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Abstract

This article proves several new inequalities. The proved inequalities are all integrated with the floor function and one of
them gives a bound estimation for the Euler’s totient of the semiprimes. Detail mathematical deductions are presented
and applicable cases for each inequality are also given with technical comments.

Keywords: Inequality, Euler’s totient, floor function

1. Introduction

The importance of the inequalities and their applications are widely known by researchers of science and technology.
Among the thousands of inequalities, those that incorporate the floor function are of very special individuality because
of their discrete traits and their wide applications in computer science and various technological aspects. Discovering
and proving such inequalities always accompany with mathematical skills and smartness, as seen in chapter 3 of Gra-
ham’s book (Graham, 1994), in chapter 2 of KUANG’s book (Jichang Kuang,2010) and in WANG’s article (Xingbo
WANG,2017). A recent study came across several new such inequalities. This article introduces , proves them and makes
comments on their applications.

2. Preliminaries

This section lists notations, symbols and lemmas that are adopted in this article.

Definition 1 The floor function of a real x, denoted by ⌊x⌋, is an integer that satisfies inequality ⌊x⌋ ≤ x < ⌊x⌋ + 1, or
equivalently, ⌊x⌋ ≤ x < ⌊x⌋ + 1.The fraction part x − ⌊x⌋ is denoted by {x}.
Symbols Symbol A =⇒ B means A can derive out B or B is obtained from A.

Lemma 1 For arbitrary positive real numbers x and y, it holds x+y
2 ≥

√
xy, where the equal sign ’=’ holds if and only

x = y.

Lemma 2 (See in Xingbo WANG,2017) The floor function ⌊x⌋ holds the following properties (P8) and (P12).

(P8). n ⌊x⌋ ≤ ⌊nx⌋, where n is a positive integer;

(P12). ⌊−x⌋ =
− ⌊x⌋ , x ∈ Z

− ⌊x⌋ − 1, x < Z
, where symbol Z means set of integers.

Lemma 3 For arbitrary positive integer n > 13, it holds n2 < 2n−3.

Proof. The lemma obviously holds for n = 14 because 8 × 142 = 8 × 196 = 1568 and 214−3 = 211 = 2048. Now assume it
holds for n = k with k > 14; then it yields

k <
√

2k−3

and

(k + 1)2 = k2 + 2k + 1 < 2k−3 + 2k + 1 (1)

Note that when k > 14,

2k−3 + 2k + 1
2(k+1)−3 =

1
2
+ 2

k
2k−2 +

1
2k−2 <

1
2
+

1

2
k−3

2

+
1

2k−2 <
1
2
+

1

2
14−3

2

+
1

214−2 < 1 (2)
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Then (1) and (2) result in
(k + 1)2 < 2k−2 = 2(k+1)−3

By principle of mathematical induction, the lemma holds.

�
3. Main Results and Proofs

Theorem 1 For arbitrary odd integer n ≥ 7, it holds

1 +
⌊
log2n

⌋ ≤ n − 1
2

(3)

Proof. Direct calculation shows that, inequality (3) hold for n = 7, 9, 11, 13 because 1 +
⌊
log27

⌋
= 3 = 7−1

2 , 1 +
⌊
log29

⌋
=

4 = 9−1
2 , 1+

⌊
log211

⌋
= 4 < 11−1

2 and 1+
⌊
log213

⌋
= 4 < 13−1

2 . Now consider n > 13. Use proof by contradiction. Assume
1 +
⌊
log2n

⌋
> n−1

2 ; then it leads to 1 + log2n > n−1
2 since log2n ≥ ⌊log2n

⌋
. That is

log2n >
n − 3

2
⇒ log2n2 > n − 3⇒ n2 > 2n−3

which is contradictory to Lemma 3. Thus when n > 13 the inequality (3) holds. Consequently the theorem holds.

�
Theorem 2 Let α and x be positive real numbers; then it holds

α ⌊x⌋ − 1 < ⌊αx⌋ < α(⌊x⌋ + 1) (4)

Particularly, if α is a positive integer, say α = n , then it yields

n ⌊x⌋ ≤ ⌊nx⌋ ≤ n(⌊x⌋ + 1) − 1 (5)

Proof. The definition of the floor function shows that αx − 1 < ⌊αx⌋ ≤ αx and x − 1 < ⌊x⌋ ≤ x. Hence ⌊αx⌋ − α ⌊x⌋ ≤
αx − α ⌊x⌋ < αx − α(x − 1) = α, namely

⌊αx⌋ < α ⌊x⌋ + α (6)

Again by ⌊αx⌋ > αx − 1 and ⌊x⌋ ≤ x, it yields

⌊αx⌋ − α ⌊x⌋ ≥ ⌊αx⌋ − αx > αx − 1 − αx = −1

namely,
⌊αx⌋ > α ⌊x⌋ − 1 (7)

Obviously, when α is a positive integer, say α = n, then (7) turns to be

n ⌊x⌋ < ⌊nx⌋ + 1

That is n ⌊x⌋ ≤ ⌊nx⌋, as Lemma 2(P8) states.

�
Corollary 1 For arbitrary positive real numbers α,x and y with x > y , it holds

⌊α(x − y)⌋ + α ⌊y − x⌋ ≤ 0 (8)

Proof. There are two cases to investigate. One is that |x− y| = n is a positive integer, and the other is not. For the first case,
⌊α(x − y)⌋ = ⌊αn⌋ ≤ αn and by Lemma 2 (P12) α ⌊y − x⌋ = −αn ; then it yields ⌊α(x − y)⌋+ α ⌊y − x⌋ ≤ αn− αn = 0. For
the second case, x − y is not an integer, then by Theorem 2 and Lemma 2(P12)

⌊α(x − y)⌋ + α ⌊y − x⌋ < α ⌊(x − y)⌋ + α − α(⌊x − y⌋ + 1) = 0

�
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Theorem 3 Let n be a semiprime and ϕ(n) be the Euler’s totient function; then the inequalities (9) and (10) hold
√

n < ϕ(n) < (
√

n − 1)2 (9)⌊√
n
⌋
< ϕ(n) ≤ n − 2

⌊√
n
⌋

(10)

Proof. Let n = pq, where p and q are odd primes with 3 ≤ p < q; then n > 6. Now by definition of ϕ(n), see in chapter
4.9 of Graham’s book(Graham, 1994), or chapter 7.1 of Rosen’s book(Rosen,2011), it yields

ϕ(n) = n(1 − 1
p

)(1 − 1
q

) >
4n
9

Considering 4n
9
√

n =
4
√

n
9 , it knows that 4n

9 >
√

n when n > ( 9
4 )2 = 2.252 = 5.0625.

Therefore, it holds
ϕ(n) >

√
n (11)

The definition of the floor function shows
√

n ≥
⌊√

n
⌋
; hence it is sure

ϕ(n) >
⌊√

n
⌋

(12)

On the other hand,
ϕ(n) = (p − 1)(q − 1) = n − (p + q) + 1

By Lemma 1 it holds p + q > 2
√

pq = 2
√

n; consequently

ϕ(n) < n − 2
√

n + 1 = (
√

n − 1)2 (13)

Meanwhile, by
⌊√

n
⌋
≤
√

n, it leads to

ϕ(n) < n − 2
√

n + 1 ≤ n − 2
⌊√

n
⌋
+ 1

Since ϕ(n) is a positive integer, it yields
ϕ(n) ≤ n − 2

⌊√
n
⌋

(14)

The inequalities (11) to (14) establish the theorem.

�
4. Applicable Cases & Comments

Theorems 1 to 3 might be thought very plain but in fact they are very important in certain areas. Here lists some of their
applications.

4.1 Application of Theorem 1

When investigating the divisibility on a valued binary tree, as WANG introduced (Xingbo WANG, 2016), it can see that,
the leftmost node of an N(0,0)-rooted tree is calculated by

N(k, j) = 2kN(0,0) − 2k + 1; k = 0, 1, 2, ...

If N(0,0) is an odd prime number p, then it yields

N(k, j) = 2k p − 2k + 1; k = 0, 1, 2, ... (15)

By Fermat’s Little Theorem,
2p−1 ≡ 1(mod p) (16)

One can see from (15) and (16) that,p|N(k,0) when k = p−1. That is to say, p’s multiples periodically occur at the leftmost
nodes of the tree. Theoretically, this provides an approach to find p’s multiples in the tree; however when p is an unknown
divisor of a composite odd number to be factorized and a search is performed to search the ’theoretical p − 1’ along the
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leftmost nodes of the tree, it will cost quite a lot of time when p is relatively big. Fortunately, WANG’s article proves that,
there is not a multiple-node before level 1 +

⌊
log2 p

⌋
and the congruence (16) indicates it might have 2

p−1
2 ≡ 1(modp) or

2
p−1

2 ≡ −1(modp). This time, Theorem 1 shows 1 +
⌊
log2 p

⌋
< p−1

2 , providing a mathematical foundation to reduce the
searching distance.

4.2 Application of Theorem 2

When deducting a mathematical formula related with the floor function, it usually needs to move a coefficient c outside
the floor symbol ⌊⌋ into the symbol, or vice versa, as is shown below

c ⌊x⌋ → ⌊cx⌋ , ⌊cx⌋ → c ⌊x⌋

Lemma 2(P8) shows c ⌊x⌋ ≤ ⌊cx⌋ when c is a positive integer. But this relationship does not hold when c is a positive real
number. For example, ⌊0.3 × 23⌋ = 6 < 0.3 × ⌊23⌋ = 6.9. This time, Theorem 2 can solve the contradiction. By Theorem
2, it shall hold

0.3 × ⌊23⌋ − 1 < ⌊0.3 × 23⌋ < 0.3 × (⌊23⌋ + 1)→ 5.9 < 6 < 7.2

which matches to the fact.

Actually, Theorem 2 can have further more applicable occasions. Readers can see them in future works.

4.3 Application of Theorem 3

In cryptography, factoring a semiprime, especially a big semiprime, say a RSA number, means a successful step towards
solving the difficult problem of integer factorization. There are a lot of literatures mentioning the topic. Among the
published methods, the one that calculates or guesses the Euler’s totient demonstrates particular individuality for its
elementary traits, which is easily understood and relatively faster, as were stated in chapter 6.4 of YAN’s book (Yan
,2008). Scholars developed several approaches to estimate the bound of ϕ(n), as Kloster (Kloster ,2010), Jie Fang (Jie
Fang & Chenglian Liu,2018) and Kurzweg U H(Kurzweg .2012) did.

On reading Jie Fang’s article, it is easy to find some errors in its mathematical deduction. For example, in proving Theorem
1 of the article, it alleged p+ q ≥ 2

√
n under the assumption n = pq. Actutally, it is wrong because p , q leads to that the

equal sign ’=’ does not hold. This error directly results in a wrong upper bound of ϕ(n) in the article. Theorem 3 might
provide a thought to its correction.
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