Regularity and Green's Relations for Generalized Semigroups of Transformations with Invariant Set

Lei Sun¹

¹ School of Mathematics and Information Science, Henan Polytechnic University, P.R.China

Correspondence: Lei Sun, School of Mathematics and Information Science, Henan Polytechnic University, Henan, Jiaozuo, 454003, P.R.China. E-mail: sunlei97@163.com

Received: June 30, 2017 Accepted: August 16, 2017 Online Published: February 6, 2018 doi:10.5539/jmr.v10n2p24 URL: https://doi.org/10.5539/jmr.v10n2p24

Abstract

Let \mathcal{T}_X be the full transformation semigroup on a set *X*. For $Y \subseteq X$, the semigroup $S(X, Y) = \{f \in \mathcal{T}_X : f(Y) \subseteq Y\}$ is a subsemigroup of \mathcal{T}_X . Fix an element $\theta \in S(X, Y)$ and for $f, g \in S(X, Y)$, define a new operation * on S(X, Y) by $f * g = f \theta g$ where $f \theta g$ denotes the produce of g, θ and f in the original sense. Under this operation, the semigroup S(X, Y) forms a semigroup which is called generalized semigroup of S(X, Y) with the sandwich function θ and denoted by $S(X, Y, *_{\theta})$. In this paper we first characterize the regular elements and then describe Green's relations for the semigroup $S(X, Y, *_{\theta})$.

Keywords: generalized transformation semigroups, regular elements, Green's relations

2010 Mathematics Subject Classification: 20M20

1.Introduction

Let *S* be a semigroup and $a, b \in S$. If a = axa for some $x \in S$, then *a* is called a *regular* element of *S*. The semigroup *S* is called *regular* if all its elements are regular. If *a* and *b* generate the same left principle ideal, that is, $S^1a = S^1b$, then we say that *a* and *b* are \mathcal{L} equivalent and write $(a, b) \in \mathcal{L}$ or $a \mathcal{L} b$. If *a* and *b* generate the same right principle ideal, that is, $S^1a = S^1b$, then we say that *a* and *b* are \mathcal{R} equivalent and write $(a, b) \in \mathcal{R}$ or $a\mathcal{R} b$. If *a* and *b* generate the same right principle ideal, that is, $S^1aS^1 = S^1bS^1$, then we say that *a* and *b* are \mathcal{T} equivalent and write $(a, b) \in \mathcal{T}$ or $a\mathcal{T} b$. It is not difficult to see that \mathcal{L}, \mathcal{R} and \mathcal{T} are equivalence relations on *S*. Let $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ and $\mathcal{D} = \mathcal{L} \vee \mathcal{R}$. Then \mathcal{H} and \mathcal{D} are also equivalences. These five equivalences are usually called Green's relations on *S*. They were introduced by J.A. Green and play an important role in the study of the algebraic structure of semigroups.

Let \mathcal{T}_X be the full transformation semigroup on a set *X*. Given a subset *Y* of *X*, the authors in (Honyam, P. & Sanwong, J., 2011) observed a class of subsemigroup of \mathcal{T}_X defined by

$$S(X, Y) = \{ f \in \mathcal{T}_X : f(Y) \subseteq Y \}.$$

It is clear that if Y = X then $S(X, Y) = \mathcal{T}_X$. To this extent the semigroup S(X, Y) is regarded as a generalization of \mathcal{T}_X . Regularity for the elements in S(X, Y) and Green's relations on S(X, Y) were described in (Honyam, P. & Sanwong, J., 2011).

We apply transformations on the left so that for $f, g \in S(X, Y)$, their product fg is the transformation obtained by first performing g and then f. Fix an element $\theta \in S(X, Y)$ and for $f, g \in S(X, Y)$, define a new operation * on S(X, Y) by $f * g = f\theta g$ where $f\theta g$ denotes the produce of g, θ and f in the original sense. Under this operation, the semigroup S(X, Y) forms a semigroup which is called *generalized* semigroup of S(X, Y) with the sandwich function θ and denoted by $S(X, Y, *_{\theta})$. Then $S(X, Y, *_{\theta}) = S(X, Y)$ as sets. Moreover, if $\theta = id_X$ (the identity transformation on the set X), then $S(X, Y, *_{\theta}) = S(X, Y)$ as semigroups. The generalized transformation semigroups of the various subsemigroups of \mathcal{T}_X were studied by many authors, see for example (Hickey, J. B., 1983; Kemprasit, Y. & Jaidee, S., 2005; Magill, K. D. Jr. & Subbiah, S., 1975; Pei, H. S., Sun, L. & Zhai, H. C., 2007; Symons, J. S., 1975; Tsyaputa, G. Y., 2004).

The purpose of this paper is to investigate the regularity of elements and Green's relations on generalized semigroup $S(X, Y, *_{\theta})$. Accordingly, in Section 2, the condition under which an element $f \in S(X, Y, *_{\theta})$ is regular is analyzed. In Section 3, Green's relations on $S(X, Y, *_{\theta})$ are considered and the relations \mathcal{L} , \mathcal{R} , \mathcal{H} , \mathcal{D} and \mathcal{J} are described for arbitrary elements, respectively.

2. The Regular Elements of $S(X, Y, *_{\theta})$

In this section we investigate the condition under which an element of $S(X, Y, *_{\theta})$ is regular.

Theorem 2.1. Let $f \in S(X, Y, *_{\theta})$. Then f is regular if and only if the following statements hold.

(1) $\theta|_{f(X)}$ is injective.

(2) $\theta f(X) = \theta f \theta(X)$ and $\theta f(X) \cap Y = \theta f \theta(Y)$.

Proof. Suppose that *f* is regular. Then $f = f * g * f = f \theta g \theta f$ for some $g \in S(X, Y, *_{\theta})$. It follows that $(f\theta)(g\theta)|_{f(X)} = \operatorname{id}|_{f(X)}$ and $(g\theta)|_{f(X)}$ is injective. So $\theta|_{f(X)}$ is injective and (1) holds. Clearly, $\theta f \theta(X) \subseteq \theta f(X)$. For each $z \in \theta f(X)$, let $z = \theta f(x)$ for some $x \in X$. Write $y = g\theta f(x)$ and then $z = \theta f(x) = \theta f \theta g \theta f(x) = \theta f \theta(y)$ which implies that $\theta f(X) \subseteq \theta f \theta(X)$. Thus $\theta f(X) = \theta f \theta(X)$. Similarly, we have $\theta f(X) \cap Y = \theta f \theta(Y)$.

Conversely, assume that (1)-(2) hold. Then, for each $x \in \theta f(X) \cap Y$, let $x = \theta f \theta(y)$ for some $y \in Y$, and for each $x \in \theta f(X) - Y$, let $x = \theta f \theta(y')$ for some $y' \in X$. Arbitrarily fix $a \in Y$ and define $g : X \to X$ by

$$g(x) = \begin{cases} y & \text{if } x \in \theta f(X) \cap Y \\ y' & \text{if } x \in \theta f(X) - Y \\ a & \text{otherwise.} \end{cases}$$

Clearly, $g \in S(X, Y, *_{\theta})$. To see $f = f\theta g\theta f$, we need only to show that $\theta f = \theta f\theta g\theta f$ since $\theta|_{f(X)}$ is injective. For each $x \in X$, if $\theta f(x) \in \theta f(X) \cap Y$, then let $\theta f(x) = \theta f\theta(y)$ for some $y \in Y$. If $\theta f(x) \in \theta f(X) - Y$, then let $\theta f(x) = \theta f\theta(y')$ for some $y' \in X$. So

$$\theta f \theta g \theta f(x) = \begin{cases} \theta f \theta(y) & \text{if } \theta f(x) \in \theta f(X) \cap Y \\ \theta f \theta(y') & \text{if } \theta f(x) \in \theta f(X) - Y \end{cases}$$

$$= \theta f(x)$$

which means that $\theta f = \theta f \theta g \theta f$ and so $f = f \theta g \theta f$. Therefore f is regular.

Denote by $Reg(S(X, Y, *_{\theta}))$ and Reg(S(X, Y)) the sets of all regular elements in semigroups $S(X, Y, *_{\theta})$ and S(X, Y), respectively. It is clear that $Reg(S(X, Y, *_{\theta})) \subseteq Reg(S(X, Y))$. In generally, an element $f \in Reg(S(X, Y))$ may be not regular in $S(X, Y, *_{\theta})$. The following theorem shows when $Reg(S(X, Y, *_{\theta})) = Reg(S(X, Y))$.

Theorem 2.2. Let the sets $\text{Reg}(S(X, Y, *_{\theta}))$ and Reg(S(X, Y)) be defined as above. Then $\text{Reg}(S(X, Y, *_{\theta})) = \text{Reg}(S(X, Y))$ if and only if θ is a bijection and $\theta(X - Y) \cap Y = \emptyset$.

Proof. Suppose that $\text{Reg}(S(X, Y, *_{\theta})) = \text{Reg}(S(X, Y))$. Since the identity transformation id_X on *X* is regular in S(X, Y), we have that id_X is also regular in $S(X, Y, *_{\theta})$, that is, $\text{id}_X = \text{id}_X \theta g \theta \text{id}_X = \theta g \theta$ for some $g \in S(X, Y, *_{\theta})$. So θ is bijective. Now we assert that $\theta(X - Y) \cap Y = \emptyset$. Indeed, if $\theta(x) \in Y$ for some $x \in X - Y$, then $x = \text{id}_X(x) = \theta g \theta(x) \in Y$, a contradiction. Therefore, $\theta(X - Y) \cap Y = \emptyset$.

Conversely, we need to show that $\operatorname{Reg}(S(X, Y)) \subseteq \operatorname{Reg}(S(X, Y, *_{\theta}))$. For this purpose, let $f \in \operatorname{Reg}(S(X, Y))$. Then f = fgf for some $g \in S(X, Y)$. Since θ is a bijection and $\theta(X - Y) \cap Y = \emptyset$, it follows that $\theta^{-1}(Y) \subseteq Y$. So $\theta^{-1} \in S(X, Y, *_{\theta})$ and $g' = \theta^{-1}g\theta^{-1} \in S(X, Y, *_{\theta})$. Thus $f = f\theta g'\theta f$ which implies that $f \in \operatorname{Reg}(S(X, Y, *_{\theta}))$. Hence $\operatorname{Reg}(S(X, Y)) \subseteq \operatorname{Reg}(S(X, Y, *_{\theta}))$ and $\operatorname{Reg}(S(X, Y)) = \operatorname{Reg}(S(X, Y, *_{\theta}))$.

Theorem 2.3. The semigroup $S(X, Y, *_{\theta})$ is regular if and only if the following statements hold.

(1) θ is a bijection and $\theta(X - Y) \cap Y = \emptyset$.

(2) Y = X or |Y| = 1.

Proof. Suppose that $S(X, Y, *_{\theta})$ is regular. Then

$$S(X, Y, *_{\theta}) = \operatorname{Reg}(S(X, Y, *_{\theta})) \subseteq \operatorname{Reg}(S(X, Y)) \subseteq S(X, Y).$$

Since $S(X, Y, *_{\theta}) = S(X, Y)$ as sets, it follows that $\text{Reg}(S(X, Y, *_{\theta})) = \text{Reg}(S(X, Y))$. By Theorem 2.2, θ is a bijection and $\theta(X - Y) \cap Y = \emptyset$. In the meantime, the semigroup S(X, Y) is also regular. By [5, Corollary 2.4], Y = X or |Y| = 1.

Conversely, by [5, Corollary 2.4] and Theorem 2.2, we have

$$S(X, Y) = \operatorname{Reg}(S(X, Y)) = \operatorname{Reg}(S(X, Y, *_{\theta})) \subseteq S(X, Y, *_{\theta}).$$

Since $S(X, Y, *_{\theta}) = S(X, Y)$ as sets, it follows that $S(X, Y, *_{\theta}) = \text{Reg}(S(X, Y, *_{\theta}))$, as required.

3. Green's Relations on $S(X, Y, *_{\theta})$

In this section we describe Green's relations on $S(X, Y, *_{\theta})$.

Denote by $\pi(f)$ the partition of X induced by $f \in \mathcal{T}_X$, namely,

$$\pi(f) = \{ f^{-1}(y) : y \in f(X) \}.$$

Also, let

$$\pi_Y(f) = \{ P \in \pi(f) : P \cap Y \neq \emptyset \}.$$

Let $\psi : \pi(f) \to \pi(g)$ be a map. If $\theta(X) \cap \psi(P) \neq \emptyset$ for each $P \in \pi(f) - \pi_Y(f)$ and $\theta(Y) \cap \psi(P) \neq \emptyset$ for each $P \in \pi_Y(f)$, then ψ is said to be θ_Y -admissible. If ψ is bijective and both ψ and ψ^{-1} are θ_Y -admissible, then ψ is said to be θ_Y^* -admissible. Now we begin with the relation \mathcal{L} in $S(X, Y, *_{\theta})$.

Theorem 3.1. Let $f, g \in S(X, Y, *_{\theta})$. Then the following statements are equivalent.

(1) $(f,g) \in \mathcal{L}$.

(2) $f(X) = g\theta(X)$, $f(Y) = g\theta(Y)$ and $g(X) = f\theta(X)$, $g(Y) = f\theta(Y)$.

(3) There is a θ_{y}^{*} -admissible bijection $\psi : \pi(f) \to \pi(g)$ such that $f = g\psi$.

Proof. (1) \Longrightarrow (2). Suppose that $(f,g) \in \mathcal{L}$. Then $f = g\theta h$ and $g = f\theta k$ for some $h, k \in S(X, Y, *_{\theta})$ and

$$f(X) = g\theta h(X) \subseteq g\theta(X) = f\theta k\theta(X) \subseteq f(X),$$

which implies that $f(X) = g\theta(X)$. Moreover,

$$f(Y) = g\theta h(Y) \subseteq g\theta(Y) = f\theta k\theta(Y) \subseteq f(Y),$$

which implies that $f(Y) = g\theta(Y)$. Similarly, $g(X) = f\theta(X)$ and $g(Y) = f\theta(Y)$.

(2) \Longrightarrow (3). It is readily consequential on (2) that f(X) = g(X). Now define $\psi : \pi(f) \to \pi(g)$ as follows. For each $P \in \pi(f)$, let $\psi(P) = g^{-1}(f(P))$. Then ψ is a well-defined bijection and $f = g\psi$. To see that $\psi : \pi(f) \to \pi(g)$ is θ_Y^* -admissible, let $\pi(f) = \{P_i : i \in I\}$ (where *I* is some index set) and $x_i = f(P_i)(i \in I)$. If $P_i \cap Y = \emptyset$, then $x_i \in f(X) = g\theta(X)$ and $x_i = g(y_i)$ for some $y_i \in \theta(X)$. So $y_i \in \theta(X) \cap g^{-1}(x_i)$ and

$$\theta(X) \cap \psi(P_i) = \theta(X) \cap g^{-1}(f(P_i)) = \theta(X) \cap g^{-1}(x_i) \neq \emptyset.$$

If $P_i \cap Y \neq \emptyset$, then $x_i \in f(Y) = g\theta(Y)$ and $x_i = g(y_i)$ for some $y_i \in \theta(Y)$. Thus $y_i \in \theta(Y) \cap g^{-1}(x_i)$ and

$$\theta(Y) \cap \psi(P_i) = \theta(Y) \cap g^{-1}(f(P_i)) = \theta(Y) \cap g^{-1}(x_i) \neq \emptyset.$$

Hence $\psi : \pi(f) \to \pi(g)$ is θ_Y -admissible. Similarly, ψ^{-1} is also θ_Y -admissible. Consequently, $\psi : \pi(f) \to \pi(g)$ is a θ_Y^* -admissible bijection.

(3) \Longrightarrow (1). Suppose that (3) holds. For each $x \in X$, if $P_x = f^{-1}(f(x)) \cap Y \neq \emptyset$, then take $z \in \theta(Y) \cap \psi(P_x)$ and let $z = \theta(y)$ for some $y \in Y$. Define h(x) = y. If $P_x = f^{-1}(f(x)) \cap Y = \emptyset$, then take $z \in \theta(X) \cap \psi(P_x)$ and let $z = \theta(y)$ for some $y \in X$. Define h(x) = y. Clearly, $h \in S(X, Y, *_{\theta})$. To see that $f = g\theta h$, for each $x \in X$, let $P_x = f^{-1}(f(x))$ and $Q_z = g^{-1}(g(z))$ (where $z \in \theta(Y) \cap \psi(P_x)$ or $z \in \theta(X) \cap \psi(P_x)$), then

$$f(x) = f(P_x) = g\psi(P_x) = g(Q_z) = g(Q_{\theta(y)}) = g(Q_{\theta(h(x))}) = g\theta h(x)$$

and so $f = g\theta h$. Similarly, $g = f\theta k$ for some $k \in S(X, Y, *_{\theta})$. Therefore, $(f, g) \in \mathcal{L}$.

Let *Z* be a subset of *X* and $Z \cap Y \neq \emptyset$. Let $\phi : Z \to X$ be a map. If $\phi(Z \cap Y) \subseteq Y$, then ϕ is said to be *Y*-variant. Clearly, each transformation $f \in S(X, Y, *_{\theta})$ is Y-variant. If ϕ is bijective and both ϕ and ϕ^{-1} are Y-variant, then ϕ is said to be Y^* -variant.

Now we consider the relation \mathcal{R} .

Theorem 3.2. Let $f, g \in S(X, Y, *_{\theta})$. Then the following statements are equivalent.

(1) $(f,g) \in \mathcal{R}$. (2) $\pi(\theta f) = \pi(f) = \pi(g) = \pi(\theta g)$ and $\pi_Y(\theta f) = \pi_Y(f) = \pi_Y(g) = \pi_Y(\theta g)$. (3) There is a Y^* -variant bijection $\phi : f(X) \to g(X)$ such that $g = \phi f$, and $\theta|_{f(X)}$ and $\theta|_{g(X)}$ are injective. Moreover, $\theta f(x) \in Y \Rightarrow f(x) \in Y$ and $\theta g(x') \in Y \Rightarrow g(x') \in Y$ for some $x, x' \in X$.

Proof. (1)=>(2). Suppose that $(f,g) \in \mathcal{R}$. Then $f = h\theta g$ and $g = k\theta f$ for some $h, k \in S(X, Y, *_{\theta})$. Immediately, $\pi(f) = \pi(g)$ and $\pi_Y(f) = \pi_Y(g)$. By $f = h\theta k\theta f$, $(h\theta)(k\theta)|_{f(X)} = id|_{f(X)}$ and $(k\theta)|_{f(X)}$ is injective. It follows that $\theta|_{f(X)}$ is injective and $\pi(\theta f) = \pi(f)$. Similarly, $\pi(\theta g) = \pi(g)$. Thus $\pi(\theta f) = \pi(f) = \pi(g) = \pi(\theta g)$. Now we verify that $\pi_Y(\theta f) = \pi_Y(f)$. Clearly, $\pi_Y(f)$ refines $\pi_Y(\theta f)$. Let $\theta f(x) = \theta f(y) \in Y$ for some distinct $x, y \in X$. Then, by $\pi(\theta f) = \pi(f)$ and $f = h\theta k\theta f$, $f(x) = f(y) = h\theta k\theta f(y) \in Y$. So $\pi_Y(\theta f)$ refines $\pi_Y(f)$ and $\pi_Y(\theta f) = \pi_Y(f)$. Also, we have $\pi_Y(\theta g) = \pi_Y(g)$. Consequently, $\pi_Y(\theta f) = \pi_Y(f) = \pi_Y(g) = \pi_Y(\theta g)$.

(2) \Longrightarrow (3). By $\pi(f) = \pi(g)$, define $\phi : f(X) \to g(X)$ by $\phi(x) = g(f^{-1}(x))$ for each $x \in f(X)$. Then ϕ is a bijection and $g = \phi f$. Arbitrarily take $y \in f(X) \cap Y$. Then $f^{-1}(y) \in \pi_Y(f) = \pi_Y(g)$ and $\phi(y) = g(f^{-1}(y)) \in Y$ which implies that ϕ is Y-variant. Similarly, ϕ^{-1} is also Y-variant. Thus ϕ is Y*-variant. In virtue of $\pi(\theta f) = \pi(f)$, $\theta|_{f(X)}$ is injective. Now assume that $\theta f(x) \in Y$ for some $x \in X$. Then there is some $P \in \pi_Y(\theta f)$ such that $x \in P$. It follows that from $\pi_Y(\theta f) = \pi_Y(f)$ that $f(x) = f(P) \in Y$. The argument for g is the same.

(3) \Longrightarrow (1). Suppose that (3) holds. For each $x \in \theta f(X) \cap Y$, let $x = \theta f(x')$ for some $x' \in X$. Fix $a \in Y$ and define $k : X \to X$ by

$$k(x) = \begin{cases} \phi(f(x')) & \text{if } x \in \theta f(X) \cap Y \\ a & \text{otherwise.} \end{cases}$$

If $x = \theta f(x'')$ for some $x'' \in X$ and $x'' \neq x'$, then f(x') = f(x'') since $\theta|_{f(X)}$ is injective and $\phi(f(x')) = \phi(f(x''))$. Thus k is well-defined. We now show that $k \in S(X, Y, *_{\theta})$. For each $y \in Y$, either $y \notin \theta f(X)$ or $y \in \theta f(X)$. If $y \notin \theta f(X)$, then $k(y) = a \in Y$. If $y \in \theta f(X)$, let $y = \theta f(x) \in Y$ for some $x \in X$ and then $f(x) \in Y$. So $k(y) = \phi(f(x)) \in Y$ since the map ϕ is Y-variant. Thus $k \in S(X, Y, *_{\theta})$. One can show $g = k\theta f$. Similarly, $f = h\theta g$ for some $h \in S(X, Y, *_{\theta})$. Therefore, $(f, g) \in \mathcal{R}$.

According to Theorems 3.1 and 3.2, we have the following conclusion readily.

Theorem 3.3. Let $f, g \in S(X, Y, *_{\theta})$. Then the following statements are equivalent.

(1) $(f,g) \in \mathcal{H}$.

(2) $f(X) = g\theta(X), f(Y) = g\theta(Y), g(X) = f\theta(X), g(Y) = f\theta(Y), \text{ and } \pi(\theta f) = \pi(f) = \pi(g) = \pi(\theta g), \pi_Y(\theta f) = \pi_Y(f) = \pi_Y(g) = \pi_Y(\theta g).$

(3) There is a θ^* -admissible bijection $\psi : \pi(f) \to \pi(g)$ such that $f = g\psi$, and while there is a Y^* -variant bijection $\phi : f(X) \to g(X)$ such that $g = \phi f$, and $\theta|_{f(X)}$ and $\theta|_{g(X)}$ are injective. Moreover, $\theta f(x) \in Y \Rightarrow f(x) \in Y$ and $\theta g(x') \in Y \Rightarrow g(x') \in Y$ for some $x, x' \in X$.

In what follows we describe the relation \mathcal{D} .

Theorem 3.4. Let $f, g \in S(X, Y, *_{\theta})$. Then the following statements are equivalent.

(1) $(f,g) \in \mathcal{D}$.

(2) There are a θ^* -admissible bijection $\psi : \pi(g) \to \pi(f)$ and a Y^* -variant bijection $\phi : g(X) \to f(X)$ such that $f\psi = \phi g$, $\theta|_{f(X)}$ and $\theta|_{g(X)}$ are injective. Moreover, $\theta f(x) \in Y \Rightarrow f(x) \in Y$ and $\theta g(x') \in Y \Rightarrow g(x') \in Y$ for some $x, x' \in X$.

Proof. (1)=>(2). Suppose that $(f,g) \in \mathcal{D}$. Then $(f,h) \in \mathcal{L}$ and $(h,g) \in \mathcal{R}$ for some $h \in S(X, Y, *_{\theta})$. By $(f,h) \in \mathcal{L}$, h(X) = f(X) and there is a θ^* -admissible bijection $\psi : \pi(h) \to \pi(f)$ such that $h = f\psi$. By $(h,g) \in \mathcal{R}$, $\pi(h) = \pi(g)$ and there is a Y^* -variant bijection $\phi : g(X) \to h(X)$ such that $h = \phi g, \theta|_{h(X)}$ and $\theta|_{g(X)}$ are injective, and $\theta h(x) \in Y \Rightarrow h(x) \in Y$ and $\theta g(x') \in Y \Rightarrow g(x') \in Y$. Replacing $\pi(h)$ by $\pi(g)$ and h(X) by f(X), the domain of ψ and the image of ϕ become respectively the required ones and $\theta|_{f(X)}$ is injective as well. Now let $\theta f(x) \in Y$, then $\theta f(x) = \theta h(x')$ for some $x' \in X$ and so $f(x) = h(x') \in Y$. From $\pi(h) = \pi(g)$ and $h = \phi g$, it follows that $h = \phi g$. Therefore, $f\psi = h = \phi g$.

(2) \Longrightarrow (1). Define $h(x) = \phi(g(x))$ for each $x \in X$. Clearly, $h \in S(X, Y, *_{\theta})$ and $h = \phi g$. Then $\pi(h) = \pi(g)$ and $h = \phi g = f\psi$. By Theorem 3.1, $(h, f) \in \mathcal{L}$ and h(X) = f(X). So $\phi : g(X) \to h(X)$ is a Y^* -variant bijection such that $h = \phi g, \theta|_{h(X)}$ is injective, and $\theta h(x) \in Y \Rightarrow h(x) \in Y$. By Theorem 3.2, $(h, g) \in \mathcal{R}$. Consequently, $(f, g) \in \mathcal{D}$.

Finally, we investigate the relation \mathcal{J} .

Lemma 3.5. Let $f, g \in S(X, Y, *_{\theta})$. Then $f = h\theta g \theta k$ for some $h, k \in S(X, Y, *_{\theta})$ if and only if there is a Y-variant map $\phi : \theta g \theta(X) \to f(X)$ such that $f(X) = \phi(\theta g \theta(X))$ and $f(Y) = \phi(\theta g \theta(Y))$.

Proof. Suppose that $f = h\theta g\theta k$. Arbitrarily fix $a \in h\theta g\theta k(Y)$ and then define $\phi : \theta g\theta(X) \to f(X)$ by

$$\phi(x) = \begin{cases} h(x) & \text{if } x \in \theta g \theta k(X) \\ a & \text{if } x \in \theta g \theta(X) - \theta g \theta k(X). \end{cases}$$

It is clear that $\phi(\theta g \theta(X)) \subseteq f(X)$. Now take $y \in f(X)$ such that y = f(x) for some $x \in X$. Write $k(x) = x' \in X$. Then

$$y = f(x) = h\theta g\theta k(x) = \phi(\theta g\theta k(x)) = \phi(\theta g\theta(x')).$$

So $f(X) \subseteq \phi(\theta g \theta(X))$ and $f(X) = \phi(\theta g \theta(X))$. Similarly, we have $f(Y) = \phi(\theta g \theta(Y))$. In what follows we show that ϕ is Y-variant. Let $y \in \theta g \theta(X) \cap Y$. If $y \in \theta g \theta k(X) \cap Y$, then $\phi(y) = h(y) \in Y$. If $y \in (\theta g \theta(X) - \theta g \theta k(X)) \cap Y$, then $\phi(x) = a \in h \theta g \theta k(Y) \subseteq Y$. Therefore, ϕ is Y-variant.

Conversely, suppose that (1)-(2) hold. Arbitrarily fix $a \in Y$ and define $h : X \to X$ as follows.

$$h(x) = \begin{cases} \phi(x) & \text{if } x \in \theta g \theta(X) \\ a & \text{otherwise.} \end{cases}$$

It is clear that $h \in S(X, Y, *_{\theta})$. By the hypothesis, for each $x \in Y$, there is some $y \in Y$ such that $f(x) = \phi(\theta g \theta(y))$ and each $x \in X - Y$, there is some $z \in X$ such that $f(x) = \phi(\theta g \theta(z))$. Define

$$k(x) = \begin{cases} y & \text{if } x \in Y \\ z & \text{if } x \in X - Y \end{cases}$$

It is routine to show that $k \in S(X, Y, *_{\theta})$ and $f = h\theta g\theta k$.

Theorem 3.6. Let $f, g \in S(X, Y, *_{\theta})$. Then $(f, g) \in \mathcal{J}$ if and only if there are Y-variant maps $\phi : \theta g \theta(X) \to f(X)$ and $\psi : \theta f \theta(X) \to g(X)$ such that $f(X) = \phi(\theta g \theta(X)), f(Y) = \phi(\theta g \theta(Y))$ and $g(X) = \psi(\theta f \theta(X)), g(Y) = \psi(\theta f \theta(Y))$.

Acknowledgements

We would like to thank the referee for his/her valuable suggestions and comments which help to improve the presentation of this paper. The paper is supported by National Natural Science Foundation of China (No.U1404101).

References

- Hickey, J. B. (1983). Semigroup under a sandwich operation. *P Edinburgh Math Soc*, 371-382. https://doi.org/10.1017/S0013091500004442
- Honyam, P., & Sanwong J. (2011). Semigroups of transformations with invariant set. J Korean Math Soc, 48, 289-300. https://doi.org/10.4134/JKMS.2011.48.2.289
- Kemprasit, Y., & Jaidee, S. (2005). Regularity and isomorphism theorems of generalized order-preserving transformation semigroups. *V J M*, 253-260.
- Magill, K. D. Jr., & Subbiah, S. (1975). Green's relations for regular elements of sandwich semigroup (I) general results. *P Lond Math Soc*, 194-210.
- Nenthein, S., Youngkhong, P., & Kemprasit, Y. (2005). Regular elements of some transformation semigroups. *PU M A*, 307-314.
- Pei, H. S., Sun, L., & Zhai, H. C. (2007). Green's relations for the variants of transformation semigroups preserving an equivalence relation. *Commun Algebra*, 1971-1986. https://doi.org/10.1080/00927870701247112
- Symons, J. S. (1975). On a generalization of the transformation semigroup. *J Aust Math Soc*, 47-61. https://doi.org/10.1017/S1446788700023533
- Tsyaputa, G. Y. (2004). Green's relations on the deformed transformation semigroups. Algebra D Math, 121-131.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).