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Abstract

Let TX be the full transformation semigroup on a set X. For Y ⊆ X, the semigroup S (X, Y) = { f ∈ TX : f (Y) ⊆ Y} is a
subsemigroup of TX . Fix an element θ ∈ S (X,Y) and for f , g ∈ S (X,Y), define a new operation ∗ on S (X,Y) by f ∗g = f θg
where f θg denotes the produce of g, θ and f in the original sense. Under this operation, the semigroup S (X,Y) forms a
semigroup which is called generalized semigroup of S (X,Y) with the sandwich function θ and denoted by S (X,Y, ∗θ). In
this paper we first characterize the regular elements and then describe Green’s relations for the semigroup S (X,Y, ∗θ).
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1.Introduction

Let S be a semigroup and a, b ∈ S . If a = axa for some x ∈ S , then a is called a regular element of S . The semigroup
S is called regular if all its elements are regular. If a and b generate the same left principle ideal, that is, S 1a = S 1b,
then we say that a and b are L equivalent and write (a, b) ∈ L or aL b. If a and b generate the same right principle ideal,
that is, aS 1 = bS 1, then we say that a and b are R equivalent and write (a, b) ∈ R or aR b. If a and b generate the same
principle ideal, that is, S 1aS 1 = S 1bS 1, then we say that a and b are J equivalent and write (a, b) ∈ J or aJ b. It is not
difficult to see that L,R and J are equivalence relations on S . LetH = L ∩ R and D = L ∨ R. ThenH and D are also
equivalences. These five equivalences are usually called Green’s relations on S . They were introduced by J.A. Green and
play an important role in the study of the algebraic structure of semigroups.

Let TX be the full transformation semigroup on a set X. Given a subset Y of X, the authors in (Honyam, P. & Sanwong,
J., 2011) observed a class of subsemigroup of TX defined by

S (X,Y) = { f ∈ TX : f (Y) ⊆ Y}.

It is clear that if Y = X then S (X,Y) = TX . To this extent the semigroup S (X,Y) is regarded as a generalization of TX .
Regularity for the elements in S (X, Y) and Green’s relations on S (X,Y) were described in (Honyam, P. & Sanwong, J.,
2011).

We apply transformations on the left so that for f , g ∈ S (X,Y), their product f g is the transformation obtained by first
performing g and then f . Fix an element θ ∈ S (X,Y) and for f , g ∈ S (X,Y), define a new operation ∗ on S (X,Y) by
f ∗ g = f θg where f θg denotes the produce of g, θ and f in the original sense. Under this operation, the semigroup
S (X,Y) forms a semigroup which is called generalized semigroup of S (X,Y) with the sandwich function θ and denoted
by S (X,Y, ∗θ). Then S (X, Y, ∗θ) = S (X,Y) as sets. Moreover, if θ = idX(the identity transformation on the set X), then
S (X,Y, ∗θ) = S (X,Y) as semigroups. The generalized transformation semigroups of the various subsemigroups of TX

were studied by many authors, see for example (Hickey, J. B., 1983; Kemprasit, Y. & Jaidee, S., 2005; Magill, K. D. Jr.
& Subbiah, S., 1975; Pei, H. S., Sun, L. & Zhai, H. C., 2007; Symons, J. S., 1975; Tsyaputa, G. Y., 2004).

The purpose of this paper is to investigate the regularity of elements and Green’s relations on generalized semigroup
S (X,Y, ∗θ). Accordingly, in Section 2, the condition under which an element f ∈ S (X,Y, ∗θ) is regular is analyzed. In
Section 3, Green’s relations on S (X,Y, ∗θ) are considered and the relations L, R, H , D and J are descried for arbitrary
elements, respectively.
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2. The Regular Elements of S (X,Y, ∗θ)
In this section we investigate the condition under which an element of S (X,Y, ∗θ) is regular.

Theorem 2.1. Let f ∈ S (X,Y, ∗θ). Then f is regular if and only if the following statements hold.

(1) θ| f (X) is injective.

(2) θ f (X) = θ f θ(X) and θ f (X) ∩ Y = θ f θ(Y).

Proof. Suppose that f is regular. Then f = f ∗g∗ f = f θgθ f for some g ∈ S (X,Y, ∗θ). It follows that ( f θ)(gθ)| f (X) = id| f (X)
and (gθ)| f (X) is injective. So θ| f (X) is injective and (1) holds. Clearly, θ f θ(X) ⊆ θ f (X). For each z ∈ θ f (X), let z = θ f (x)
for some x ∈ X. Write y = gθ f (x) and then z = θ f (x) = θ f θgθ f (x) = θ f θ(y) which implies that θ f (X) ⊆ θ f θ(X). Thus
θ f (X) = θ f θ(X). Similarly, we have θ f (X) ∩ Y = θ f θ(Y).

Conversely, assume that (1)-(2) hold. Then, for each x ∈ θ f (X) ∩ Y , let x = θ f θ(y) for some y ∈ Y , and for each
x ∈ θ f (X) − Y , let x = θ f θ(y′) for some y′ ∈ X. Arbitrarily fix a ∈ Y and define g : X → X by

g(x) =


y if x ∈ θ f (X) ∩ Y
y′ if x ∈ θ f (X) − Y
a otherwise.

Clearly, g ∈ S (X,Y, ∗θ). To see f = f θgθ f , we need only to show that θ f = θ f θgθ f since θ| f (X) is injective. For each
x ∈ X, if θ f (x) ∈ θ f (X) ∩ Y , then let θ f (x) = θ f θ(y) for some y ∈ Y . If θ f (x) ∈ θ f (X) − Y , then let θ f (x) = θ f θ(y′) for
some y′ ∈ X. So

θ f θgθ f (x) =
{
θ f θ(y) if θ f (x) ∈ θ f (X) ∩ Y
θ f θ(y′) if θ f (x) ∈ θ f (X) − Y

= θ f (x)

which means that θ f = θ f θgθ f and so f = f θgθ f . Therefore f is regular. 2

Denote by Reg(S (X,Y, ∗θ)) and Reg(S (X,Y)) the sets of all regular elements in semigroups S (X,Y, ∗θ) and S (X,Y), respec-
tively. It is clear that Reg(S (X, Y, ∗θ)) ⊆ Reg(S (X,Y)). In generally, an element f ∈ Reg(S (X,Y)) may be not regular in
S (X,Y, ∗θ). The following theorem shows when Reg(S (X,Y, ∗θ)) = Reg(S (X, Y)).

Theorem 2.2. Let the sets Reg(S (X,Y, ∗θ)) and Reg(S (X, Y)) be defined as above. Then Reg(S (X,Y, ∗θ)) = Reg(S (X,Y))
if and only if θ is a bijection and θ(X − Y) ∩ Y = ∅.
Proof. Suppose that Reg(S (X,Y, ∗θ)) = Reg(S (X,Y)). Since the identity transformation idX on X is regular in S (X, Y), we
have that idX is also regular in S (X,Y, ∗θ), that is, idX = idXθgθidX = θgθ for some g ∈ S (X,Y, ∗θ). So θ is bijective. Now
we assert that θ(X − Y) ∩ Y = ∅. Indeed, if θ(x) ∈ Y for some x ∈ X − Y , then x = idX(x) = θgθ(x) ∈ Y , a contradiction.
Therefore, θ(X − Y) ∩ Y = ∅.
Conversely, we need to show that Reg(S (X, Y)) ⊆ Reg(S (X,Y, ∗θ)). For this purpose, let f ∈ Reg(S (X,Y)). Then f = f g f
for some g ∈ S (X,Y). Since θ is a bijection and θ(X − Y)∩ Y = ∅, it follows that θ−1(Y) ⊆ Y . So θ−1 ∈ S (X,Y, ∗θ) and g′ =
θ−1gθ−1 ∈ S (X, Y, ∗θ). Thus f = f θg′θ f which implies that f ∈ Reg(S (X,Y, ∗θ)). Hence Reg(S (X,Y)) ⊆ Reg(S (X,Y, ∗θ))
and Reg(S (X,Y)) = Reg(S (X,Y, ∗θ)). 2

Theorem 2.3. The semigroup S (X,Y, ∗θ) is regular if and only if the following statements hold.

(1) θ is a bijection and θ(X − Y) ∩ Y = ∅.
(2) Y = X or |Y | = 1.

Proof. Suppose that S (X,Y, ∗θ) is regular. Then

S (X, Y, ∗θ) = Reg(S (X, Y, ∗θ)) ⊆ Reg(S (X,Y)) ⊆ S (X,Y).

Since S (X, Y, ∗θ) = S (X,Y) as sets, it follows that Reg(S (X, Y, ∗θ)) = Reg(S (X,Y)). By Theorem 2.2, θ is a bijection and
θ(X − Y) ∩ Y = ∅. In the meantime, the semigroup S (X,Y) is also regular. By [5, Corollary 2.4], Y = X or |Y | = 1.

Conversely, by [5, Corollary 2.4] and Theorem 2.2, we have

S (X, Y) = Reg(S (X,Y)) = Reg(S (X,Y, ∗θ)) ⊆ S (X,Y, ∗θ).

Since S (X,Y, ∗θ) = S (X,Y) as sets, it follows that S (X,Y, ∗θ) = Reg(S (X,Y, ∗θ)), as required. 2
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3. Green’s Relations on S (X,Y, ∗θ)
In this section we describe Green’s relations on S (X,Y, ∗θ).
Denote by π( f ) the partition of X induced by f ∈ TX , namely,

π( f ) = { f −1(y) : y ∈ f (X)}.

Also, let
πY ( f ) = {P ∈ π( f ) : P ∩ Y , ∅}.

Let ψ : π( f )→ π(g) be a map. If θ(X)∩ψ(P) , ∅ for each P ∈ π( f )− πY ( f ) and θ(Y)∩ψ(P) , ∅ for each P ∈ πY ( f ), then
ψ is said to be θY -admissible. If ψ is bijective and both ψ and ψ−1 are θY -admissible, then ψ is said to be θ∗Y -admissible.

Now we begin with the relation L in S (X,Y, ∗θ).
Theorem 3.1. Let f , g ∈ S (X,Y, ∗θ). Then the following statements are equivalent.

(1) ( f , g) ∈ L.

(2) f (X) = gθ(X), f (Y) = gθ(Y) and g(X) = f θ(X), g(Y) = f θ(Y).

(3) There is a θ∗Y -admissible bijection ψ : π( f )→ π(g) such that f = gψ.

Proof. (1)=⇒(2). Suppose that ( f , g) ∈ L. Then f = gθh and g = f θk for some h, k ∈ S (X,Y, ∗θ) and

f (X) = gθh(X) ⊆ gθ(X) = f θkθ(X) ⊆ f (X),

which implies that f (X) = gθ(X). Moreover,

f (Y) = gθh(Y) ⊆ gθ(Y) = f θkθ(Y) ⊆ f (Y),

which implies that f (Y) = gθ(Y). Similarly, g(X) = f θ(X) and g(Y) = f θ(Y).

(2)=⇒(3). It is readily consequential on (2) that f (X) = g(X). Now define ψ : π( f )→ π(g) as follows. For each P ∈ π( f ),
let ψ(P) = g−1( f (P)). Then ψ is a well-defined bijection and f = gψ. To see that ψ : π( f ) → π(g) is θ∗Y -admissible, let
π( f ) = {Pi : i ∈ I} (where I is some index set) and xi = f (Pi)(i ∈ I). If Pi ∩ Y = ∅, then xi ∈ f (X) = gθ(X) and xi = g(yi)
for some yi ∈ θ(X). So yi ∈ θ(X) ∩ g−1(xi) and

θ(X) ∩ ψ(Pi) = θ(X) ∩ g−1( f (Pi)) = θ(X) ∩ g−1(xi) , ∅.

If Pi ∩ Y , ∅, then xi ∈ f (Y) = gθ(Y) and xi = g(yi) for some yi ∈ θ(Y). Thus yi ∈ θ(Y) ∩ g−1(xi) and

θ(Y) ∩ ψ(Pi) = θ(Y) ∩ g−1( f (Pi)) = θ(Y) ∩ g−1(xi) , ∅.

Hence ψ : π( f ) → π(g) is θY -admissible. Similarly, ψ−1 is also θY -admissible. Consequently, ψ : π( f ) → π(g) is a
θ∗Y -admissible bijection.

(3)=⇒(1). Suppose that (3) holds. For each x ∈ X, if Px = f −1( f (x)) ∩ Y , ∅, then take z ∈ θ(Y) ∩ ψ(Px) and let z = θ(y)
for some y ∈ Y . Define h(x) = y. If Px = f −1( f (x)) ∩ Y = ∅, then take z ∈ θ(X) ∩ ψ(Px) and let z = θ(y) for some y ∈ X.
Define h(x) = y. Clearly, h ∈ S (X,Y, ∗θ). To see that f = gθh, for each x ∈ X, let Px = f −1( f (x)) and Qz = g−1(g(z))
(where z ∈ θ(Y) ∩ ψ(Px) or z ∈ θ(X) ∩ ψ(Px)), then

f (x) = f (Px) = gψ(Px) = g(Qz) = g(Qθ(y)) = g(Qθ(h(x))) = gθh(x)

and so f = gθh. Similarly, g = f θk for some k ∈ S (X,Y, ∗θ). Therefore, ( f , g) ∈ L. 2

Let Z be a subset of X and Z ∩ Y , ∅. Let ϕ : Z → X be a map. If ϕ(Z ∩ Y) ⊆ Y , then ϕ is said to be Y-variant. Clearly,
each transformation f ∈ S (X,Y, ∗θ) is Y-variant. If ϕ is bijective and both ϕ and ϕ−1 are Y-variant, then ϕ is said to be
Y∗-variant.

Now we consider the relation R.

Theorem 3.2. Let f , g ∈ S (X,Y, ∗θ). Then the following statements are equivalent.

(1) ( f , g) ∈ R.

(2) π(θ f ) = π( f ) = π(g) = π(θg) and πY (θ f ) = πY ( f ) = πY (g) = πY (θg).

26



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 2; 2018

(3) There is a Y∗-variant bijection ϕ : f (X) → g(X) such that g = ϕ f , and θ| f (X) and θ|g(X) are injective. Moreover,
θ f (x) ∈ Y ⇒ f (x) ∈ Y and θg(x′) ∈ Y ⇒ g(x′) ∈ Y for some x, x′ ∈ X.

Proof. (1)=⇒(2). Suppose that ( f , g) ∈ R. Then f = hθg and g = kθ f for some h, k ∈ S (X,Y, ∗θ). Immediately,
π( f ) = π(g) and πY ( f ) = πY (g). By f = hθkθ f , (hθ)(kθ)| f (X) = id| f (X) and (kθ)| f (X) is injective. It follows that θ| f (X)
is injective and π(θ f ) = π( f ). Similarly, π(θg) = π(g). Thus π(θ f ) = π( f ) = π(g) = π(θg). Now we verify that
πY (θ f ) = πY ( f ). Clearly, πY ( f ) refines πY (θ f ). Let θ f (x) = θ f (y) ∈ Y for some distinct x, y ∈ X. Then, by π(θ f ) = π( f )
and f = hθkθ f , f (x) = f (y) = hθkθ f (y) ∈ Y . So πY (θ f ) refines πY ( f ) and πY (θ f ) = πY ( f ). Also, we have πY (θg) = πY (g).
Consequently, πY (θ f ) = πY ( f ) = πY (g) = πY (θg).

(2)=⇒(3). By π( f ) = π(g), define ϕ : f (X) → g(X) by ϕ(x) = g( f −1(x)) for each x ∈ f (X). Then ϕ is a bijection and
g = ϕ f . Arbitrarily take y ∈ f (X) ∩ Y . Then f −1(y) ∈ πY ( f ) = πY (g) and ϕ(y) = g( f −1(y)) ∈ Y which implies that ϕ is
Y-variant. Similarly, ϕ−1 is also Y-variant. Thus ϕ is Y∗-variant. In virtue of π(θ f ) = π( f ), θ| f (X) is injective. Now assume
that θ f (x) ∈ Y for some x ∈ X. Then there is some P ∈ πY (θ f ) such that x ∈ P. It follows that from πY (θ f ) = πY ( f ) that
f (x) = f (P) ∈ Y . The argument for g is the same.

(3)=⇒(1). Suppose that (3) holds. For each x ∈ θ f (X)∩Y , let x = θ f (x′) for some x′ ∈ X. Fix a ∈ Y and define k : X → X
by

k(x) =
{
ϕ( f (x′)) if x ∈ θ f (X) ∩ Y
a otherwise.

If x = θ f (x′′) for some x′′ ∈ X and x′′ , x′, then f (x′) = f (x′′) since θ| f (X) is injective and ϕ( f (x′)) = ϕ( f (x′′)). Thus
k is well-defined. We now show that k ∈ S (X,Y, ∗θ). For each y ∈ Y , either y < θ f (X) or y ∈ θ f (X). If y < θ f (X), then
k(y) = a ∈ Y . If y ∈ θ f (X), let y = θ f (x) ∈ Y for some x ∈ X and then f (x) ∈ Y . So k(y) = ϕ( f (x)) ∈ Y since the map
ϕ is Y-variant. Thus k ∈ S (X,Y, ∗θ). One can show g = kθ f . Similarly, f = hθg for some h ∈ S (X,Y, ∗θ). Therefore,
( f , g) ∈ R. 2

According to Theorems 3.1 and 3.2, we have the following conclusion readily.

Theorem 3.3. Let f , g ∈ S (X,Y, ∗θ). Then the following statements are equivalent.

(1) ( f , g) ∈ H .

(2) f (X) = gθ(X), f (Y) = gθ(Y), g(X) = f θ(X), g(Y) = f θ(Y), and π(θ f ) = π( f ) = π(g) = π(θg), πY (θ f ) = πY ( f ) =
πY (g) = πY (θg).

(3) There is a θ∗-admissible bijection ψ : π( f ) → π(g) such that f = gψ, and while there is a Y∗-variant bijection
ϕ : f (X) → g(X) such that g = ϕ f , and θ| f (X) and θ|g(X) are injective. Moreover, θ f (x) ∈ Y ⇒ f (x) ∈ Y and θg(x′) ∈ Y ⇒
g(x′) ∈ Y for some x, x′ ∈ X.

In what follows we describe the relationD.

Theorem 3.4. Let f , g ∈ S (X,Y, ∗θ). Then the following statements are equivalent.

(1) ( f , g) ∈ D.

(2) There are a θ∗-admissible bijection ψ : π(g) → π( f ) and a Y∗-variant bijection ϕ : g(X) → f (X) such that fψ = ϕg,
θ| f (X) and θ|g(X) are injective. Moreover, θ f (x) ∈ Y ⇒ f (x) ∈ Y and θg(x′) ∈ Y ⇒ g(x′) ∈ Y for some x, x′ ∈ X.

Proof. (1)=⇒(2). Suppose that ( f , g) ∈ D. Then ( f , h) ∈ L and (h, g) ∈ R for some h ∈ S (X, Y, ∗θ). By ( f , h) ∈ L,
h(X) = f (X) and there is a θ∗-admissible bijection ψ : π(h) → π( f ) such that h = fψ. By (h, g) ∈ R, π(h) = π(g) and
there is a Y∗-variant bijection ϕ : g(X) → h(X) such that h = ϕg, θ|h(X) and θ|g(X) are injective, and θh(x) ∈ Y ⇒ h(x) ∈ Y
and θg(x′) ∈ Y ⇒ g(x′) ∈ Y . Replacing π(h) by π(g) and h(X) by f (X), the domain of ψ and the image of ϕ become
respectively the required ones and θ| f (X) is injective as well. Now let θ f (x) ∈ Y , then θ f (x) = θh(x′) for some x′ ∈ X and
so f (x) = h(x′) ∈ Y . From π(h) = π(g) and h = ϕg, it follows that h = ϕg. Therefore, fψ = h = ϕg.

(2)=⇒(1). Define h(x) = ϕ(g(x)) for each x ∈ X. Clearly, h ∈ S (X, Y, ∗θ) and h = ϕg. Then π(h) = π(g) and h = ϕg = fψ.
By Theorem 3.1, (h, f ) ∈ L and h(X) = f (X). So ϕ : g(X) → h(X) is a Y∗-variant bijection such that h = ϕg, θ|h(X) is
injective, and θh(x) ∈ Y ⇒ h(x) ∈ Y . By Theorem 3.2, (h, g) ∈ R. Consequently, ( f , g) ∈ D. 2

Finally, we investigate the relation J .

Lemma 3.5. Let f , g ∈ S (X,Y, ∗θ). Then f = hθgθk for some h, k ∈ S (X,Y, ∗θ) if and only if there is a Y-variant map
ϕ : θgθ(X)→ f (X) such that f (X) = ϕ(θgθ(X)) and f (Y) = ϕ(θgθ(Y)).
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Proof. Suppose that f = hθgθk. Arbitrarily fix a ∈ hθgθk(Y) and then define ϕ : θgθ(X)→ f (X) by

ϕ(x) =
{

h(x) if x ∈ θgθk(X)
a if x ∈ θgθ(X) − θgθk(X).

It is clear that ϕ(θgθ(X)) ⊆ f (X). Now take y ∈ f (X) such that y = f (x) for some x ∈ X. Write k(x) = x′ ∈ X. Then

y = f (x) = hθgθk(x) = ϕ(θgθk(x)) = ϕ(θgθ(x′)).

So f (X) ⊆ ϕ(θgθ(X)) and f (X) = ϕ(θgθ(X)). Similarly, we have f (Y) = ϕ(θgθ(Y)). In what follows we show that ϕ
is Y-variant. Let y ∈ θgθ(X) ∩ Y . If y ∈ θgθk(X) ∩ Y , then ϕ(y) = h(y) ∈ Y . If y ∈ (θgθ(X) − θgθk(X)) ∩ Y , then
ϕ(x) = a ∈ hθgθk(Y) ⊆ Y . Therefore, ϕ is Y-variant.

Conversely, suppose that (1)-(2) hold. Arbitrarily fix a ∈ Y and define h : X → X as follows.

h(x) =
{
ϕ(x) if x ∈ θgθ(X)
a otherwise.

It is clear that h ∈ S (X,Y, ∗θ). By the hypothesis, for each x ∈ Y , there is some y ∈ Y such that f (x) = ϕ(θgθ(y)) and each
x ∈ X − Y , there is some z ∈ X such that f (x) = ϕ(θgθ(z)). Define

k(x) =
{

y if x ∈ Y
z if x ∈ X − Y.

It is routine to show that k ∈ S (X,Y, ∗θ) and f = hθgθk. 2

Theorem 3.6. Let f , g ∈ S (X,Y, ∗θ). Then ( f , g) ∈ J if and only if there are Y-variant maps ϕ : θgθ(X) → f (X) and
ψ : θ f θ(X)→ g(X) such that f (X) = ϕ(θgθ(X)), f (Y) = ϕ(θgθ(Y)) and g(X) = ψ(θ f θ(X)), g(Y) = ψ(θ f θ(Y)).
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