheme can solve the
convection-dominated diffusion equations well because it can cancel numerical dispersion and nonphysical oscillation.
The temperature is computed by finite element method, and an interesting simulation tool is proposed for solving semi-
conductor device problem numerically. By using the technique of a priori estimates of differential equations, an optimal
order error estimates is obtained. A theoretical work is shown for numerical simulation of information science, and the
actual problem is solved well.

Keywords: three-dimensional semiconductor device, mixed finite element, characteristics-finite element, optimal error
estimates, numerical analysis

1. Introduction

In this paper we discuss numerical simulation of a three-dimensional semiconductor device of heat conduction, a fun-
damental problem in information science. Its mathematical model is formulated by four nonlinear partial differential
equations: 1) an elliptic equation for electric potential, 2) a convection-diffusion equation for electron concentration, 3) a
convection-diffusion equation for hole concentration, 4) a heat conduction equation for temperature. The electric potential
appears within the latter three equations, and the electric field strength controls the concentrations and the temperature.
The nonlinear partial differential system with initial-boundary conditions on a three-dimensional domain Q is defined as
follows (Bank, Coughran, Fichtner, Grosse, Rose & Smith, 1985; Jerome, 1994; Lou, 1995; Yuan, 1996),

Ay =a(p-e+NX), X=(xy) €Q tel=(0T], (0

% =V [D.(X)Ve — u.(X)eVy] = Ri(e, p,T), (X,1) € QxJ, 2)

aa—’: = V| Dy(X)Vp + up(X)pVis| - Rale, p. T),  (X,1) € QxJ, 3)

paa—f = AT = {(Dy(X)Vp + up(X)pV¥) ~ (De(X)Ve ~ pe(X)eVY)} - Vib, - (Xo1) € Q. @

The electric potential, electron concentration, hole concentration and temperature are the objective functions, denoted by
¥, e, p and T, respectively. All the coefficients of (1)-(4) are bounded. @ = g/&, where g and & are positive constants
denoting the electronic load and the permittivity, respectively. Ur is the thermal voltage. The diffusion Dy(X) depends on
the mobility u(X), i.e., Dy(X) = Urus(X), (s = e for the electron and s = p for the hole). Np(X) and N4(X) are the donor
impurity concentration and acceptor impurity concentration, respectively. N(X), defined by N(X) = Np(X) — Na(X),
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changes rapidly as X approaches nearby the P-N junction. Rj(e, p,T) and R(e, p, T) are the recombination rates of
the electron, hole and temperature. p(X) is the heat transfer coefficient. A nonuniform partition is adopted usually in
numerical simulation (He, 1989; Shi, 2002; Yuan, 2009, 2013).

Initial conditions:
e(X,0) = ep(X), p(X,0) = po(X), T(X,0) = To(X), Xe€Q, &)

where eo(X), po(X) and T((X) are given positive functions.

In this paper we consider the second type boundary condition (Neumann boundary condition) mainly:

oy 0Oey Opy _OT

aag_a'ao_gag_gbgzo’tel ©

where 0Q is the boundary of Q, and vy is the unit outer normal vector of Q.

A compatibility condition is added
f[p—e+N]dX:0, (7)
Q

and the following condition is given to avoid the ambiguous solution

f wdX = 0. (8)
Q

Numerical simulation of a semiconductor device is important and valuable in manufacturing modern semiconductor (He,
1989; Shi, 2002; Yuan, 2009, 2013). Gummel proposes the sequence iteration to compute the semiconductor problem in
1964 and states a new problem of numerical simulation in semiconductor device (Gummel, 1964). Douglas and Yuan put
forward a simple but useful finite difference method and discuss the application and numerical analysis first for the one-
dimensional and two-dimensional preliminary problems (constant coefficients and without temperature effect) (Douglas
& Yuan, 1987; Yuan, Ding & Yang, 1982), and the research becomes basic theoretical work in numerical simulation of
semiconductor device problem. Yuan discusses the characteristic finite element method for variable coefficient problem
(Yuan, 1993). Since the diffusion only includes the electric-field strength —Vi, Yuan presents the characteristics-mixed
finite element where the concentration is obtained by characteristic finite element and the potential is solved by mixed
finite element, and derives optimal-order error estimates in H'-norm and L?>-norm for a semidiscrete scheme and a fully-
discrete method (Yuan, 1991, 19912). There the authors only consider a two-dimensional problem without heat factor,
and the index k of mixed finite element space and / of finite element space are restricted by k > 1 and [ > 1. These
features should be improved for actual applications (Jerome, 1994; Yuan, 2009, 2013). Then a characteristic finite element
and a characteristic finite difference method are proposed on a uniform partition for a three-dimensional semiconductor
device problem of heat conductor (Yuan, 19912, 2000). In this paper the authors put forward a mixed finite element-
characteristic mixed finite element for solving a three-dimensional semiconductor device problem, where the potential,
concentrations and temperature are computed by a mixed finite element, characteristics-finite element and finite element
approximation, respectively. Suppose that k > 0 and / > 1. By applying a priori estimates theory and special techniques
of differential equations, we obtain optimal-order error estimates in L?> norm. This composite numerical method shows
important suggestions in solving semiconductor problem such as numerical method, software design, actual applications
and theoretical and physical study (He, 1989; Jerome, 1994; Shi, 2002; Yuan, 2009, 2013).

2. The Formulation of the Model Problem

To put forward the mixed finite element method-modified method of characteristics (MFEM-MMOC), we reformulate the
problem of (1)-(8) as follows

Viu=a(p—-e+N), XeQ,te (9a)
u=-Vy, XeQ,rel (9b)

0
a—j -V.-(D,Ve)—p.u-Ve—eu-Vu, — au.(X)e(p —e + N(X)) = —Ri(e,p,T), X € Q,t € J, (10)

d
6—1; =V (DpVp) +ppu-Vp+pu-Vu, + ap,(X)p(p —e + N(X)) = —Ra(e, p, T), X € Q,1 € J, (11
T

pgr AT = {(De(X)Ve + pe(X)ew) — (D,(X)Vp — pp(X)pw)} -0, X € Q.1 € J, (12)
u-y=(D\Ve)-y=(D,Vp)-y=VT-y=0, X €0Q,t € J, (13)
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e(X,0) = eo(X), p(X,0) = po(X), T(X,0) = To(X), X € Q. (14)

Equations (10) and (11) are solved by using MMOC. For convenience to obtain the approximations at the boundary, we
suppose that Q is a cube and the problem of (9)-(14) is Q-periodic, i.e. all the functions are Q-periodic. This assumption
is reasonable in physical science because mirror reflection is used according to non-permeation condition. Furthermore,
the boundary condition (13) can be omitted because it has a small effect on the interior flow of oil reservoirs in common
numerical simulations (Ewing, 1984; He, 1989; Shi, 2002; Yuan, 2009, 2013).

Introduce Sobolev space and norms on Q,
L@={f: f fPdX < oo}, Ifll = f FPax),
Q Q

L@ ={f": ess Sup IfT <ok Mflls = ess sup I£1;

ol gl £ |17
H"(©Q) = {f : f @l <m, =] 3 [T " m=0,
|al<m
W) = {f Mf L=(@).lal < m), IIfl . 0
- € al<m m = max , m>0,
ox® Yo ™ alsm || 9xe [eo

and H(Q) = L*(Q), W% (Q) = L*(Q). Define inner product in L*(Q)

(f.e)= ffng-
Q

The time-dependent space are given. Let [a,b] C J and let X denote a space above. For a function f(X, ) on Q X [a, b],
define

b aaf 2
H(a,b;X)Z{f: f 67 d[<00,a’§m},
a(! /
I ez apixy = t‘{ } ,m=0,
ol
W(a, b; X) = {f : es[i;;lp s < oo, < m},

m = max esssu
“f”Wo(,(a bX) = Osesm  [qp] p

L*a,b;X) = H(a,b;X), L(a,b;X) = W2 (a, b; X).

A R

For a simple case, [a,b] = J = [0,T] and X = Q, we omit J and Q, and replace L=(0, T; WL (Q)) by L*(WL). Then, let
H™(div) = {£(X) = (fi, . £5) : fi fon f3,V - £ € H'Q)},
3 1/2
iy = (D WAl + 119 -1, ), m > 0,
i=1
H(div) = H'(div).
Suppose that the problem of (9)-(14) is regular,

¢ c Lcc(Hk+l
(R) u € L(H"(div) N L (We) N Woo (L) N HA (L), 15)
e,p, T € LH"Y N H'(H) N L®(Wy,) N H(LY).

Here / > 1 and k > O are integers, and they denote the degrees of polynomials approximating e, p, T and .

The coeflicients of (9)-(14) are positive definite,

© { 0<D, <Dy(X)<D*, 0<p, <p(X)<u,s=e,p, (16)

0<p.<pX)<p*, IVu,l<K*,s=e,p,
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where D.., D*, u.., 4%, p., p* and K* are positive constants. Suppose that R, (e, p, T') and R, (e, p, T') are Lipschitz continuous
on a gy-neighborhood of X.

3. The Procedures of MFEM-MMOC

Numerical scheme of (9)-(14) is constructed in this section. A mixed finite element method (MFEM), a modified method
of characteristics (MMOC) and a finite element method (FEM) are used to solve the potential, the electron and hole
concentrations, and the temperature, respectively.

3.1 The MFEM for Potential

Eq. (1) is reformulated by (9a) and (9b). Test both sides of (9b) by v € H(div), obtain an inner product equation on  and
apply the divergence theorem for the term dependent on V. Eq. (9a) is treated similarly. Then, we have a saddle-point
problem of (9): to find (u(X, 1), Y(X, 1)) € H(div) X L*(Q) such that

fu -vdX — f YyV.-vdX =0, veH(dv), (17a)
Q Q

f wV -udX = fa(p —e+ NX)wdX, we Lz(Q). (17b)
Q Q

Introduce the time-dependent partition and finite element space. Let Q = | J Q, be a quasiuniform partition with diameter
hp. Let vk ¢ H(div) and S l; c L*(Q) denote the k-order mixed finite element spaces, k > 0. The time partition is defined
byO=1h <tV <<ty <---<th <t =T, andAty, =15, — 1", Ar, = 1;1};13);4&,’,’1.

Given e, (X, t0), pa(X, t5) at t£,, MFEM is used to compute u,(X, ;) € V¥ and y,(X, t5) € S,

f (X, 1) - vi(X)dX - f UnX BV - vi(0dX = 0, vy(X) € VK, (182)
Q Q

f Wh(OV - u(X, h)dX = f an(pn(X. 1) — en(X. 1) + NCOW(X)dX,  wy(X) € S5, (18b)
Q Q

3.2 The MMOC for Concentrations

Generally, the strength changes slower than the concentrations and the computational cost in space and time is more
expensive when the MFEM (18) used at each time level. Thus, a larger time step is adopted for the potential equation.
For convenience, the partition for concentrations is obtained by refining the meshes of the potential, 0 = 7§ < #{ < --- <
fh < o <Gl <My =) <y <<y, =8 <<y o<ty =1ty =T. Let Aty =1, — 1 and
At. = max At;,. During the computation of MMOC, we should define an extrapolation of u,(X, i _,) and u,(X, t,i s

1<n<Ny "
denoted by Euy (X, 1), to approximate the value at ¢, 1* <t < h,

-1’ -0 |

(1 + 7= (X, )= (X, ), Npu1<n<Ny2<m<M,

u,(X,0), 1<n<N;,m=1.

Euy(X, () = { (19)

The MMOC is defined now for (10) and (11). Let denote a unit vector 7, of (—u.Eu, 1) in the composite space Q x [0, T],
and let ¢.(X) = (| Eu(X)]* + 1)"/*. Then,

de(X, 1€ ‘ ‘ ‘
deX) _ e ) - peEu(X, £©) - Ve(X, ). (20)
T, ot

It is approximated by using the characteristic finite difference,

d , e(X, 1) —e(X" ', 1 e(X, 1) —e(X" 1, 1
¢e—e(X, lﬁl ~ de ( ) ( : }1—11/)2 — ( ) (C n—l) ) (21)
o Aty(lueEu(X)” + 1) Aty
where X"~! = X + p Eu(X, 1©)At. Furthermore,
de E(X, tf;) - e()?g_l > tc,l) 1 Xt) =112 2411/2 626
X,15) — nll o X X" 4 (r, - —dr,. 22
g Xt o A iy (R e P 22)

The hole concentration equation (11) is discussed similarly. 7, is a unit vector of (u,Eu, 1). Let ¢,(X) = ( |,u‘,,Eu(X)|2 +

1)/2, then we have
IpX. ) _ 9p

= = 5 (60 + ppEuCX, 1) - Vp(X, 1), (23)
P
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The characteristic derivative is treated by

0,0 ey < g, P~ pXiL ) p(Xa) - p(R ) on
p o A1) =Py = - >
T AE(|1 + gy Eux)[ )2 At
where )V(Z’l = X — u,Eu(X, t;,)At;,. Furthermore,
ap . pXi)—pXpte ) 1 o i o ®p
LX) - = — X-X"YY+(,-F —dt),. 25
¢pan( 2 Aty At «f()?;;l,tfl_l)[( P V=) | (9‘1'%, i (25)

During the computations, the space step £, for the potential is larger than that for the concentrations and temperature, i.e.,
hp > he. S I c W' (Q) denotes a finite element space for the concentrations and temperature consisting of all the piecewise
polynomial functions of degree at most [, [ > 1. e,(X,0), pn(X,0) and T(X, 0) are approximations of ey(X), po(X) and
To(X), where Ritz projection and interpolations are used generally. Then MFEM-MMOC for solving the problem of
(9)-(14) follows.

(1) Initial approximations are given by

en(X,0), pr(X,0), Th(X,0) X e Q. (26)

(2) Given e, (X, 1" ), pp(X, 1" ) and Tj(X, ¢” ), numerical solutions at 5 for n = Nyy—y + 1, Nyt +2, -+, Ny, (X, 15) X
X, ) X Th(X, 1) € S x S x S! are computed by

f en(X, 1) —ep(X, 1))
Q

v Z,dX + f Do(X)Vey(X, ££) - VZ,dX — f en(X, () Ewy(X, £) - Vi ZydX
n Q Q

- f ﬂg@h(X, t:l)(ph(X’ t;_l) - eh(X’ t;_l) + N(X))Zth
Q

= _le(eh(X, 0 X ), Th(X, £ )N ZydX, ¥ Z, € S, (27a)
o

where &,(X,¢_) = ex(Xe, 1_ ), X = X + pe Euy(X, 1AL,

f (X 1) — pu(X, 1))
Q

AL ZpdX + f Dp(X)Vph(X, l‘;) -VZ,dX - f ph(X, Z‘Z)Ellh(X, Z‘fl) . VﬂthdX
n Q Q

+a f HpPr X, 1) (pr(X, 1)) — en(X, 1,_ ) + N(X))ZpdX (27b)
Q
=- f Ro(enX, 15 ), prn(Xo 15 ), T(X, £ N ZydX, ¥ Zy € S,
o
where p(X,15_) = pu(X,, 15_ ), X = X = pupEw(X, 1AL,

Th(X’ tf,) - Th(X’ t;_])
fp(X) ZpdX + f VT,(X, 1) - VZ,dX
Q Q

Ar,

- f (D Ver(X, £ ) + proen(X. £ D Eup(X, 1)) @270)
Q

— (D, Vpu(X, £5_)) = wppn(X, £_ D Ew(X, )} - Euy(X, £)2Z,dX, ¥V Zy, € S

(3) When e;,(X, t,) and p,(X, t;) are computed, then the potential and strength at £/, w,(X, ) € V¥ and y,(X, 1)) € S ’J/ are
obtained by

f w,(X, 2w (X)dX — f Yn(X, 12V - vudX = 0, ¥ vy, € VK, (28a)
Q Q

f wi XV - (X, th)dX = a/f (pn(X, 1) — en(X, th) + NQXO)wi(X)dX, Y wy, € S@. (28b)
Q Q

MFEM-MMOC runs as follows. First (26) is determined by using the Ritz projection (see the following section) or
interpolations. Then by using (27), ex(X, £), pa(X, 1), Ty(X, t;) are computed at n = Ny—y + 1, Np—y + 2, -+ , Ny, (28)
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is used to obtain w,(X, t5), ¥, (X, t5) at tf,. The procedures of (27) and (28) are used repeatedly and all the numerical

solutions are obtained. According to (C), numerical solutions exist and are unique.
4. Preliminary Estimates

Suppose that the following approximation property and inverse property hold

(Ao inf {IIZ = Zyll2 + he IZ = Zollpn | < AR W2l ¥ Z € H™(Q),2<m < 1+ 1,

ZpeSt

- -1 -1
1Zull < thc‘%nzzhuy, 1Zall < Ki(L+1n ) 73R 2 1 Zyllgn
1Zullwn < KihZ> 11 Zillggn » ¥ Zy € S,

where A and K are positive constants independent of /..

)

Similarly, {V*, S 5} has the following properties

inf |w—wllz < Ak IWllggm, Y w e H™,
W;,ES]L
Ay F V= Vallgn < AS Wl . ¥V € H(div),
p V/,EV/‘
infk w = wallz> < Aok IWllgn, YweH", 1<m<k+1,
W]ZGS

v

-3/2
VIl < Kol Vll2, Vv e VK,

1 . ..
(Ip) IVllwe ) < Kok, IVllzs(y » T is a partition element,

where A, and K, are positive constants independent of /,,.

The Ritz projection of e(X, 1), [e(X, ) € S’,t € (0, T], is defined by
f Vy(X) - Do(X)VITe(X, )dX + f VXOTTe(X, )dX
Q Q
- f Vy(X) - Do(X)Ve(X, dX + f V(X)e(X, dX
Q Q

:—f)((X)%(X,t)dX+f/\/(X),ueu(X,t)-Ve(X,t)dX
Q ot Q

—fX(X)e(X,t)U(X, t)'V,uedX+fX(X)[a#ee(X,t)(p(X,t)—e(X, 1+ N(X))ldX
Q Q

+ f)((X)e(X, dX — f)((X)Rl(e(X, N, pX, 1), T(X,1)dX, V¥ y(X) € Sﬁ..
Q Q

According to the discussions (Ewing, 1984; Russell, 1980; Wheeler, 1973), we have
lle = ell o2y + he lle — el oy < Ath lellsgem »

< A]hLm ”e”Hl(Hm) N 2<m<Il+ 1,
Lo(L?)

0
Ha(e —Ile)

I Tell = wyy < At

where A is independent of e and 4.

The Ritz projection of p(X, £), TIp(X,t) € SL, ¢ € (0, T], is defined by
f Vx(X) - D,(X)VIIp(X, HdX + fX(X)HP(X, ndXx
Q Q
= f Vx(X) - D,(X)Vp(X, dX + fX(X)P(X, HdX
Q Q

0
= —f)((X)a—p(X,t)dX—fX(X)Mpu(XJ)'VP(XJ)dX
Q t Q

—LX(X)P(X,I)U(X,I)'Vﬂde—LX(X)aﬂpp(X,t)(p(X,t)—e(X,t)+N(X))dX

+fX(X)P(X,t)dX—fX(X)Rz(E(X, 1), p(X, 1), T(X, ))dX, ¥ x(X) € S,
Q Q
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and it holds
lp = Tplls2y + hellp = Tpllpogny < Arhe 1Pl e em »
H—(p -

||HP||L°°(WDL,) <Ay,

s < A]hgl”p”HI(Hm), 2 <m=< l+ 1,
L=(L?)

where A is independent of p and #,.
The Ritz projection of T(X, #), [IT(X, 1) € S., ¢ € (0, T], is defined by

f Vy(X) - VIIT(X, )dX + f YOOTIT (X, 1)dX
Q Q

- f Vy(X) - VI (X, )dX + f YOT(X, HdX

Q
= f (X)P (X ndX + fQX(X)T(X, ndX - LX(X){(Dp(X)VP(X, 1) = upp(X, (X, 1))
- (DE(X)Ve(X, 1) — pee(X, Du(X, Nhu(X, ndX, ¥ x(X) € S.
Similarly,
T =TTl + B IT = Ty < A [Tl

L=(L?)
ITIT Nl wyy < A,

H—(T I7)

where A; is independent of 7 and 4.

The projection of (u, ) € H(div) x L?, (ITu, IIy) € VA x § {2 is defined by
L(Hu(X, H—-ulX, ) v(X)dX - L(Hw(X, N — (X, 1)V - v(X)dX =0, ¥ v € V¥,
fQ V- ([Mu(X, ) — u(X, Dw(X)dX = 0, ¥ w(X) € S§.

Then it follows from the discussion of Raviart-Thomas (Brezzi, 1974; Douglas, 1983)

K+l

0T — | o gaivy) + T = Wl o2y < Aol arqaivy + 0lleoeen A5
-1
ITTul| o=y < A2k, 12,

where A, is independent of 4, u, and e, p.

Define an extrapolation of u,

Fu(X, ) = (1+ I m’"]‘)u(X ro)- b e lu(X ), Nu1<n<Ny2<m<M,
u(X,0), 1<n<N,m=1.

Furthermore,

3/2
As(At,) ||M||H2(t[;_z,t,’§,;L2) , L€ [t‘;_l,tﬁ],m >2,

EuX, ) —u(X,t <
IE(X, 1) = u(X, D)2 { A Tyt m=1,

where A3 is a positive constant.
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5. Convergence Analysis

For simplicity, At. and At,, are supposed to be independent of the time. Then, MFEM-MMOC is reformulated as follows

to compute numerical solutions {ey,, py, T, }:(t', 2, -+ .1V} — SLx SLx SL qwp g} < {t1, 12, -+ Lt} = VEX S]lz:
6‘2 = Hfo, P2 = HPO, T = HTO, X e Q. (43)
—ez _ é271 U Ul ngo n—1 n—1
< AL ,Zh) + (D.Ve;,VZy) — (e Eu) - Ve, Zy) — apee,(py — e + N(X)),Zp)
= _(Rl(ez_l,pz_l, T;Z_l), Zh), Y Zh € Sé, (44a)
pn _ ﬁn—l
(P Z) + (D, VP1.Y24) = (PhEW; - Vi, Z2) + aluppi(pi = €7 + N(X)). Z4)
c
= —(Ro(el, py " Th "), 21), ¥ Zy € S, (44b)
T" — Tn—l
h ™ th "
— 7y + (VT},VZ
<'O At, h) ( ")
= ({(DeVeZ_l + ey Ey) — (DY)t — p,p) Eup)} - EuZ,Z/,), VZ,eS!, (44c)

where &/7! = el '(X,), X, = X + p EulAte, pi~' = pi='(X,), X, = X — p,EuAt,.

Wiy Vi) = Wi, V - Vi) = 0, ¥ vy, € VE, (45a)
(V : uh,ma Wh) = Q(Ph,m - eh,m + N(X), Wh)s v wp € S@ (45b)

Given €2, p¥, T%t, by using (45 d btained. Then fi 44 1ol g2 2 2y o N N
W P Tt by using (45), w0 and ¢, 0 are obtained. Then from (44) we get {e,, p,, T, }, e, p;. i), -5 ey ' P s

T;IV ). Note that " = 1, we compute {uy 1,1} by (45). All the numerical solutions are obtained after repeated compu-
tations.

In the following discussions, the symbols K and & denote a generic positive constant and a generic small positive number,
respectively. They can take different values at different places.

The optimal error estimates for k > 0 and / > 1 follow.
Theorem 1 Suppose that W, u,e, p,T are exact solutions of (1)-(8) and satisfy W € L®(H*"), u € L*(H*!(div)) N
WL H*(L?), e, p, T € L>(H*YNH' (H*YNL2(WL) N\ H2(L?). Let Wy, wy, ep, pi, Tn be numerical solutions of
(43)-(45). Suppose that k > 0, | > 1, and the following partition constrict holds

At = o(hp), h = O(hy), (A1)*? = O(hy), (At,)* = O(hy). (46)
Then,

[y — allzsmaivy + Wn — Wllpoey + s = sllzoqzzy + s = sllzzm
(

s=e,p,T
»s ;T 5
* g * /2 2
SN = Sl K0 + @ ) (47)
s=e,p,T s 122 LX(1?)
+ K*h?—l Z {”S”LW(HI-H) + ”S”HI(HH-I) } + K*h;+1{||M||L°°(H/"+](div)) + ”l//”L‘”(Hk“) }’
s=e,p,T

where K* is a positive constant independent of he, h,, At}, and At),.

Proof. The electric potential equation is considered first. Subtracting (39) at ¢t = 1, from (28), we get

(uh,m - Hllm, vh) - (‘;l’h,m - H'ﬁm, V. Vh) = 0, v Vi € Vk, (4821)

(V- g = W), wh) = &P = P = € + €ms Wi, ¥ Wiy € S (48b)

From the Brezzi’s discussion of saddle-point problem (Brezzi, 1974; Douglas, 1983) and eq. (40), we have

= T g+ 0~ 00 < K3 = sl )

s=e,p
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then we get

IE@" = Ty < K{ [yt = Tt + [l — Ty,

< K{ Wiy » Il caoagaioy P (50a)
B, T < K{ 7 sl AE+ > [1Csn = Tsimill + 1l(sh = Ts)nall | (50b)
s=e,p s=e,p

From (40) and (49), it is necessary to show optimal error estimates of 3 |[s — sl|z~(2) to complete the proof of (47).
s=e,p

Let &y = e, —e", my = Mle" —€", &) = p; —p", m, =1p" - p", & = T; —UT" and 7, = TIT" — T". Subtracting (33)
(t = 1") from (44a), we obtain error equation of electron concentration
(é:n é';n 1
At,
- alpele(pi" = &7+ NX)) = €'(p" = " + N(X))1, Zy)

\Zn) + (D.VELVZy) = (e[ — Eu"] - Ve", Zy) - ([ef Eu), — "] - Ve, Zi)

e — o

At,

e n o _ on—1
=([6a ~ peEu" - V'] - )~ (T ) + 6 2) 651)

sn—1 yn—1 An—1 vn—1
—€ — 1.

n—1 _n—1 n—1 non gn € TTe
_(Rl(eh ’ph 9Th )_Rl(eh’ph’ Th)9Zh)+(A—tC,Zh)+(T

¢
gl =g i = &' -g! I
+ (T,Zh) + (T,le) + (T,Zh), VZ/l S Sc’ n>1.

,Zh)

Take Z;, = £ to get an L>-norm result. The first term on the left-hand side is estimated by

E2Eg) 2 Al -l 52)

Then, we have

n—1
sa el = eIy + (oover, v

de" n _ yn—1
<(I ;t — pEu" - Ve - £ Ate &)+ (uelu — Eu' - Ve', &) + ([e)Eu) — &"u"] - Ve, &)
ne n— n— ngeon n n 772 - 772
+a'(/1€[eh(ph 1 —e) 1 +NX)) -€"(p" —e +N(X))],fg)—(T )+(77 f ) (53)
. " et - e =1
— R Py T = RiGeg i T E0) + (— &)+ (A— &)
¥ 2
it i it ! at-gn! ‘
+ ( Atc é:e) ( Atc f"’) ( tc é‘:e) ;
The right-hand terms of (53) are considered. Applying (22) to estimate T
Oe e — ! "16% . 2
e— — U EU" - € — —— || < At ||pell; 7 dr.dX.
e ~HeEW -e Af, el fg jt;l a2 B
Thus,
IT| < KH A+ K2 (54a)
g Lz(t” 1 R LZ)
Estimate 7, by
n n n n 3 0u nl|2
T2l < llell o Il0” = EwC|IVe"ll [|£2]] < K(AL,)’ +K e (54b)
L2(ty-2stm-15L7)
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T is bounded by

|T5] = |(e}[Ew} — u"] - Vi + u"[€} — €"] - Vi, &)
&ull?

< K(At,)’ 5

2 2(k+1
+ KA e » 0l oo aivyy 0 (54¢)
L2(ty-2,tm-13L7)

2
+ K llellery B2 + K{ €1 1P + mmal® + |2 -

T4-T; are estimated by

Tl < K |P+ [l | + [l + ey + m200),
|T5| < K(Atc)_lhz(Hl) ||e||%—11(z”*1,z";[-11+1) +K ”§e|l2 i

ITel < K{lI€I1* + B2V},
ot < ke + llep I + eI+ flee P+ a2 0).

(54d)

Ts, Ty and T are considered in a similar manner. Let f be defined on Q. f denotes one of the three functions, e, &, or 1,.
Z denotes the unit vector of EuZ — Eu”. Then,

fn—l _j"n—l . B 5 X afn—l .
fg T GedX = (8 fQ fx o dZ| £ldX
Lot O U
= (A [ f ((1—Z)X+ZX)dZ} |X - X|&dx (55)

1 n—1
= f [ f or (1 -2)X + Z)?)dZ] e |E(u” - u;;)|§gdx,
aldo 9Z

where Z € [0, 1] and X — X = p E(u} — u"). Define

~ 1 afn—l . . _

g = fo =7 (1 -2)X +ZX)dZ, (56)

then, we derive three results from (55)
ITs) < lell o lgell o 1Em — )"l [|€2]] (57a)
ITol < llttell = ||l 1ECa = wp)" 1 ]|€2]) . - (57b)
IT10l < lltellp [lgel| NE@ = w1 ]|€2]] .. - (57¢)

From (40) and (49), we have
IEQ = wy)'P < K{i2%0 4 g2 4 3 [€emrl + [lesm—2]*1)- (58)
s=e,p

Since g.(X) is the mean value of the partial derivatives of ¢"~!, it can be estimated by He”‘l ”Wl . By (55a), we obtain the
estimate of T

1731 < K{ [ = ][ + ]y
<K 412004 S e+ a1+ e} e

s=e,p

To estimate ||g,,|| and ||g§||, we need to introduce the following induction hypothesis,

[l <[22, 1= 12 ©0)
Noting that
1 n—1
gl < fo fQ [agz (1= 2)% + Z%)| dxdz, 1)
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and defining the transformation
G7(X) = (1 -2)X + ZX = X — p [Ew"(X) — ZE(u]} — u")(X)]At,, (62)
from (61), we have
e < f Z |2 @00 axaz. (63)
where J is a partition element of the potential equation. Using (60), we get

|VEW)|,. At < KR [ whnei]) o At < [2%]”2. (64)
P

Note that Az, = o(h,), then
detDGz =1 + o(1).

It follows from (63),
eI < & |lv s (65)
Therefore,
|Tol < K ||V - |EQ" = u)|| - (1 + InaZ Y Pr;' > ||ver|
< K25 A+ iR B - up| + g ||ve|
< K|E@ - w)|]* + ||V, (662)
Tl < K||Ve || [[EQ" —up)|| - (1 + na; Y PR; 2 || ver|
<sl|[ver|f +||ve|*)- (66b)
To complete the proof, we need show that ||§e,m_,~|| = O(KKT +hl*' + At + (A1))Y? + (At,)?). From the discussions (Ewing,

1984; Russell, 1980) and (50), it holds obviously that [|E(u" — u})|| = o((1 + Ink;"y**h;'/?). Then (66b) is obtained.
Considering (59) and (66) together,

|Tg| + |To| + |T1ol < K{hf}k*‘) + D+ (A1) + (A + (Ar,)

4 3 sl + osmcall T+ VeI ) + et 92| + [0 ©7
s=e,p
Applying the negative norm estimates (Ewing, 1984; Russell, 1980) for Ty, T1», we have
(68a)
Tl < K& + e[l (68b)
Using (54), (67) and (68), we rewrite (53) as
n—1
sa el = eIy + (oeve, vey
< K(llellz=czeery )2 + K llell g ot gne oy h2<l+'>(m )
e 2u® 69
+ KWl 2y » 0l g @i VoD + K At. + K —;’ (At,)? (©9)
(9‘1'3 L2 L2 O || 21 i)
{[vel’+ 30 167+ D7 Uo7+ el 1) + etV + 9l

s=e,p,T s=e,p
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Similarly, the hole concentration is estimated. Subtracting (35) (¢ = #*) from (44b), we get its error equation

1 n n— n n
a1 - I+ 0,5 v

P
s([;;

p _ﬁnl

+pupEu" - Vp'| -

7,) = (uplu— Eu"]- Vp", &) - ([p,Ewj, — p"u"] - Vu,,, &)
n o n—1

— QPP = e NOO) = P = €+ NOOIL &) = (e ) + (0 6))

(70)
An—1 _ ﬁn—l el - ,V]Z 1
= (Ra(ep™, py ' T3 = Ratef, pj T, £5) + (—,fz) + (A— &)
é:n 1 é;n 1 nn 77 i fn 1 égn 1
+(pT &)+ (,,A_,, &)+ (—_ &)
In a similar analysis, we obtain the following estimates
ereu | 1 al RRACA AT
< KUIpl o DEZD + KNPl oot oy hz(”l)(At )
9* *u
b KWty » 0l iy 2D+ K‘ . Pplf Mo+ K|S (A1) 70
Tp 21 g2y L2(ty_2.tm:L?)
KUVl + 3 e+ 3 Uo7+ lewnall 1) + st 987 + 1951
s=e,p,T s=e,p
Subtracting (37) (¢t = ") from (44c), we get error equation of temperature
SAL o2 = o2 I + v vep
ort 1" -T1"!
< (p Frale pA—tC,fg) + ((DeVeZ + peey Euy) - Eu) — (D, Ve + p.e"u”) - u”,ﬁ) (72)
n o n—1
(D, V7~ o) - B — (D, — o) -w') (T )+ o).
Continue,
o2l = e IF )+ (v v
2 2 2 (73)
< KTl ey BV (At +1<H @ k[ S e+ S el + leamal )
L2(tyo,tmsL?) s=e,p,T s=e,p
Considering (69), (71) and (73), we have
o bze:p“g“ +le/2§T” bzelp”fn 1” | 1/25; 1|| A;"p(psvgg,g’;)+(Vf’;,Vﬁ)
< K( D sl R + K Wslli oo ey B (A1) ™+ KAy » Il i Vg
s=e,p s=e,p,T
5 IR 512 (74)
+K a—j At + K 36—;‘ @A)+ K Y [|vel’ +lle|f
s=e,p TP L2(r=1 mL2) 4 L2(tya.tm3L?) s=e,p,T
K Y el + el 1+ 3 Lver |+ Ivelf 1
s=e,p s=e,p

Multiplying both sides by 2At,, and using £ = 0, s = e, p, T, the partition restriction, (42), positive definite condition (C)
and the Gronwall lemma, we conclude that

max Y[+ >0 S (Ve Ar < K{ROD + 25D + (M) + (A1) + (A

, , : (75)
s=e,p, n s=e,p,
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The theorem is proved by using (75) and (49).
The induction hypothesis (60) is verified now. If #* = ¢,,, then we use (32) and (75) to get

il < 00 + [Jwn g = T, < K52+ K/ (g — T |
< KI 2 K ) low = suall < K112+ K 3 [l + [z
s=e,p s=e,p
< K"+ KPR + B+ A + (A1) + (A1y)?)
he

1/2
S[E]/.

(76)

Taking At. = o(h),), we prove that (60) holds for 4, sufficiently small.
6. Conclusions and Discussions

Numerical simulation of three-dimensional semiconductor device transient behavior problem of heat conduction is dis-
cussed in this paper. A mixed finite element modified with the characteristics is prosed and convergence analysis is shown.
In §1, the mathematical model is stated, and the physical background and related research are introduced. §2 the problem
is stated and the notation in Sobolev space is introduced. The properties, the positive definite condition and the regular
assumptions are given. In §3, The composite procedures are defined, where the potential is solved by the mixed finite el-
ement. The electric potential and the strength are computed simultaneously, and the computation of strength is improved
by one order. The characteristic finite element is applied to solve the concentration equations and the heat conduction
equation. The diffusion and convection are solved by the finite element and the characteristic scheme, respectively. The
composite scheme can solve convection-dominated diffusion problems well because it avoids numerical dispersion and
nonphysical oscillation. The temperature is computed by the finite element accurately. Some preliminaries are given in
§4. Finally, an optimal error estimates in L?-norm is given by using a priori estimates of differential equations and special
techniques, the induction hypothesis and negative norm estimates.

Several interesting conclusions are obtained.

(D A composite numerical scheme applied in numerical simulation of oil reservoir is adopted to solve the simulating
semiconductor device behavior successfully. The basic work of Douglas (Douglas, 1987) on numerical simulation of
semiconductor device is extended essentially.

(IT) This research shows an optimal error estimates in L? norm, developing the work of Ewing, Russell and Wheeler on the
characteristic mixed finite element method only for two-dimensional problem (Ewing, 1984; Russell, 1980) and giving a
consideration of actual problem on three-dimensional region.

(IIT) The composite scheme and optimal error estimates in L>-norm give theoretical and physical support of modern
scientific computing, and this discussion is most valuable in modeling, analyzing the mechanism and designing software
(He, 1989; Jerome, 1994; Shi, 2002; Yuan, 2009, 2013).
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