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Abstract 

In this document an attempt is made to explain the origin of gravity. The basis for the analysis is a merger of quantum 

theory and relativity. Nowhere in the analysis there is any need to deviate from well proven and successful concepts of 

both theories and rules of calculation, and no exotic new particles will have to be introduced. By doing so it is 

demonstrated that, next to its local interactions of a multi-particle system, the Schrödinger equation leads to pairs of two 

and only two members. This solution is used as the invariant term in the quantized Einstein energy equation which 

finally leads to gravitational interactions between members of the pairs. With this particular solution for the 

quantum-mechanical wave function it is found that gravity is a second order effect operating over a long range. In this 

document it is tried to give a complete and consistent account of all steps that have been taken in the derivation of the 

classical Newton’s gravity law. Further, the document emphasizes precise justification of some of the basic assumptions 

made and how it works out on a cosmological scale. It is also found that the generator of gravity is contributing mass to 

particles that have gravitational interaction.  

Keywords: Gravity, Quantum Physics, Special Relativity, Dynamic mass, Cosmology 

1. Introduction 

In our daily life, gravity is experienced everywhere and at all moments. Without gravity the world as an entity would 

not exist, the Sun would not shine, water waves would not run, etc. Even if we would evaluate the consequences of a 

small change in the gravitational interaction, the universe would look different from how it is now. It is accepted as an 

inescapable force that keeps our existence together. However, where we have some basic understandings of the 

processes around us, there was not a suitable explanation for this force at a microscopic level.  

Gravitational interaction manifests itself where other forces are not the determining factor. Therefore, in our real world, 

we see that our direct vicinity has structures of forms that are changing over short distances like mountains, cities, sky 

scrapers, boats, forests etc. At larger distances, of the order of 100 kilometers, the gravity becomes the dominant factor 

and bodies begin to take spherical shapes. Obviously, the smaller the gravity is, so to speak at smaller planets than earth, 

the structural variability will become larger. That the electromagnetic interaction becomes insignificant in shaping the 

environment is not due to the form of the electrostatic interaction, which has basically the same shape as the 

gravitational interaction, but it is due to the fact that positive and negative charges balance and compensate for their 

interaction. The influence of electromagnetism is becoming insignificant already at short distances. 

Most of the theories on gravity start from gravity law as it is formulated centuries ago by Newton and see that its 

validity is beyond debate, at least at the scale which we can observe, but do not give insight into the basic mechanism 

behind this law. Now the general belief is that any suitable theory should include, or will be, a merger of classical 

quantum theory and relativity. Also the theory should allow for accommodation of the Higgs mechanism as a means to 

dedicate mass to any real particle. However, so far no theory that is widely accepted has been proposed. In the present 

document a new scheme of analysis for the mutual interaction between particles that have some exchange with respect 

to time and space will be presented. The remarkable thing is that, apparently for more than one reason, particles will be 

interacting in groups of two and only two and can give rise to gravitational interaction. This pair formation is described 

quantum mechanically. Either starting from the classical Schrödinger equation or the relativistic Einstein energy 

equation, but this latter formulated in a quantum mechanical setting known as the “Klein-Gordon” (KG) equation, 

results in the same wave function describing pairs of particles. Since this wave function represents a pair potential, a 
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relativistic mass can be attributed to it which is used in the KG-equation to derive an interaction field between the 

members that form the ensemble. It is found that the right form of Newton’s gravity law emerges by consequently 

working through the proposed schemes of both quantum mechanics and the basic equations of relativity theory as 

expressed by the quantum mechanical equivalent of the Einstein energy equation.  

In the end of this paper a list of used symbols will be given for easy reference. 

2. The Special Relativity Theory 

At the beginning of the previous century it became apparent that the basic rules of mechanics shows some discrepancies 

when speeds are increasing. In daily life this was, however, not serious because the speeds at which discrepancies occur 

are far beyond the speeds which we are used to work with, but some remarkable facts, particularly when our 

understanding of cosmology increased, were observed which did not allow an explanation on the basis of classical 

Newtonian mechanics. Particularly when it became possible to measure with good accuracy the speed of light the 

peculiarities became even bigger. It was thought that the earth and light are moving through a stationary cosmological 

substance, the “ether frame”, so that any measurement of the speed of light would depend on the direction at which we 

would measure it. It was the Michelson-Morley experiment, (Ney, 1965) that showed that, whatever we try, we will 

always find the same value of the speed of light: c = 3x10
8
 m/sec. 

This unexpected result remained puzzling for some years but later it was realized that also the laws of electromagnetic are 

entirely independent of the speed and place of the observer.  

So if we have a frame of reference, a coordinate system, in which the observer is situated, Σ, and a moving one travelling 

with speed v, which we call Σ’, the distance between points in either system remains the same. As the information about 

this distance is based on visual observation of things which are happening, we can conclude that if the coordinates, 

including time, in Σ are x, y, z and t and in Σ’ they are x’, y’, z’ and t’, the following relation must hold:  

𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2 = 𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′2.                       (2.1) 

Lorentz proposed on the basis of this invariance a scheme of transformations between the coordinates in Σ and Σ’ to 

guarantee that this invariance is always valid. These transformations, known as the Lorentz transformations, can be 

derived from this equation (2.1) and read: 

𝑥 = 𝛾(𝑥′ + 𝑣𝑡′), 𝑦 = 𝑦′, 𝑧 = 𝑧′, 𝑐𝑡 = 𝛾(𝑐𝑡′ + 𝑣𝑥′/𝑐),                   (2.2) 

with: 𝛾 = 1 √1 − 𝑣2 𝑐2 ⁄⁄ . Einstein realized that there is more in this than just a few transformation rules and 

generalized this idea by proposing the concept of “four-vectors”. Four-vectors are mathematical objects in four 

dimensional space which transform according to the Lorentz rules and therefore have the Lorentz invariance as in 

equation (2.1). Such a four-vector is symbolized as {x,y,z,ct}.  

If we now have two four-vectors: {a1,b1,c1,d1} and {a2,b2,c2,d2}, the invariants are: 

𝑎1
2 + 𝑏1

2 + 𝑐1
2 − 𝑑1

2 = 𝐶1 and: 𝑎2
2 + 𝑏2

2 + 𝑐2
2 − 𝑑2

2 = 𝐶2,           (2.3a), (2.3b) 

and therefore:  

(𝑎1
2 + 𝑎2

2) + (𝑏1
2 + 𝑏2

2) + (𝑐1
2 + 𝑐2

2) − (𝑑1
2 + 𝑑2

2) = 𝐶1 + 𝐶2.                (2.3c) 

But also the vectorial product of two four-vectors is invariant so that: 

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 − 𝑑1𝑑2 = 𝐶3,                           (2.3d) 

and therefore the sum of two four-vectors again is a four-vector {a1+a2,b1+b2,c1+c2,d1+d2} with the invariant:  

(𝑎1 + 𝑎2)
2 + (𝑏1 + 𝑏2)

2 + (𝑐1 + 𝑐2)
2 − (𝑑1 + 𝑑2)

2 = 𝐶1 + 𝐶2 + 𝐶3.                (2.3e) 

The multiplication rule (2.3d) makes equations (2.3c) and (2.3e) equivalent which will be used in the microscopic 

theory (paragraph 7) and for the translation to the gravitationally interacting macroscopic bodies (paragraph 8).  

There are many different four-vectors, particularly in electrodynamics, but for the present theory we will only need, 

next to the one mentioned, the momentum-energy vector {px,py,pz,E/c} with the invariance: 

𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 − 𝐸2 𝑐2 = 𝐶⁄ .                               (2.4) 

With the help of the famous mass-energy equation of Einstein: 𝐸 = 𝛾𝑚0𝑐
2 this invariance is readily rewritten as an 

equation that will be of great importance for the rest of this document:  

𝐸2 − 𝑝2𝑐2 = 𝑚0
2𝑐4.                                   (2.5)  
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When we substitute 𝐸 = 𝑇𝑘 +𝑚0𝑐
2 into equation (2.5) and take the limit of c to infinity we get the more familiar 

relation 𝑇𝑘 = 𝑝2 2𝑚⁄  with m for the mass instead of m0. Clearly we have to incorporate any other form of energy, like 

the potential energy, into m0. 

The gradient operator {
𝜕

𝜕𝑥
, 
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
,
1

𝑐

𝜕

𝜕𝑡
} is a special one with the invariance, but applied to a field 𝜑 looks like: 

(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
−

1

𝑐2

𝜕2

𝜕𝑡2
)𝜑 = 𝐶𝜑.                          (2.6) 

If 𝜑 is a scalar field it is just the multiplication of the invariant of the gradient operator with the value 𝜑. If 𝜑 is a 

vector field the equation applies to the separate components of this vector field. This equation (2.6) is the well known 

equation describing the movement of a wave through a medium. If this medium is the vacuum, we can set C=0, and 

signals move at the speed of light as the general solution is: 

𝜑 = 𝑓(𝑥 − 𝑐𝑡)𝑔(𝑦 − 𝑐𝑡)ℎ(𝑧 − 𝑐𝑡).                         (2.7) 

In which f, g and h are arbitrary functions in the arguments as indicated.  

Due to the fact that equation (2.6) is derived from the invariant, we can replace the space coordinates x, y, z and time t in 

Σ by the Lorentz transformed ones: x’, y’, z’ and t’ in Σ’ and therefore also in the solution (2.7). The consequence is then 

that observers in Σ and Σ’, watching the same event, will conclude that there is the same value of c. This may look as a 

surprising conclusion but it has already been assumed implicitly in the Lorentz transformation rules.  

The famous Lectures on Physics by Feynman (Feynman et. al,, 1965) give a very good introduction into four-vectors as 

they are dealt with in this paragraph. Further reading on Relativity is recommended in Ney’s short study on 

electromagnetism and Relativity (Ney, 1965).  

3. Quantum Rules 

In quantum theory the behavior of a microscopic particle in space and time is described by a wave function, denoted by 𝜓. 

This wave function is a mathematical expression in space and time, usually in complex notation. The product of this wave 

function and its complex conjugated 𝜓*: 𝜓𝜓* is the probability that a particle can be found at that particular place and 

moment. 

Quantum mechanics relies largely on operators. Operators are mathematical abstractions that do something with a wave 

function. In the first place a wave function is a solution of the operator equation like, as an example for the momentum:  

𝑝�̂�𝜓 =
ħ

𝑖
 
𝜕

𝜕𝑥
𝜓 = 𝑝𝜓.                                 (3.1) 

The expectation value of the momentum in this example then is given by:  

𝑃 = ∫𝜓∗ 𝑝�̂�𝜓𝑑𝑉,                                    (3.2) 

with the integration over the entire space where the operator is active. As a consequence of this the normalization of a 

wave function is:  

∫𝜓∗𝜓𝑑𝑉 = 1.                                      (3.3) 

The famous Schrödinger equation derives from the basic rule based on the Hamiltonian and energy operator acting on this 

wave function and gives the energy as a function of momentum and space as a solution. In short it reads:  

Ê(𝑡)𝜓(𝑥, 𝑦, 𝑧, 𝑡) = Ĥ(𝑝�̂� , 𝑝�̂� , 𝑝𝑧 ,̂ 𝑥, 𝑦. 𝑧)𝜓(𝑥, 𝑦, 𝑧, 𝑡).                  (3.4) 

In this equation the time dependence is allocated to the energy operator by Ê(𝑡) = 𝑖ħ∂/∂t , while the dependences on 

momentum and place are allocated to the Hamiltonian. The momentum in the Hamiltonian is, obviously, also an 

operator and given by 𝑝�̂� = −𝑖ħ ∂/∂x, and similarly for the y- and z- coordinates. It is worthwhile to note that the 

conjugated wave function is a solution of the conjugated Schrödinger equation and not the result of an operation on the 

wave function itself.  

For the development of the present model we can write the Hamiltonian more explicitly as:  

𝐻 = (𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2) 2𝑚⁄ + 𝑉(𝑥, 𝑦, 𝑧) or as operators:  

Ĥ(𝑝�̂�, 𝑝�̂� , 𝑝𝑧 ,̂ 𝑥, 𝑦. 𝑧)=−
ħ2

2𝑚
(
𝜕2 

𝜕𝑥2
+

𝜕2 

𝜕𝑦2
+

𝜕2 

𝜕𝑧2
) + 𝑉(𝑥, 𝑦, 𝑧).                  (3.5) 
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This equation has been very successful in describing the behavior of microscopic particles in their local environment. 

Such a local environment can be anywhere: in open space as well as in structures like a solid. But once speeds are 

getting higher, it is found that the validity of this equation can break down. 

For this reason another energy equation which better fulfills the relativistic behavior is proposed based on the equation 

(2.4), but now in the form of operators:  

−ħ2 (
𝜕2 

𝜕𝑡2
− 𝑐2 (

𝜕2 

𝜕𝑥2
+

𝜕2 

𝜕𝑦2
+

𝜕2 

𝜕𝑧2
))𝜑(𝑥, 𝑦, 𝑧, 𝑡) =  𝑚0

2𝑐4𝜑(𝑥, 𝑦, 𝑧, 𝑡).           (3.6) 

This equation is the relativistic alternative for the Schrödinger equation. It is called the “Gordon-Klein” equation. From 

the form it can be seen that the wave function has the character of a travelling wave in open space. If there is no mass, 

mo = 0, it will propagate with the speed of light c. With mass the propagation speed will always be lower than the speed 

of light. 

Both wave equations (3.4) and (3.6) with the Hamilton operator in (3.5) will be used in the further development of the 

theory. If we apply the function:  

𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓(𝑥, 𝑦, 𝑧, 𝑡)𝑒𝑖𝑚0𝑐
2𝑡 ħ⁄ = 𝜓(𝑥, 𝑦, 𝑧)𝑒𝑖(𝐸+𝑚0𝑐

2)𝑡/ħ           (3.7) 

as a solution of equation (3.6) we get back the Schrödinger equation (3.5) in the limit of c to infinity, similarly as in the 

previous paragraph. In the present context it means that a solution of the KG-equation for c to infinity becomes a 

solution of the Schrödinger equation. It does not necessarily mean that the Schrödinger equation has limited validity. We 

will come back to this point in the end of paragraph 5. 

Most surprising, is that, even in cases where relativistic effects should manifest, the Schrödinger equation and non 

relativistic quantum mechanical interpretations can keep their validity. The Schrödinger equation derives in the limit of c 

to infinite and, therefore, all interactions due to this Schrödinger equation occur instantaneously which is not possible 

according to the relativity theory. This is the well known difficulty of the reconciliation of relativity theory and quantum 

mechanics for which, so far, no solution has been found. In paragraph 11 a clear example of this phenomenon, which is 

also relevant for the gravity theory, will be discussed.  

For the development of the theory of gravity one important remark has to be made about the use of operators. The 

expectation value, or the probability that this mass shows up at the location 𝑥, 𝑦, 𝑧 and at time t due to the wave 

function 𝜓(𝑥, 𝑦, 𝑧, 𝑡) is found by considering the mass as an operator:  

𝑚(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓∗(𝑥, 𝑦, 𝑧, 𝑡)𝑚(𝑥, 𝑦, 𝑧, 𝑡)𝜓(𝑥, 𝑦, 𝑧, 𝑡).                     (3.8) 

Although this looks self-evident, it however is not. The equation (3.6) concerns the square of the rest mass distribution 

𝑚0
2(𝑥, 𝑦, 𝑧. 𝑡) and the expectation value is:  

𝑚0
2(𝑥. 𝑦, 𝑧, 𝑡) = 𝜓∗(𝑥, 𝑦, 𝑧, 𝑡)𝑚0

2(𝑥, 𝑦, 𝑧, 𝑡)𝜓(𝑥, 𝑦, 𝑧, 𝑡).                 (3.9) 

To finish these more general rules in this paragraph one more thing has to be done. As we are dealing with particles 

which do not have a geometrical structure we can adopt spherical symmetry throughout the development of the theory. 

For this reason the coordinates x, y, and z are not so practical. It would be more easy to work with coordinates which 

have the same symmetry as the particles and their environment. The main issue therefore is to cast the operator  

𝑝�̂�
2 + 𝑝�̂�

2 + 𝑝�̂�
2
 into a more appropriate form involving spherical symmetry so that the only coordinate r is necessary.  

This is first done for a system of one particle, starting from the x-, y-, z- component of the gradient operator (𝑔𝑟𝑎𝑑)𝑥𝜓,
(𝑔𝑟𝑎𝑑)𝑦𝜓, (𝑔𝑟𝑎𝑑)𝑧𝜓, only taking r-dependences:  

(𝑔𝑟𝑎𝑑)𝑥𝜓 =
𝜕𝜓

𝜕𝑥
=
𝜕𝜓

𝜕𝑟

𝜕𝑟

𝜕𝑥
=
𝑥

𝑟

𝜕𝜓

𝜕𝑟
, 

and differentiating again:  

(𝑔𝑟𝑎𝑑)𝑥(𝑔𝑟𝑎𝑑)𝑥𝜓 =
𝜕2𝜓 

𝜕𝑥2
=

1

𝑟

𝜕𝜓

𝜕𝑟
−

𝑥2

𝑟3

𝜕𝜓

𝜕𝑟
+

𝑥2

𝑟2

𝜕2𝜓 

𝜕𝑟2
, 

and the same for the y- and z- coordinates. We find, remembering that 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2:  

(
𝜕2 

𝜕𝑥2
+

𝜕2 

𝜕𝑦2
+

𝜕2 

𝜕𝑧2
)𝜓 = (

𝜕2 

𝜕𝑟2
+ 

2

𝑟

𝜕

𝜕𝑟
)𝜓 =

1

𝑟2

𝜕

𝜕𝑟
𝑟2

𝜕𝜓

𝜕𝑟
 .                    (3.10a) 

But for a system of two particles, labelled i and j we have to use vector notation for the gradients working on the wave 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 1; 2018 

71 

function. This wave function describes in one expression the set of the i and j particle. We first take the gradient for 

particle i as before:  

(𝑔𝑟𝑎𝑑)𝑥𝑖𝜓 =
𝜕𝜓

𝜕𝑥𝑖
=

𝜕𝜓

𝜕𝑟𝑖

𝜕𝑟𝑖.

𝜕𝑥𝑖
=

𝑥𝑖

𝑟𝑖

𝜕𝜓

𝜕𝑟𝑖
, 

and the same for the y- and z- component of the coordinates of particle i and j. So we have in the ri- direction:  

(𝑔𝑟𝑎𝑑)𝑟𝑖𝜓 =
𝜕𝜓

𝜕𝑟𝑖
. 

Applying the same procedure for gradient in the rj- direction we get the final result:  

(𝑔𝑟𝑎𝑑)𝑟𝑖𝜓(𝑔𝑟𝑎𝑑)𝑟𝑗𝜓 =
𝜕𝜓

𝜕𝑟𝑖

𝜕𝜓

𝜕𝑟𝑗
.                          (3.10b) 

Although these rules are not particularly quantum rules, they will be important for the development of the 

quantum-based theory.  

For the further development of the theory, however, one other aspect has to be paid attention to. That is how a particle, 

which is part of a specific structure like a solid, can be treated. The operators mentioned until now have particular 

emphasis for freely moving particles, but it is obvious that also particles constituting larger entitles do show 

gravitational interaction.  

From the basic concept of quantum mechanics we know that particles do have a non zero probability to show up 

anywhere in space. This probability can be very small and for the determination of its behavior in its local environment 

it is so small that it is usually neglected. But for gravitational interaction, which in essence is extremely small compared 

to any other force, it is of relevance.  

To investigate this problem we therefore construct a wave function that combines its local behavior with its global one. 

The total wave function describing a particle under its local influences, 𝜓𝑙𝑜𝑐(𝑟𝑙𝑜𝑐 , 𝑡), and its extension in free space, 

 𝜓𝑖𝑛𝑓(𝑟𝑖𝑛𝑓 , 𝑡),  is given by: 𝜓𝑡𝑜𝑡 = 𝜓𝑙𝑜𝑐𝜓𝑖𝑛𝑓. The coordinate 𝑟𝑙𝑜𝑐 is the position of the centre-of-mass of the particle 

inside the atom or nucleus or a solid object and the coordinate, 𝑟𝑖𝑛𝑓 , is the position of the particle from the point of 

view of an outside observer. They therefore are mutually independent. In the same way we define, as before, the 

Hamilton operator as: 𝐻 ̂𝑡𝑜𝑡  =   {�̂�2}𝑙𝑜𝑐 /2𝑚𝑙𝑜𝑐  + {�̂�2}𝑖𝑛𝑓/2𝑚𝑖𝑛𝑓 + 𝑉𝑙𝑜𝑐(𝑟𝑙𝑜𝑐) +  𝑉𝑖𝑛𝑓(𝑟𝑖𝑛𝑓) . The masses 𝑚𝑙𝑜𝑐  and 

𝑚𝑖𝑛𝑓 are not necessarily the same. The 𝑚𝑖𝑛𝑓 is the mass to be connected to the particle as it can move freely around 

whereas 𝑚𝑙𝑜𝑐  is the mass of the particle under the influence of the local interactions, sometimes called “reduced mass”. 

It follows that:   

𝐻 ̂𝑡𝑜𝑡𝜓𝑡𝑜𝑡 = ({�̂�2}𝑙𝑜𝑐/2𝑚𝑙𝑜𝑐+{�̂�2}𝑖𝑛𝑓 2𝑚𝑖𝑛𝑓⁄ +𝑉𝑙𝑜𝑐 + 𝑉𝑖𝑛𝑓)( 𝜓𝑙𝑜𝑐𝜓𝑖𝑛𝑓) = 

= ({�̂�2}𝑙𝑜𝑐/2𝑚𝑙𝑜𝑐+𝑉𝑙𝑜𝑐)𝜓𝑙𝑜𝑐𝜓𝑖𝑛𝑓 + ({�̂�2}𝑖𝑛𝑓/2𝑚𝑖𝑛𝑓 +𝑉𝑖𝑛𝑓)𝜓𝑙𝑜𝑐𝜓𝑖𝑛𝑓 .        (3.11) 

 Separating the local effect from the surroundings we can set:  

({�̂�2}𝑙𝑜𝑐/2𝑚𝑙𝑜𝑐   + 𝑉𝑙𝑜𝑐) 𝜓𝑙𝑜𝑐 = 𝐸𝑙𝑜𝑐𝜓𝑙𝑜𝑐  and:                (3.12a) 

({�̂�2}𝑖𝑛𝑓/2𝑚𝑖𝑛𝑓  +  𝑉𝑖𝑛𝑓) 𝜓𝑖𝑛𝑓 = 𝐸𝑖𝑛𝑓𝜓𝑖𝑛𝑓 .                      (3.12b) 

The first equation (3.12a) is the Schrödinger equation describing the behavior of the particle in its local environment 

like in the nucleus or a solid where it has its individual interactions. The second equation (3.12b) describes its 

movement or presence in the outer space in which the particle, or as part of a larger entity, can move around. By taking 

𝑉𝑖𝑛𝑓 as a constant it is assumed that the behaviour out of its local influences is taken into consideration. This second 

equation is the starting point in the development of the theory in the next paragraphs. The splitting up as in equation 

(3.12a) and (3.12b) disconnects the local interaction of separate particles, as is normally done in quantum mechanics, 

from the movement or presence of the particle individually or as part of a larger entity. In what follows we will only 

consider the second equation as this gives the generator for the gravitational interaction. As we are interested in the 

effects of masses outside the local interactions we will from now on take for the mass 𝑚𝑖𝑛𝑓 the quantity 𝑚, as it will 

also be the case for the coordinate.  

More on this subject can be read in Ney (Ney, 1965), Messiah (Messiah, 1985) and Heitler (Heitler, 1945). 
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4. Groups of Particles and Sub-spaces 

Gravity is an attractive force between two bodies, or, at a microscopic level, two particles and therefore any theory will 

have to account for multi-particle systems. The previous paragraph has shown that the Hamiltonian will be the central 

operator but in that representation it only accounts for single entities. For the development of the theory we have to modify 

the Hamiltonian for multi-particle systems.  

The most simple expression for the kinetic energy in the Hamiltonian for a group of particles numbered by k is given by:   

�̂�2/2𝑚 = ∑ 𝑝�̂�
2 2𝑚𝑘⁄𝑘  .                               (4.1) 

This expression does, however, not clearly enough describe the behavior of particle interaction as members of a group, but 

it will be shown that an alternative representation is possible in which still the total kinetic energy remains the same. The 

starting point is to write equation slightly differently  

𝑝2

2𝑚
= ∑ 𝑝�̂�

2 2𝑚𝑘⁄𝑘 = ∑ (𝑝�̂� √2𝑚𝑘⁄ )
2

𝑘 .                        (4.2) 

This equation does not look so special, but it shows that, if we want to modify the kinetic energy in the Hamiltonian, we 

will have to perform our analysis in the 𝑝�̂� √2𝑚𝑘⁄  –space. For reasons that will become clear later we will now modify 

the Hamiltonian for the two-particle ensemble (ij) and refer to Figure 1. 

In Figure 1 particles mi and mj are moving with momenta pi and pj. But we are interested in their behaviour in the space as 

seen from point O2 and therefore we apply the cosine-rule to both triangles [1] and [2]. Knowing that:  

cos 𝛿2 = −cos(180 − 𝛿2) and taking 𝑝𝑖𝑗/√2𝑚𝑖 = 𝑝𝑗𝑖/√2𝑚𝑗, it follows that: 

𝑝�̂�
2 2𝑚𝑖⁄ + 𝑝�̂�

2 2𝑚𝑗⁄ = 𝑝�̂�
2 2𝑚𝑔⁄ + 𝑝𝑖�̂�

2 2𝑚𝑖⁄ + 𝑝𝑗�̂�
2 2𝑚𝑗⁄ .             (4.3) 

In this modified kinetic energy part of the Hamiltonian the first term at the right hand is the kinetic energy of the group, 

identified with label g, consisting of mi and mj with mass 𝑚𝑔 = 𝑚𝑖 +𝑚𝑗 and moving as one single entity. The second 

term is the kinetic energy in the sub-space. The group momentum vector 𝑝𝑔 √2𝑚𝑔⁄  is not equal to any of the other 

ones so that  𝑝�̂�  has to be defined separately. As the interaction between the two particles is only within the sub-space rij, 

we will not have to bother about this first term at the right hand. This is fortunate because it depends on the angle 

between 𝑝�̂� √2𝑚𝑖⁄  and  𝑝�̂� √2𝑚𝑗⁄  which would severely complicate the problem. It can also be seen that this 

modification of the Hamiltonian only works well for two particles as the geometrical argument is confined to one plane. 

More particles would compel us to perform the analysis in many more different planes and would not give a tractable 

solution. 

Another important observation is that because 𝑝𝑖𝑗/√2𝑚𝑖 = 𝑝𝑗𝑖/√2𝑚𝑗 the sub-space is symmetric from the point of 

view of an observer in O2. This issue of symmetry will come back in the solution of the Schrödinger equation with the 

modified Hamiltonian.  

We will now extend the modified Hamiltonian equation, obtained by substituting equation (4.3) into (4.2), for more than 

two particles, but all of them interacting in groups of two and only two:  

∑ 𝑝�̂�
2 2𝑚𝑘⁄𝑘 = 1/𝑁(∑ 𝑝�̂�

2 2𝑚𝑔⁄𝑔 + 1/2∑ (𝑖≠𝑗 𝑝𝑖�̂�
2 2𝑚𝑖⁄ + 𝑝𝑗�̂�

2 2𝑚𝑗⁄ )).       (4.4) 

The N-factor, the number of particles, is necessary as in the summation each particle is counted N times. The pairs are 

counted by the g-index. Later, when the analysis brings us to the final result, we will come back to the group 

momentum and evaluate the consequence of its dependence on the momenta of mi and mj.  

For completeness we will now derive this dependence but come back to it later. For this we apply the cosine-rules from 

the corner O1 for the triangles [1] and [2] separately and together: [1+2]. the equations are: 

(𝑝𝑖�̂� √2𝑚𝑖 + 𝑝𝑗�̂� √2𝑚𝑗⁄⁄ )
2
= 𝑝�̂�

2 2𝑚𝑖⁄ + 𝑝�̂�
2 2𝑚𝑗⁄ − 2𝑝�̂�𝑝�̂�𝑐𝑜𝑠𝛿1/√4𝑚𝑖𝑚𝑗 ,             (4.5a) 

𝑝�̂�
2 2𝑚𝑔⁄ = 𝑝�̂�

2 2𝑚𝑖⁄ + 𝑝�̂�
2 2𝑚𝑗⁄ − 𝑝𝑖�̂�

2 2𝑚𝑖⁄ − 𝑝𝑗�̂�
2 2𝑚𝑗⁄ .                (4.5b) 
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mi mj
Pij/√(2mi)

Pj/√(2mj)
Pi/√(2mi)

Pji/√(2mj)

O1

Pg/√(2mg)

[1]

d2

180-d2

[2]

O2

Sub-space rij

d1

X

Y

Z

mj

mi

rij

 
Figure 1. The relation (4.3) found by applying the cosine-rule to both triangles [1] and [2] if the lengths of the arrows 

𝑝𝑖𝑗/√2𝑚𝑖 and 𝑝𝑗𝑖/√2𝑚𝑗 are the same. In this view vectors and operators are treated as equivalent. Note that in the 

two-dimensional momentum space the velocity or the momentum vectors for particles always have the same origin. 

 

This cosine factor showing up complicates the analysis, but in the end it will not trouble our analysis as it can be 

circumvented. 

Now also the analysis will have to be repeated starting from the equation (2.4), but as it is only dealing with the 

momenta, the result of the previous analysis can be used if we simply replace the vector 𝑝𝑘 √2𝑚𝑘⁄  by 𝑐𝑚𝑘√𝛾𝑘
2 − 1 

with the k-label representing i, j, g and  𝑝𝑖𝑗 , 𝑝𝑗𝑖  unchanged. The analysis will be continued in paragraph 11. 

5. The Sub-space in More Detail 

Starting from the unmodified Hamiltonian, the general solution of a wave equation describing independent particles in 

spherical symmetry is initiated by the operator �̂�2/2𝑚 = ∑ �̂�𝑘
2 2𝑚𝑘⁄𝑘  , and reads:  

𝜓 =. . 𝜓𝑖𝜓𝑗 …𝜓𝑙 =. . (
𝛼𝑖

𝑟𝑖
) 𝑒𝑖𝛽𝑖𝑟𝑖𝑥 (

𝛼𝑗

𝑟𝑗
) 𝑒𝑖𝛽𝑗𝑟𝑗x....x(

𝛼𝑙

𝑟𝑙
) 𝑒𝑖𝛽𝑙𝑟𝑙𝑥 … = ∏ (

𝛼𝑘

𝑟𝑘
) 𝑒𝑖𝛽𝑘𝑟𝑘𝑘 .         (5.1) 

For this equation the equations (3.4), (3.5), and (3.10) have been used. But we have regrouped the kinetic contribution 

to the Hamiltonian for the same set of particles as:   

𝑝2

2𝑚
= ∑ �̂�𝑘

2 2𝑚𝑘 ⁄𝑘 = 1/𝑁(∑ �̂�𝑔
2 2𝑚𝑔 ⁄𝑔 + 1/2∑ (�̂�𝑖𝑗

2 2𝑚𝑖 ⁄𝑖≠𝑗 + �̂�𝑗𝑖
2 2𝑚𝑗 ))⁄ , 

and first we will only consider the second part of it at the right hand side, to start with the group (ij) of two particles 

only, thus we restrict ourselves to the sub-space with coordinates rij. 

Per group there are two independent particles. For the group under consideration like in Figure 2, it is indicated by the 

masses mi and mj . and they experience some force reflected by the potential Vi and Vj. Spherical symmetry is next 

adopted and the only boundary condition is that the wave function is zero at infinity. 
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Figure 2. Forming and describing of 𝒩=N!/2(N-2)! Pairs. In this example the number of groups is three. 

 

We have per pair one coordinate system rij around mi and one rji around mj. In this way an observer at a distance rij from 

particle mi and at rji from particle mj will see that the total wave equation of the individual pair (ij) is defined as follows 

(Messiah, 1985):   

𝐻𝑖�̂�𝜓𝑖𝑗,𝑡 = 𝑖ħ
𝜕

𝜕𝑡
𝜓𝑖𝑗,𝑡 = − (

ħ2

2𝑚𝑖

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
+

ħ2

2𝑚𝑗

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖
2 𝜕

𝜕𝑟𝑗𝑖
)𝜓𝑖𝑗,𝑡+(𝑉𝑖 + 𝑉𝑗) 𝜓𝑖𝑗,𝑡.    (5.2) 

𝜓𝑖𝑗,𝑡 is the time and space dependent wave function. The time dependence can be removed by replacing the time 

dependent wave function 𝜓𝑖𝑗,𝑡  by 𝜓𝑖𝑗𝑒
𝑖𝐸𝑖𝑗𝑡/ħ.  Further, define  𝑉𝑖+ 𝑉𝑗 by 𝑉𝑖𝑗and we get:  

(𝐸𝑖𝑗 − 𝑉𝑖𝑗)𝜓𝑖𝑗 +
ħ2

2𝑚𝑖

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
𝜓𝑖𝑗 +

ħ2

2𝑚𝑗

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖
2 𝜕

𝜕𝑟𝑗𝑖
𝜓𝑖𝑗 = 0.              (5.3) 

To simplify the equation replace  𝐸𝑖𝑗 − 𝑉𝑖𝑗  by 휀𝑖𝑗  to propose a solution that is valid in areas where the Vij is not of great 

influence anymore as follows:  

𝜓𝑖𝑗 = (
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 ,                            (5.4) 

where 𝛼𝑖𝑗and 𝛽𝑖𝑗  are constants independent of space coordinates and time. This solution means that we consider the 

wave function outside the surroundings where the potential energy with all its peculiarities has a very minor effect on 

the shape of the wave function. The only interaction that can play a role will then be based solely on gravitational 

interaction. By substituting the solution in equation (5.3) the following relation is found:  

−
ħ2𝑖

𝑟𝑖𝑗 𝑟𝑗𝑖
(
𝛼𝑖𝑗𝛽𝑗𝑖

𝑚𝑗
+

𝛼𝑗𝑖𝛽𝑖𝑗

𝑚𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 − 

ħ2

2
(
𝛽𝑖𝑗
2

𝑚𝑖
+

𝛽𝑗𝑖
2

𝑚𝑗
)x 

x(
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 +  휀𝑖𝑗 (

𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 = 0.               (5.5) 

The complex first term at the left hand side is to be set to zero and in a pair-wise process 𝛼𝑖𝑗𝛽𝑗𝑖 𝑚𝑗 +⁄ 𝛼𝑗𝑖𝛽𝑖𝑗 𝑚𝑖⁄ = 0 

and 𝛽𝑖𝑗
2ħ2 2𝑚𝑖 +⁄ 𝛽𝑗𝑖

2ħ2 2𝑚𝑗⁄  = ε𝑖𝑗 = 𝜎0(𝑚𝑖 +𝑚𝑗) so that for every value of the energy there will be a value for 

𝜎0 and the 𝛽’s can adapt themselves. Therefore, whatever is the situation in which mi and mj find themselves, there is 

always a 𝛽𝑗𝑖  and a 𝛽𝑖𝑗  and they have no influence on the 𝛼′𝑠 as long as 𝛼𝑖𝑗 = 𝛼𝑗𝑖 . It means, that the interaction 

occurs in the sub-space with a pair to be considered as one single entity with a mass of (𝑚𝑖 +𝑚𝑗) and, apart from the 

separation between the members of the pair (R), independent of the situation these members are in. Further, it has to be 

noticed that the Schrödinger equation based on the modified Hamiltonian only is possible for groups of two and only 

two particles. This conclusion has already been drawn in a slightly different way in the previous paragraph where the 

geometrical argument in momentum space is only possible for two partices with momenta vectors in one plane.  

We already came across the fact that the sub-space rij in momentum space for the observer in O2 in Figure 1 is 

symmetric and therefore the solution 𝛹(𝛼𝑖𝑗 , 𝛼𝑗𝑖) is symmetric, meaning, again, that 𝛼𝑖𝑗 = 𝛼𝑗𝑖. 
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At the moment not much is known about the 𝛼′𝑠, but one requirement to be imposed on the wave function is that it 

represents a pair of particles. For the time being it can be said that: 

i. The 𝛼′𝑠 cannot depend on the running variables in the wave equation: rij or t. It will be a constant that can only 

depend on fundamental nature constants and the particle masses. 

ii. It should make no difference for the outside world how one member sees its partner or whether and how we see the 

two members of the pair. It means that we can say: 𝛼𝑖𝑗 =  𝑓(𝑚𝑖)𝑓(𝑚𝑗). 

iii. There is no pair if either mi or mj equals zero so that 𝑓(𝑚𝑖) = 0 for 𝑚𝑖 = 0 and the pair potential should increase 

linearly with both participating masses in the pair. 

To sum up also the movement of the group as one entity and the fact that there are N particles and 𝒩=N!/2(N-2)! Pairs 

leads to a total wave function as:  

𝜓 = ∏ (
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖𝑖𝑗 ∏ (

𝛼𝑔

𝑟𝑔
) 𝑒𝑖𝛽𝑔𝑟𝑔𝑔 .                    (5.6) 

The second product is due to the first contribution to the momentum-based energy term in equation (4.4) and, as already 

mentioned, it generates no gravitational interaction. The index g is identified by the pair (ij) as indicated in figure 1. The 

first one in the product (5.6) gives gravitational interaction in the case of two, and only two members in an ensemble 

where the sum is taken over all possible and unique pairs (ij). As the pairs exist in their own unique coordinate system 

𝑟𝑖𝑗 , 𝑟𝑗𝑖 there is no reason to consider all the pairs together but only the behavior of a single pair. In the end we will add 

up all the contributions of the pairs as shown schematically in Figure 5 in paragraph 8.  

There is freedom in the choice of the particles mi, mj, ---, ml,---. It can actuallly be anything like elementary particles, 

nuclei or even larger entities if, at least, we can describe such an entity by a single wave function in its own coordinate 

system and solve the equation to form a pair with another entity. 

Later it will be confirmed that, as before and for the sake of symmetry in the mutual gravitational interaction, the two 

𝛼′𝑠 should be equal. It also means that the β’s have opposite signs and fixed values and, by taking the 𝛼′𝑠 equal, we 

make their values independent of the masses and the energies of the members of the pair. The 휀𝑖𝑗 could have been split 

into two separate quantities as 휀𝑖𝑗 and 휀𝑗𝑖 to dedicate the 𝛽𝑖𝑗
2  and 𝛽𝑗𝑖

2 -values to the separate energies of the two particles.  

It is also interesting to notice that the solution of the wave equation for the pairs like in equation (5.6) looks different 

from a solution for a single particle on the basis of the unmodified Hamiltonian as in equation (5.1). For instance, if we 

take a look at the rij dependence in the solution (5.6), we see that there is an extra rij dependent factor in the exponential 

term. This latter term is insufficient to make such a solution applicable for the operator working on rij. For it to be 

sufficient we need the total pre-exponential factor as given in equation (5.6). 

The second approach is taking the KG-equation as the starting point. In this way we guarantee full co-variance 

throughout the entire analysis. The equation has been given already and reads: 𝐸2  - 𝑝2𝑐2 = 𝑚0
2𝑐4 or expressed 

alternatively: 𝐸2/𝑚0
2𝑐4 - 𝑝2/𝑚0

2𝑐2 = 1, and translated into quantum mechanical language for an ensemble of two 

particles:  

(𝐸𝑖𝑗
2/𝑚0𝑖

2 𝑐4 − 𝐸𝑗𝑖
2/𝑚0𝑗

2 𝑐4)𝜑𝑖𝑗  –((𝑝𝑖�̂�)
2/𝑚0𝑖

2 𝑐2 − (𝑝𝑗�̂�)
2/𝑚0𝑗

2 𝑐2))𝜑𝑖𝑗 = 0,          (5.7) 

where 𝑝𝑖𝑗 ̂ 2 is the square of the momentum operator in spherical coordinates as in equation (4.3) and 𝑚0𝑖, 𝑚0𝑗 the rest 

mass of the particle i, j in the ensemble (ij). Also in this case it immediately can be seen that to the solution, with the 

same 𝑟𝑖𝑗- and 𝑟𝑗𝑖-dependences as in equation (5.4), the same interpretation as before can be given. In accordance with 

the remark on this point in paragraph 3 the solution of equation (5.7) in the limit of c to infinity will be the solution 

(5.4). So there is not much news in this alternative, but a wave equation with zero masses starting from: 

(𝐸𝑖𝑗
2 + 𝐸𝑗𝑖

2)𝜑𝑖𝑗  –𝑐2((𝑝𝑖�̂�)
2 − (𝑝𝑗�̂�)

2)𝜑𝑖𝑗 = 0,                         (5.8) 

has a non constant solution in space and time coordinates. This is remarkable as a zero mass particle like a photon can 

result in a mass-like presence in open space. It may well be that this is the basis for the fact that in the Friedmann 

cosmological equations also energy related gravitational pull has to be adopted (Heacox, 2015). 
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6. Summary of the General Treatment and Further Steps to Be Taken 

In the preceding paragraphs some of the basic rules of Special Relativity theory and quantum mechanics are given 

insofar they are of relevance for developing a theory for the attractive force: gravitational attraction between two bodies. 

It is not specified what kind of bodies we are talking about and actually it is not even relevant. There is absolutely no 

speculation about the validity of these rules. They have shown their validity over and over, but working with both 

concepts should be done with care as the two concepts, although they have shown their validity, are not completely 

compatible. The energy equations according to Quantum Mechanics (3.5) and Special Relativity (5.3) show that the 

basic quantum equation has both linear and squared parameters whereas the relativistic one has only squares. 

Mathematically we say that the quantum equation is not co-variant and the relativistic one is co-variant. The 

consequence of co-variance is that the laws of physics are the same no matter the coordinate system, in which it is 

observed, is moving or not. With this latter determination in mind we can use both but we should be aware of the 

dangers involved. 

When the two concepts were applied to particles with the aim to describe their movement and connected interaction, we 

have seen in two different ways that the movement of particles can be described for all the particles together, but 

individually, and also as in groups of two and only two members. These groups are then described together to arrive at a 

complete description of the movement of all groups together but mutually independent. 

The grouping results in the description in a momentum based sub-space for the individual groups. In this momentum 

space the sub-spaces appear to be symmetric from the observer’s point of view in O2, as shown in Figure 1. This 

symmetry will also be reflected in the symmetry of the gravitational interaction which will be shown in what follows.   

It has been shown that particles, which can have high probability to be present in a physical entity like a solid material, 

or whatever, do have some small probability to show up in open space outside the entity where it normally is, or stated 

in quantum mechanical language: where it has highest probability. The probability to show up in open space can be so 

low that for normal practices it is of no relevance and in usual quantum mechanical considerations it is neglected. If we, 

however, want to come to a theory for gravity, we cannot ignore its probability in open space. This low probability 

already has the consequence that for individual particles the gravitational interaction is small but definitely not zero. 

The other consequence is that the extent where this probability is manifesting itself extends to the whole space. Gravity 

is a force that is present even at cosmological distances. 

Now we come to the central transition point from quantum mechanics to quantum-based relativity. 

The wave function as derived gives the presence of an entity to which a rest mass, 𝑚0𝑖𝑗, can be dedicated. In quantum 

mechanical language, as shown in paragraph 3, this rest mass becomes an operator and therefore it has to be multiplied 

by the wave function and its conjugated function: 𝜓𝑖𝑗
∗ 𝑚0𝑖𝑗

2 𝜓𝑖𝑗  and we get:   

𝜓𝑖𝑗
∗ 𝑐4𝑚0𝑖𝑗

2 𝜓𝑖𝑗 = 𝑐4𝑚0𝑖𝑗
2 (

𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
)
2

.                           (6.1) 

This equation says that there is a probability that this pair potential can be found anywhere in the free space, but it is 

obviously concentrated between and around the two particles forming the pair. So there is a space coordinate dependent 

probability to find it somewhere, but this probability is not connected to other quantities like energy.  

At this moment it is obvious already that 𝑚0𝑖𝑗 will be proportional to the masses of both participating particles in the 

interaction. But this is for the time being only a temporary conclusion. It will be justified later as it is of great 

importance for the final derivation of the gravity law. 

Another very important thing is that from  𝛼𝑖𝑗𝛽𝑗𝑖 𝑚𝑗⁄ +𝛼𝑗𝑖𝛽𝑖𝑗 𝑚𝑖⁄ = 0 with 𝛼𝑖𝑗 = 𝛼𝑗𝑖 it follows that there is for the 

𝛼-values some freedom in choosing its dependence on relativistic parameters such that the right hand side of equation 

(5.4) becomes an invariant as it should be, but also it is important for the conclusion that the form of the gravity law is 

independent of the mutually interacting masses of macroscopic bodies.   

In figure 3 a comparison is made between the effect of two particles separately according to equation (5.1) and the same 

particles in the group as an entity according to equation (6.1). The overlap in the factor (𝛼𝑖𝑗 𝑟𝑖𝑗 + 𝛼𝑗𝑖 𝑟𝑗𝑖⁄⁄ ) is due to an 

increased amplitude between the particles in the group. 
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Figure 3: Overlap of amplitudes in a group of two particles in a group. An analogy is seen when two boats are sailing 

parallel to each other and create a depression in the water level. Due to the overlap in the depression between the boats 

there is a small attractive force between them. 

 

7. Relativistic Interaction 

Now, in the next step, the pair is considered as essentially one entity and the problem can be analyzed in the relativistic 

four dimensional space. We will draw up the KG-equation remembering the rules of adding up four-vectors and 

subsequently the formation of the invariant out of this sum. In this representation, however, the rest mass due to the 

interacting particles in the pair (ij), 𝑚0𝑖𝑗, is to be considered as an entity that is completely independent of all the other 

rest masses formed.  

But the most important difference from the treatment before is that we will be entirely working in the momentum based 

sub-space rij where the group is seen as one single entity. The energy reflects the energy of the two particles together as 

well as masses and momenta like: 𝑝2 = (𝑝𝑖�̂� + 𝑝𝑗�̂�)
2 and: E

2
 = (Ei + Ej)

2 
with: 𝐸2 - 𝑝2𝑐2 = 𝑚0

2𝑐4. 

Again we will have to translate this equation into the appropriate quantum mechanical language for pairs as one entity 

and therefore make the following transformations: 

-𝑝2𝑐2𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡= (𝑚0
2𝑐4-𝐸2)𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡,  𝐸

2 = (𝐸�̂� + 𝐸�̂�)
2
= −ħ2

𝜕2

𝜕𝑡2
 and: 

𝑝2 = (𝑝𝑖�̂� + 𝑝𝑗�̂�)
2  

= -ħ
2(

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
+ 

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖
2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+ 

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
). 

The last expression is, as different from earlier, a mixed sum of the momenta. This representation is a consequence of 

the fact that the particles have been treated only in pairs and that spherical symmetry remains to be adopted. The energy 

operators involving the momenta, which are used here, are given in equations (3.10a) and (3.10b).  

Referring to Figure 2 the total relativistic KG-equation for a number of pairs (𝒩) now will be set up. There are N 

particles which make a total of 𝒩=N!/2(N-2)! pairs, each of which are described by a wave function as a solution of the 

initial Schrödinger equation. As before, the 𝛼-values accommodate all necessary multiplication factors. Following the 

four-vector scheme of equation (2.3c), adding up for all pairs, treating them as mutually independent and taking into 

account the basic rules of quantum mechanics, lead to: 

c
2
ħ

2∑ (
1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
+ 

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖
2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+ 

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
)∏ 𝜑𝑗𝑖,𝑡𝜑𝑖𝑗,𝑡𝑖𝑗𝑖𝑗

   

= ∑ 𝑚0𝑖𝑗
2 (

𝛼𝑖𝑗
2

𝑟𝑖𝑗
2 + 2

𝛼𝑖𝑗

𝑟𝑖𝑗

𝛼𝑗𝑖

𝑟𝑗𝑖
+

𝛼𝑗𝑖
2

𝑟𝑗𝑖
2 )𝑖𝑗 ∏ 𝜑𝑗𝑖,𝑡𝜑𝑖𝑗,𝑡 −𝒊𝒋 ∑ (𝐸�̂�𝑖𝑗 +𝐸�̂�)

2∏ 𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡𝑖𝑗 , with:
     

    
  

(7.1a) 

∏ 𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡𝑖𝑗 = 𝐹(𝑡)∏ 𝜑𝑖𝑗𝜑𝑗𝑖𝑖𝑗 = ∏ 𝜑𝑖𝑗𝜑𝑗𝑖𝑖𝑗 ∏ (
𝛼𝑔

𝑟𝑔
) 𝑒𝑖(𝑘𝑔𝑟𝑔−𝜔𝑔𝑡)𝒩

1 .                 (7.1b) 
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𝑚0𝑖𝑗 is the rest mass to be dedicated to the interaction field created by the masses mi and mj. This factor also 

accommodates the c
2
 as in equation (6.1). The pairs in both products, in total 𝒩=N!/2(N-2)! are numbered by g, if there 

are N particles. The term 𝑒𝑖(𝑘𝑔𝑟𝑔−𝜔𝑔𝑡) expresses a wave propagating in radial direction representing the moving of 

individual groups, but with reducing amplitude, or, rather probability, as it progresses. If there is no interaction between 

members of the pairs (𝛼𝑚𝑛 = 0) we get the movement of the individual particles outside their local influence.  

 
Figure 4: Energy transfer from the pair to the surroundings and the sub-space (white area) with internal exchanges as 

observed from far away. 

 

This set-up has a very delicate interpretation. It shows that an observer from outside sees a pair creating a sub-space but 

cannot determine its structure inside. In the space inside, expressed by the coordinates rij and rji, gravitational 

interactions are occurring. Our observer only sees the separate interacting members of the pair with an energy due to 

this interaction as is shown schematically in Figure 4. It is as if we see two persons who have made a secret agreement 

and are, by acting as a pair, exchanging information. We can see both persons but we cannot explain why they behave as 

they behave. This analogy will have some delicate interpretation to which we will come back in a footnote in paragraph 

9 (***)). 

As before, the time dependences can be removed by setting:  

𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡 = 𝜑𝑖𝑗𝜑𝑗𝑖𝑒
𝑖(𝐸𝑖𝑗+ 𝐸𝑗𝑖)𝑡/ħ,                            (7.2) 

so that: 

∑ (𝐸�̂�𝑖𝑗 +𝐸�̂�)
2𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡=∑ (𝐸𝑖𝑗𝑖𝑗 +𝐸𝑗𝑖)

2𝜑𝑖𝑗𝜑𝑗𝑖.                       (7.3) 

If all 𝛼′𝑠 would have been equal to zero, a propagating wave 𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡 extending in the radial direction with the light 

velocity would have resulted. Non zero values of 𝛼 reduce this speed and, as a consequence, give mass to the field 

𝜑𝑖𝑗,𝑡𝜑𝑗𝑖,𝑡 .  The proposed solution will be *):  

𝜑𝑖𝑗 = 𝛾𝑖𝑗𝑟𝑖𝑗
−𝑚0𝑖𝑗𝛼𝑖𝑗 ħc⁄

,                                   (7.4) 

which is inserted into: 

∑ (𝐸𝑖𝑗𝑖𝑗 +𝐸𝑗𝑖)
2∏ 𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 − ∑ 𝑚0𝑖𝑗

2 (
𝛼𝑖𝑗
2

𝑟𝑖𝑗
2 + 2

𝛼𝑖𝑗

𝑟𝑖𝑗

𝛼𝑗𝑖

𝑟𝑗𝑖
+

𝛼𝑗𝑖
2

𝑟𝑗𝑖
2 )𝑖𝑗 ∏ 𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 +      

+𝑐2ħ2∑ (
1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
+ 

1

𝑟𝑗𝑖
2

𝜕

𝜕𝑟𝑗𝑖
𝑟𝑗𝑖
2 𝜕

𝜕𝑟𝑗𝑖
+

𝜕

𝜕𝑟𝑖𝑗

𝜕

𝜕𝑟𝑗𝑖
+ 

𝜕

𝜕𝑟𝑗𝑖

𝜕

𝜕𝑟𝑖𝑗
)𝑖𝑗 ∏ 𝜑𝑗𝑖𝜑𝑖𝑗𝑖𝑗 = 0.      (7.5) 

From the boundary condition that 𝜑𝑖𝑗(𝑟𝑖𝑗 , 𝛼𝑖𝑗) = 0 for 𝑟𝑖𝑗  to infinity 
 
a fourth condition on the 𝛼′𝑠 can be derived: 

iv. 𝛼𝑖𝑗 is positive under all circumstances.  

Now some algebra needs to be done and it will be found that many terms on the left hand side are equal to the ones at the 
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right hand side and therefore disappear **). We get:  

(𝐸𝑖𝑗
2 + 2𝐸𝑖𝑗𝐸𝑗𝑖 + 𝐸𝑗𝑖

2)𝜑𝑖𝑗𝜑𝑗𝑖 −  𝑐ħ𝑚0𝑖𝑗 (
𝛼𝑖𝑗

𝑟𝑖𝑗
2 +

𝛼𝑗𝑖

𝑟𝑗𝑖
2 )𝜑𝑗𝑖𝜑𝑖𝑗 = 0.            (7.6) 

At this point a remark has to be made: removing the term 𝛼𝑘𝑙
2 𝑟𝑘𝑙

2⁄  means that some basic interaction occurs between the 

gravitational field and the particle. Obviously, for this separate term, a KG-equation can be formulated that shows that 

an entity with some relativistically derived mass operates and leaves behind a contribution to the interaction energy in 

the equation (7.6). So already at this point there is direct interaction between the pair and the field around. Also 

removing the term with  𝛼𝑖𝑗𝛼𝑗𝑖 𝑟𝑗𝑖𝑟𝑖𝑗⁄  means that there is a third interaction between the fields and the pair. It is 

schematically represented in Figure 4.  

Taking all these interactions into account it is seen that all α-terms, as they occur in equation (7.5), have disappeared. 

This has a profound meaning: in this model gravity is due to second order effects of the peculiarities of the spherical 

symmetry in a relativistic setting. The effect is weak and operates over a long range.   

The contributions can now be redistributed, but first multiply all terms by 𝑟𝑖𝑗𝑟𝑗𝑖  and observe that the proposed solution 

is the only one that gives a sharp value for the quantity 𝐸𝑖𝑗 𝑟𝑖𝑗  and 𝐸𝑗𝑖 𝑟𝑗𝑖 : 

(𝐸𝑖𝑗
2𝑟𝑗𝑖𝑟𝑖𝑗 + 𝐸𝑖𝑗𝐸𝑗𝑖𝑟𝑗𝑖𝑟𝑖𝑗)𝜑𝑖𝑗𝜑𝑗𝑖 − 𝑐ħ𝑚0𝑖𝑗𝛼𝑖𝑗

𝑟𝑗𝑖

𝑟𝑖𝑗
𝜑𝑖𝑗𝜑𝑗𝑖 = 0,               (7.7a) 

(𝐸𝑗𝑖
2𝑟𝑗𝑖𝑟𝑖𝑗 + 𝐸𝑖𝑗𝐸𝑗𝑖𝑟𝑗𝑖𝑟𝑖𝑗)𝜑𝑖𝑗𝜑𝑗𝑖 − 𝑐ħ𝑚0𝑖𝑗𝛼𝑗𝑖  

𝑟𝑖𝑗

𝑟𝑗𝑖
𝜑𝑖𝑗𝜑𝑗𝑖 = 0.                 (7.7b) 

Cutting the equation (7.6) into two separate ones as given in equations (7.7a) and (7.7b) looks like arbitrary, as any cut 

between terms can be made. But if we now come back to the original suggestion, we see that the gravitational 

interaction becomes symmetric. The gravitational energy of particle i is equal to the gravitational energy of particle j. It 

also reflects the point that a pair has to be seen as one entity. The observer cannot distinguish between the separate 

members of the pair. 

*) The solution proposed, but more general: 𝜑𝑖𝑗 = 𝛾𝑖𝑗𝑟𝑖𝑗
𝑛 , can also be applied to a KG-equation not involving pair 

formation so that 𝜑𝑖 = 𝛾𝑖𝑟𝑖
𝑛 and giving a similar solution as 𝐸𝑖 𝑟𝑖 . In the model the exponent is, according to point iii 

in paragraph 5 connected to pairs of particles so that in the present case it should be taken zero.  

**) This solution (8.4) reduces all invariant and momentum terms in equation (7.5) but brings back a single gradient 

term. No other solution has better performance than the one proposed in (7.4) so it is to be considered as the most 

appropriate one. It is actually the spherical symmetry that is responsible for this remaining gradient term. In this model, 

therefore, the whole story is reduced to one simple statement: Gravity is a consequence of the three dimensional space 

with spherical symmetry and nothing else.  

8. Law of Gravity 

Most important for finding out how the members of a pair see each other is to look at the equations (7.7a) and (7.7b) by 

an observer at mi who sees the particle mj at a distance of 𝑟𝑖𝑗 and an observer at mj who sees mi from a distance rji. They 

already know that  𝛼𝑖𝑗 = 𝛼𝑗𝑖 = 𝛼, 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 𝑅, and 𝐸 = 𝐸𝑖𝑗 + 𝐸𝑗𝑖  with 𝐸𝑖𝑗 = 𝐸𝑖𝑗 so that 𝐸𝑖𝑗 = 𝐸/2. There are also 

no operators anymore in equation (7.7a) and (7.7b). In this conclusion a geometrical factor is established in momentum 

space as in Figure 1 which will need some more justification to be given later in this paragraph. The result is a simple 

relation:  

2(𝐸 2⁄ )2𝑅2 = 2𝐸2(𝑅 2⁄ )2 = 𝑐ħ𝛼𝑚0                          (8.1) 

The boundary condition in equation (7.2) is that 𝜑𝑖𝑗𝜑𝑗𝑖 goes to zero for r to infinity so that 𝛼 > 0,  and because both 

particles in the pair change their energy by the same amount, it follows for the two members of the ensemble together 

that: 

𝐸𝑅 = √2𝑐ħ𝛼𝑚0,                                   (8.2)  

and the gravitational force is given by -𝜕𝐸 𝜕𝑅⁄  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑅2.  

Now it is important to see how pairs consisting of particles of different masses present themselves in 𝛼 and 𝑚0. It 

looks like both parameters are tightly glued together in, for instance equation (6.1), but they stem from different places. 

𝛼 is derived from the quantum mechanical considerations whereas 𝑚0 comes from the relativity theory. They have in 

common that both reflect the fact that pairs of obviously undefined mass units are responsible for the interaction. The 

most simple conclusion, which needs some justification, would be that: 
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𝑚0𝑘𝑙𝛼𝑘𝑙 = σ1(𝑚𝑘𝑚𝑙). σ2(𝑚𝑘𝑚𝑙).
 

To justify this result there are two options following the four-vector addition-invariant rule of Special Relativity.  

The first one is to add the four-vector components followed by forming the invariant. This procedure is shown in 

equation (2.3e). In this case the addition of the components of the four-vector, according the result of equation (8.2), 

will read like equation (8.3) for equal 2𝑐ħ𝛼𝑚0/𝑅𝑖𝑗
2  -entities. This approach means that we consider all contributions 

together to ∑ 𝐸𝑖𝑗𝑖𝑗  as one entity so that there is, for the four vector components which are added, one unique coordinate 

system and all 𝑅𝑖𝑗-values are the same: 

(∑ 𝐸𝑖𝑗𝑖𝑗 )
2
= 𝐸𝑡𝑜𝑡𝑎𝑙

2 = (∑ (√2𝑐ħ𝛼𝑚0/𝑅𝑖𝑗)𝑖𝑗 )
2
= 𝑓(𝑚𝑖 , 𝑚𝑗)2𝑐ħ𝛼𝑚0/𝑅𝑖𝑗

2 .            (8.3) 

In this view the two entities m1 and m2  are forming a single pair. We now build up two bodies m1 and m2 composed of 

n1 and n2 by their mass identical building blocks identified by mi in m1 and mj in m2, such that they in total make up the 

masses of m1 and m2. These building blocks can be anything like elementary particles, collection of atoms, as long as 

their masses are the same.  

According to equation (8.2) the interaction between the two bodies m1 and m2 will be given by 

(𝐸𝑅)12 = √2𝑐ħ𝛼12
𝑐 𝑚012

𝑐  in which the factor 𝛼12
𝑐 𝑚012

𝑐  stems from the composite solution 𝜑12
𝑐  derived from equation 

(7.4). This composite solution should be based on the 𝑚0- and 𝛼-values of the whole entity m1 and m2:  

𝜑12
𝑐 = 𝛾12𝑟12

−(𝛼12
𝑐 𝑚012

𝑐 ) ħc⁄
= 𝛾12𝑟12

−(𝑚012
𝑐 /𝑚0𝑖𝑗)(𝛼12

𝑐 𝑚0𝑖𝑗) ħc⁄
.                    (8.4) 

First we consider the rest-mass carrying the gravitational interaction. 

It is found that the pair (ij) has gravitational energy, say 휀 and thus a mass 휀 𝑐2⁄ . In the interaction space between m1 

and m2 there are n1n2 pairs carrying the interaction between m1 and m2 and so we can conclude that 𝑚012
𝑐 = 𝑛1𝑛2𝑚0𝑖𝑗.  

The function 𝜑𝑖𝑗  for the pair (ij), will occur in 𝜑12
𝑐  n1n2 times and so we get for very small values of 𝛼𝑖𝑗𝑚0𝑖𝑗 ħc⁄  in 

the multiplication of 𝜑𝑖𝑗𝜑𝑗𝑖 over all pairs between m1 and m2: 𝑛1𝑛2𝑚0𝑖𝑗(𝛼𝑖𝑗 + 𝛼𝑗𝑖) = 𝑚0𝑖𝑗(𝛼12
𝑐 + 𝛼21

𝑐 ). 
Combining the two arguments we finally get: 𝑚012

𝑐 𝛼12
𝑐 = 𝑛1

2𝑛2
2𝑚0𝑖𝑗𝛼𝑖𝑗  and, remembering that m1 and m2 are 

composed of identical building blocks, we can conclude that 𝑚012
𝑐 𝛼12

𝑐 = σ𝑚1
2𝑚2

2, which leads to the result as in 

equation (8.3) with: 

𝐸12 = 𝐸21 = √2σ𝑐ħ. (𝑚1𝑚2)/𝑅.                             (8.5)  

The second option is to take the n1 and n2 particles separately, form for each of them the invariant and add them all 

together. This procedures follows the scheme of equation (7.1a and b) and is according to the four-vector rule (2.3c). We 

then have to take the  𝛼𝑚0- values of the ni  and nj entities separately so that we get:  

∑ 𝐸𝑖𝑗
2

𝑖𝑗 𝑅𝑖𝑗
2 = 𝑛1𝑛2𝐸𝑖𝑗

2𝑅12
2 = 2𝑐ħ𝛼12

𝑐 𝑚0𝑖𝑗 = 𝑛1𝑛22𝑐ħ𝛼𝑖𝑗𝑚0𝑖𝑗, 

leading to: 

n1
2n2

2Eij
2𝑅12

2 = (𝐸12𝑅12)
2 = ( √2σ𝑐ħ. (𝑚1𝑚2))

2
. 

In the Figure 5 this latter argument is visualized: all pairs that have been formed are acting independently so that we can 

add all the contributions of different masses at their individual locations together and in this way constituting bodies in 

the real world without any interference.  

Finally we can conclude that, in view of this equation (8.5), also the gravitational interaction is proportional to both 

masses of the participating particles in the pair. 

The distance between the masses is due to the Rij- values which, so far have been taken the same but this is not the case 

for larger entities. We therefore should add up all the interactions between particles, which in part see each other at 

different distances. This is a problem that has already been solved in the formulation of the classical theory of 

electrostatics (Panowsky, Philips, 1972). In this way, finally, Newton’s gravitation law is obtained which, in vector 

notation reads: 𝑑𝑖𝑣𝒈 = 4𝜋𝜌𝐺 in which 𝒈 is defined as a gravitational field around an entity constituting a space 

coordinates dependent mass density 𝜌. G is the well known gravitational constant equal to: 6.673x10
-11 

m
3
kg

-1
sec

-2
 

(Heacox, 2015), 

In accordance with the theory of electrostatics the gravity law can also be given in vector representation for bodies M1 

and M2 which have their centers of gravity at a separation of R: 
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𝑭𝟏𝟐 = (𝐺𝑀1𝑀2 𝑅3)⁄ 𝑹.                                 (8.6) 

 

Figure 5: Interaction between masses by building up structures from equal mass units. In this graph the first 

number in the index of 𝜑 refers to m1 and the second to m2. 

 

From the equations (8.5) and (8.6) an explicit expression for the parameter σ can be derived and also, with the help of 

these equations the small mass to be attributed to the gravitational interaction can be found. This σ parameter is equal 

to 2.7x10
2
 Jm/kg

4
. 

In Figure 1 a sub-space is presented in momentum space with an observer in point O2 or, eventually, observers on the 

two particles. They see that the total energy of the pair (ij) is lower than the energy of the particles separately. But since 

 𝐸𝑖𝑗 =  𝐸𝑗𝑖  they must conclude that 𝑟𝑖𝑗 = 𝑟𝑗𝑖 . The locations where 𝑟𝑖𝑗 = 𝑟𝑗𝑖 , have in this respect, a specific meaning. 

If we form the operator 𝑝𝑖�̂� ± 𝑝𝑗�̂�  and apply it to the wave function 𝜓𝑖𝑗 = (
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖  we get the 

“eigenvalue” equation:  

ħ

𝑖
(

𝜕

𝜕𝑟𝑖𝑗
±

𝜕

𝜕𝑟𝑗𝑖
)𝜓𝑖𝑗 = {ħ (

𝛼𝑖𝑗𝛽𝑖𝑗

𝑟𝑖𝑗 
±

𝛼𝑗𝑖𝛽𝑗𝑖

𝑟𝑗𝑖
) −

ħ

𝑖
(
𝛼𝑖𝑗

𝑟𝑖𝑗
2 ±

𝛼𝑗𝑖

𝑟𝑗𝑖
2 )} 𝑒

𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 .              (8.7) 

In the earlier argument as shown in Figure 5 we have the mass units 𝑚1 = 𝑚2, or for this argument 𝑚𝑖 = 𝑚𝑗, and so 

we have 𝛽𝑖𝑗 = −𝛽𝑗𝑖 , and we get a pure “eigenvalue” equation for the operator 𝑝𝑖�̂� − 𝑝𝑗𝑖 ̂  if 𝑟𝑖𝑗 = 𝑟𝑗𝑖. So the observer in 

point O2 in Figure 1 with 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 𝑅/2 will see a sharp and well defined value for the difference between the 

momenta of the mass entities mi and mj. With the same properties for 𝛽 the expectation value of the operator 𝑝𝑖�̂� +
𝑝𝑗𝑖 ̂ will be zero. Once again it follows that the momenta of the masses in the pair will be opposite but equal in absolute 

value. 

The observer can evaluate equations (7.7a) and (7.7b) but in that case with 𝐸 = 𝐸𝑖𝑗 = 𝐸𝑗𝑖  leading to the same result as 

equation (8.1): 

2(𝐸 2⁄ )2𝑅2 = 2𝐸2(𝑅 2⁄ )2 = 𝑐ħ𝛼𝑚0.                           (8.8) 

The other option is two observers, one on mi and one on mj, so that 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 𝑅,
 
but now with 𝐸 = 𝐸𝑖𝑗 + 𝐸𝑗𝑖  and the 

result of equation (8.8) or (8.1).   
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9. Transfer of Energy and Mass 

In the analysis going from equation (7.5) to (7.7) terms are disappearing due to the solution proposed in equation (7.4). 

But this has to be interpreted with caution. The pair function 𝜑𝑖𝑗𝜑𝑗𝑖. in equation (7.1) represents a field carrying the 

gravitational energy. Therefore, the disappearance of the generator at the left hand side of equation (7.5), 

(𝛼𝑖𝑗 𝑟𝑖𝑗 + 𝛼𝑗𝑖 𝑟𝑗𝑖⁄⁄ )2, involves exchange of energy from the pair to the surrounding space which is equal to the energy 

given in equation (8.2). As a consequence, when the positive value for the energy is taken, the energy of the pair itself is 

reduced by the same amount. In that case the interaction between the members of the pair is attractive. The process is 

schematically shown in Figure 4. The transferred energy is the difference between the energy levels shown Figure 6. 

time

Energy of a pair with no
gravitational interaction

Energy of a pair with
gravitational interaction Proportional to 1/R(t)

energy

 

Figure 6. Energy difference between local states and incorporating gravitational interaction. 

 

The opposite situation in which the energy of the pair is positive, which in principle is allowed by the Einstein energy 

equation (2.4), is not possible when we assume that the energy of the vacuum, to be taken as the reference point, is zero.  

In this interpretation the interaction between mass and the surroundings is a means to transfer mass related energy (mc
2
) 

to gravitational energy. This transfer changes the rest masses of the pair but does not create new mass. The 

consequences at a larger scale are worked later in this paragraph. 

If, however, the vacuum state is, as it is generally believed, a non-zero energy state there might be energy available 

which increases with the interaction area, the white area in Figure 4, that can be transferred to the pair. 

The situation could be such that, when the distance between the members of the pair increases, the energy needed is 

reducing whereas the energy, or number of fluctuations carrying sufficient energy is increasing. It means that at some 

separation distance of the members of the pair the interaction can become repulsive as the Einstein equation allows both 

negative and positive values for the interaction energy.  

A solution for the Schrödinger equation of a pair of particles for an observer at distances 𝑟𝑖𝑗  and 𝑟𝑗𝑖  from particle i and 

j is given in equation (5.4). Now if we put our observer close by particle i, the second term in equation (5.4) becomes 

negligible against the first term: 

 𝜓𝑖𝑗 = (
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖 ≅ (

𝛼𝑖𝑗

𝑟𝑖𝑗
) 𝑒𝑖𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖  and: 𝜓𝑖𝑗

∗ 𝜓𝑖𝑗 ≅ (
𝛼𝑖𝑗

𝑟𝑖𝑗
)
2

         (9.1) 

The KG-equation in operator language now reads ***): 

-ħ
2(

𝜕2

𝜕𝑡2
− 𝑐2

1

𝑟𝑖𝑗
2

𝜕

𝜕𝑟𝑖𝑗
𝑟𝑖𝑗
2 𝜕

𝜕𝑟𝑖𝑗
)𝜑𝑖𝑗,𝑡 = 𝑚0𝑖𝑗

2 (
𝛼𝑖𝑗

𝑟𝑖𝑗
)
2

𝜑𝑖𝑗,𝑡.                  (9.2) 

Setting the right hand side to zero, a mass-less particle, we see an equation for a travelling wave at the speed of  light. 

To get rid of the singularity we set 𝛼𝑖𝑗 𝑟𝑖𝑗 = ⁄  𝛼𝑖𝑗 𝑟𝑖𝑝⁄  for 𝑟𝑖𝑗 < 𝑟𝑖𝑝(= 𝑟𝑝), and removing the first term on the left hand 

side gives the London Equation that explains the shielding of the inside of a superconducting material from the outside 

magnetic field: the “Meissner” effect (Bardeen, et.al., 1957). A similar thing can be imagined in this case with the 

𝜑𝑖𝑗,𝑡-field for 𝑟𝑖𝑗 < 𝑟𝑝.  The distance rp can be identified as the distance from the centre to where local influences have 

no impact.  

We can solve the equation (9.2) with in the right hand term 𝑟𝑝 for  𝑟𝑖𝑗 , but it is not necessary as it can immediately be 
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seen that it dedicates mass to the field in the vicinity of the particle which is equal to 𝑚𝑝 = 𝑚0𝑖𝑗𝛼𝑖𝑗 𝑟𝑝с
2⁄ . As this is the 

mass to be attributed to the i
th

 particle, due to another particle somewhere in the surroundings, we will have to add up 

over all particles which can make a pair with our particle, so with mp = mi  ***): 

𝑚𝑝 = ∑ 𝑚0𝑖𝑗𝛼𝑖𝑗 𝑟𝑝𝑐
2⁄𝑗 = (σ 𝑟𝑝𝑐

2⁄ )∑ 𝑚𝑝
2

𝑗 𝑚𝑗
2.                       (9.3) 

The consequence is that either 𝑚𝑝 = 0, a mass-free particle, or 𝑚𝑝 = 𝑟𝑝𝑐
2/σ∑ 𝑚𝑗

2
𝑗 , with, as shown, 𝑚0𝑖𝑗𝛼𝑖𝑗 =

σ𝑚𝑖
2𝑚𝑗

2.  First the equation allows that there are mass-free particles like  photons which make no pairs according the 

theorem based on the Schrödinger equation, but it can, according to the KG-equations in paragraph 5, equation (5.8). It 

could generate gravity as it is argued in Chapter 9: Cosmography of W.D. Heacox’s book on the expanding Universe. 

Second, the other solution is that there is a mass carrying particle whose mass becomes higher when 𝑟𝑝  increases and, 

most important, it is all the mass in the surroundings that generate the mass of the i
th

 particle. It is actually mass due to 

the field, but since the singularity moves with the particle the observer nearby can only interpret it as a mass 

contribution to the particle he is looking at. The conclusion taken here corresponds to Mach’s ideas about the effect of 

all physical entities in the universe. 

It would be tempting to evaluate 𝑚𝑝 but, as we know already from observation, it is better to estimate the size or the 

extension of the particle if only this effect is responsible for the mass. The analysis concerns incredibly large and small 

numbers but leads to a surprising outcome. 

Starting from 𝑚𝑝  = 𝑟𝑝𝑐
2/σ∑ 𝑚𝑗

2
𝑗  and assuming that the mass of the universe is basically due to protons and neutrons 

with almost the same mass, so 𝑚𝑝 = 𝑚𝑗 , and assuming there are N particles in the whole universe giving it a total 

mass of 𝑀𝑢 we can set: 

 𝑀𝑢 = 𝑁𝑚𝑗 = 𝑁𝑟𝑝𝑐
2/σ∑ 𝑚𝑗

2
𝑗 = 𝑁𝑟𝑝𝑐

2/σ𝑁𝑚𝑗
2 = 𝑟𝑝𝑐

2/σ𝑚𝑗
2.               (9.4) 

Estimates of the size of the universe on the basis of the inverse Hubble constant and the fact that the average 

intergalactic density is 1000 hydrogen atoms per cubic meter tells us that the total mass of the universe is of the order of 

10
55

 kg. σ is calculated in paragraph 8 at 2.7x10
2
 Jm/kg

4
 and the proton mass is 1.7x10

-27
 kg, Wikipedia.org/proton. It 

leads to an estimate for the 𝑟𝑝-value in the order of 10
-15 

m, which is about the size of a proton: 0.8 femtometers 

(Antognini, et.al., 2013). An electron which is 1840 times lighter than the proton will, according to equation (9.3), see 

the same surrounding as the proton, so its size would be smaller by the same factor. 

Although the correspondence with measured data is surprisingly good, it is still a rough estimate and not without 

speculation.  

Even a discrepancy by a factor of 10 would already be acceptable for the outcome of this analysis. For instance, the 

sub-space due to the generator 𝑚0𝑖𝑗
2 (𝛼𝑖𝑗 𝑟𝑖𝑗 + 𝛼𝑗𝑖 𝑟𝑗𝑖⁄⁄ )2 would be a quantum-mechanical reality, but it says nothing 

about its internal structure and interactions. The mass of the universe is rather uncertain in view of the discussion about 

dark matter, and the proton size, or how to define it, is not so obvious.  

***) The observer on particle 𝑚𝑖 sees the effect of the particle 𝑚𝑗 in its surroundings and coordinate system at the 

distance 𝑟𝑗𝑖  and vice versa. This means that, formally, the operators 𝑝𝑖�̂� , 𝑝𝑗�̂� work on the coordinates 𝑟𝑗𝑖 ,  𝑟𝑖𝑗  and 

therewith define the coordinate dependences on  𝑟𝑖𝑗  and 𝑟𝑗𝑖 . So there are as many coordinate systems as there are 

particles, or mass carrying entities. The appreciation of this “kind of secret” code allows us to interpret gravity and mass 

dedication as two manifestations of one and the same mechanism. But in this latter respect equation (9.3) should be 

interpreted with caution. For instance, if we would squeeze n particles in one the same coordinate system, we would see 

that the volume expands from 4𝜋𝑟𝑝
3 3⁄  to 4𝜋𝑛3𝑟𝑝

3 3⁄ , whereas if we cluster these n particles together the volume 

increases to 4𝜋𝑛𝑟𝑝
3 3⁄ . 

10. The Bohr-Einstein Controversy 

The model describing the gravitational interaction between particles has a some relation with the classical Bohr-Einstein 

dispute, Bohr-Einstein Debates, (Wikipedia.org). This dispute has been dealt with in many sessions between 1913 and 

1930 as a subject of the Solvay Conferences. The issue was Einstein’s belief that the quantum theory is an incomplete 

theory as he rejected the idea that positions in space-time could never be completely known. Einstein did not want to 

allow the uncertainty principle to necessitate an apparently random non-deterministic mechanism by which the law of 

physics would be operating. 

The controversy culminated in the well known Einstein-Podolsky-Rosen Paradox, (EPR) of 1935 which comes close to 

the ideas presented in this document. Two particles have a common source, like two photons originating from one 

process in terms of space and time. From a quantum mechanical point of view the set of the two particles are 

represented by a joint wave function. One particle has orientation up (U) and the other down (D) and we do not know 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 1; 2018 

84 

on beforehand which of the two is up and which or down: 

𝜓12 = 𝜓1(𝑈)𝜓2(𝐷) + 𝜓1(𝐷)𝜓2(𝑈).                         (10.1) 

This is a superposition of two states of the ensemble. At some moment we do an experiment and find out that one of the 

particles is specified as “up”. From quantum theory we conclude that the other should be “down”. It might be that the 

system is influenced by the measurement so that the result “up” emerged, but the other particle is definitely not 

influenced and we know that it is characterized as “down”. It appears that the wave function has selected the option 

𝜓1(𝑈)𝜓2(𝐷) out of the superposition. From quantum mechanical point of view the process occurs independently of 

where in space and at which moment it takes place.  

For Einstein this was unacceptable and he suggested that the particle might have some “hidden variables” which we do 

not know and which decide the choice of the system. Niels Bohr could, however, justify his result by working out the 

situation in a more statistical way as quantum mechanics is basically a theory of probabilities which has been 

experimentally confirmed on several occasions (Aspect, et.al., 1982). 

We can now identify the solution for the pair potential in equation (5.4) or, more generally, equation (5.6), for a multi 

group particle pair system, in a similar way as the ”up/down” combination given above. As Max Born pointed out in a 

letter to Einstein (Einstein et.al., 1935): “There is a wholeness to a quantum events that persists over time and space and 

makes linkages possible”. These linkages, leading to the definition of the invariant in the KG-equation, apparently, give 

rise to the gravitational interaction. Apparently a single particle sees an environment and makes pairs with all of the 

particles around it. Suppose that at the other side of our galaxy two particles k,l annihilate. Suddenly the number of pairs 

reduces and this is seen by our particle. This change in the wave function:  

∏ 𝑚𝑜𝑖𝑗 (
𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
)𝑖𝑗 𝑒𝑖 𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖𝑒𝑖(𝐸𝑖𝑗+ 𝐸𝑗𝑖)𝑡/ħ to: {∏ 𝑚𝑜𝑖𝑗 (

𝛼𝑖𝑗

𝑟𝑖𝑗
+

𝛼𝑗𝑖

𝑟𝑗𝑖
)𝑖𝑗 𝑒𝑖 𝛽𝑖𝑗𝑟𝑖𝑗+𝑖𝛽𝑗𝑖𝑟𝑗𝑖𝑒𝑖(𝐸𝑖𝑗+ 𝐸𝑗𝑖)𝑡/ħ} i,j ≠ k,l, 

 

Figure 7. Niels Bohr and Albert Einstein in Ehrenfest’s home in Leiden in December 1925. 

 

produces a gravitational wave travelling through empty space at the speed of light and that adjusts to the new situation. 

But the information that the gravitational wave must start has already been exchanged between our particle with the 

observer and the annihilating pair. Again we end up in the same controversy as between Bohr and Einstein. 

11. Summary of Preceding Paragraphs and Some Remarks for Completeness 

An important first conclusion in an earlier summary was that particles with a mass can be described as a single 

non-interaction pair containing only two members. The individual members can make pairs with all other mass in its 

surroundings. This, already peculiar pair effect, is used in the KG-equation which, in a quantum-mechanical 

representation, describes a field around these members. The second conclusion made is that energy is subtracted from 

the pair and gives rise to an attractive force between the two members of a pair. By setting this force equal to the 

well-known parameters of Newton’s gravity law, numerical values can be given to the main parameters found with the 

KG-equation. It is then found that an observer watching the pair will see that the pair has two members, but he cannot 

see how they interact or exchange information, only that it leads to a force between them. This force is independent of 
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the movement of the members in the sub-space as shown in Figure 1.  

The field that occurs due to the KG-equation is not only present outside the particle but must also have its influence in 

areas where the particle mass density manifests itself. Not much is known about what this field inside the particle looks 

like and its local interactions, but the most simple approach would be to assume that the amplitude of the generator of 

this field is constant. The dependence on space coordinates of this field inside the outer boundary of the particle leads to 

the attribution of mass. This mass is then found to be a consequence of all the interactions which the single particle has 

with the surrounding mass in which the distance, apparently, plays no role. If we start from the values of the parameters 

derived from the gravitational interaction, and the known mass of a proton, its outer boundaries can be calculated which 

agree surprisingly well with the data found experimentally. However, it must be stressed that this last reasoning is 

speculative. 

One point, difficult to accept from logical point of view, is that members of a pair seem to have instantaneous contact no 

matter how far they are apart and therewith generate the interaction field that gives rise to gravity. Gravity waves move 

at the speed of light or slightly less, depending on the mass density it is moving through, but its generator works 

apparently without delay. The situation is the same as the classical debate in the previous century between Einstein and 

Bohr and have remained to be an issue which is hard to believe but more than once shown to be true. 

Another point to remark here is the occurrence of a generator creating a sub-space. It follows unambiguously from the 

Schrödinger equation but nothing can be said about its internal structure where particles are entangled and apparently 

exchange information. This might be close by the idea of Einstein about “hidden variables”.  

The gravitational constant in Newton’s law, 𝐺, is expressed by 𝐺 = √2σ𝑐ħ in which the parameter σ, equal to 2.7x10
2 

Jm/kg
4
, can be seen as a universal constant that connects relativity with quantum mechanics. 

The surprising, and at the same time bizarre, conclusion of the analysis given is that, apparently, each single particle has 

interaction with all other particles in the cosmos. It means that in the universe an unimaginable number of pair-wise 

interactions exists with greatly varying intensity and extensions and which depend on the masses of the members of the 

pair. It is difficult to comprehend, but it follows unambiguously from the equations describing the behaviour of the 

pairs.  

As a last remark for this paragraph, causality is of importance to keep in mind. The model starts from the fact that there 

are masses, and it is seen that they can form pairs and generate gravity. It yields numerical data about the masses 

following gravitational parameters. The strength of the model is the consistency of the data with what we observe in 

reality. On the other hand one can say that the mass can be introduced into the Schrödinger equation as an unknown 

quantity and the theory comes back with a numerical value for it if the size of the particle is known.  

12. Gravity Depending on Dynamical Mass 

In paragraph 4 at the end it is mentioned that a group as a whole, identified with the label g, has kinetic energy and 

therefore a relativistic mass equal to 𝛾𝑔𝑚𝑔. Although the present theory is only concerned about the situation in the 

sub-space rij where gravity originates, it still is of interest to know the dynamic mass of the group because of the fact 

that the Hamiltonian operator has been modified. The momentum of the group, 𝑝�̂� √2𝑚𝑔⁄ , will determine the dynamic 

mass to be dedicated to the members of the group. To see this we come back to equation (8.5), now renumbered to 

(12.1): 

𝐸𝑖𝑗 =  √2σ𝑐ħ. (𝑚𝑖𝑚𝑗)/𝑅,                                (12.1)  

This equation is valid for the sub-space in which the gravitational energy is independent of the momenta of the particles 

in the group. But by inspection we see a problem: 

For an observer outside the sub-space the right hand side in equation (7.5) should be invariant under Lorentz 

transformation. However, the rkl transforms as a member of a four-vector. Therefore, the parameters 𝛼𝑘𝑙 or, in the case 

of equation (12.1), σ should transform in the same way as rkl, but apparently it would make left and right hand side in 

equation (8.2) transform differently, which cannot be the case. We should, however, notice that the Planck’s constant, h, 

is invariant, but ħ = ℎ/2𝜋 is not. 

Make the following “thought-experiment”. Consider a pair flying away from us at a speed v such that the separation 

vector of the members of the pair is aligned in the direction of v. Due to the fact that 𝜋 transforms just like 1/rkl the 

result is that the interaction energy of the pair we measure becomes invariant. There is invariance throughout if the 

alignment perpendicular to the speed. So the conclusion is that the interaction energy in the pair is invariant and 

independent of the alignment towards the observer. We can see the pair moving by and, whatever alignment they have, 

we will see the same interaction energy. But for the observer outside the sub-space, actually in point O1 in figure 1, the 

group as a whole is moving which gives a dynamical mass to the particles in the group, but with the same 𝛾𝑔- factor.  
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Knowing this we can from equations (4.5a) and (4.5b), in principle, give the value for this group momentum if the 

replacement of the vectors 𝑝�̂� √2𝑚𝑘⁄  by their relativistic equivalents has been done. However, there remains a 

disturbing 𝑐𝑜𝑠𝛿1-term making a general solution inappropriate. But the purpose of an endeavour in which such a group 

related dynamic mass is significant makes only sense where gravity is important and speeds are approaching the speed 

of light. So it is not relevant outside the realm of cosmology. 

In this respect the main problem of the incompatibility between quantum theory and relativity comes to the surface. We 

therefore have to carefully replace the vectors in Figure 1 by the relativistically relevant ones which are to be derived 

from the equations (4.5a) and (4.5b) leading to the transitions: 

𝑝𝑎/√2𝑚𝑎 ↦ 𝑐𝑚𝑎√𝛾𝑎
2 − 1 with 𝑎 = 𝑖, 𝑗 and 𝑔. 

Now we can put our observer on one of the interacting particles, say mi in the group (ij), and consider the surroundings 

from this point of view so that 𝑝𝑖 = 0. In this case 𝑐𝑜𝑠𝛿1 = −1, but because 𝑝𝑖 = 0 the 𝑐𝑜𝑠𝛿1- factor has no 

influence anymore. We end up in a rather complicated situation if we want to know the mass and 𝛾𝑔- values for the 

group and we find non relativistic:  

 𝑣𝑔
2 𝑐2⁄ =

𝑚𝑗

2(𝑚𝑖+𝑚𝑗)
𝑣𝑗
2 𝑐2⁄ , and relativistic: 𝛾𝑔

2 − 1 =  
𝑚𝑗
2

2𝜂2(𝑚𝑖+𝑚𝑗)
2 (𝛾𝑗

2 − 1)       (12.2a, 12.2b) 

The extra parameter 𝜂 complicates the situation. If our observer is on mass mi which is much smaller than mj: 𝜂 = 1, 

and both equations are identical. But in paragraph 8, equation (8.5) we have constructed our bodies with building blocks 

of masses 𝑚𝑖which all are identical in their masses. We should, therefore, start from the case of 𝑚𝑖 = 𝑚𝑗, so that: 

𝜂 = √1/2. The result is: 

𝛾𝑔
2 − 1 = (𝛾𝑗

2 − 1)/4.                                  (12.3) 

With the aid of the definition of 𝛾 it is easily changed into the relation: 

       𝑣𝑔
2 𝑐2⁄ = 𝑣𝑗

2 (4𝑐2 − 3𝑣2)⁄ .                                (12.4) 

This gives the mass to be allotted to both members of the group. At low velocities (v << c), The mass of the group 

particles is determined by half the speed of the moving particle. When the speed of the moving particle approaches the 

light velocity, both speeds become equal. This result is similar to the velocity addition rule for relativistic velocities on 

the basis of standard relativity theory (Ney, 1965), but in this case arrived at in way involving gravity.  

At low speeds we have to dedicate dynamic mass to both particles and the equation will read:  

𝑭𝟏𝟐 = 𝑹𝐺(𝑀01/√(1 − 𝑣2 4𝑐2⁄ 𝑀02/√(1 − 𝑣2 4𝑐2⁄ ) 𝑅3⁄ .                 (12.5) 

When speeds are approaching the speed of light, of course, the speeds of both particles are still the same and opposite, 

but at the value 𝑣𝑗. An alternative way of interpreting equation (12.5) is to place the observer in the sub-space in the 

middle between the two particles so that the observer sees their speeds 𝑣′ = 𝑣 2⁄  and  opposite and the distance 

𝑅′ = 𝑅 2⁄ . In that case the equation becomes: 

𝑭𝟏𝟐 = 𝑹′𝐺(𝑀01/√(1 − 𝑣′2 𝑐2⁄ 𝑀02/√(1 − 𝑣′2 𝑐2⁄ ) 4𝑅′3⁄ .                (12.6) 

This interpretation has to be considered as an alternative interpretation of equation (12.5) and not of the real situation of 

two particles moving away from the observer at equal but opposite speeds. This is because the equations are derived for 

the case that we have taken the momentum of one of the group members as zero. It, however, allows a remarkable 

interpretation. It looks like a “mirror” mass shows up at a distance of R from the moving mass that moves at the same 

speed as the moving one. Far from the light speed the relative speed between the two masses is double the speed seen 

by the observer but when it approaches c, the relative speed becomes c as well.   

In conclusion it can be said that particles in a group in the sub-space have gravitational interaction have masses which 

must be corrected with the relativistic transformation factor 𝛾𝑔 as defined by equation (12.2a) and (12.2b) with the 

right value for the parameter 𝜂.  

The kinetic energy of the group remains to be defined by the value: 

      𝐸𝑘𝑖𝑛 = 𝑇𝑘 = 𝑀01(𝛾1 − 1)𝑐2 +𝑀02(𝛾2 − 1)𝑐2.                     (12.8) 

The allocation of dynamics masses to the particles as members of a group of two solves the problem that is encountered 

many times by taking the dynamic values for the masses in equation (8.6): Newton’s law. The problem that shows up by 

this allocation is that the gravitational potential energy becomes dependent on the location of the observer towards the 

two masses. This problem does not occur in the analysis as presented here.  
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13. Discussion and Conclusions 

An attempt is made to find an explanation for Newton’s gravity law, starting from well established and proven theorems: 

Special Relativity and Quantum Mechanics. Although these two theories cannot be readily combined, it is possible to use 

the outcome of quantum mechanical considerations as starting point for further analysis by taking into account the rules of 

Specific Relativity. If we apply the two concepts in those areas where they have their applicability it was proved possible 

to derive the gravity law as it has been established already more than three hundred years ago. The main issues in the 

analysis are: 

1. We can separate the local behavior of particles in its direct environment like a gas, liquid or a solid from its behavior in 

free space as a member of a larger entity. 

2. We can modify the Hamiltonian of a set of two individual particles, or tightly connected entities, such that for two and 

only two of such entities, characterized by their masses, the Hamiltonian is represented by a group kinetic energy operator 

and a second part which is the direct interaction in a separate momentum based sub-space.  

3. From this, a group wave function and a wave function representing the members in the group emerge, the first one is 

found to be responsible for the dynamic masses to be allotted to the particles in the gravity law and the second one is 

responsible for the gravitational interaction. 

4. The two particle wave function is then recognized as a pair potential in a sub-space between the members of the group 

and is taken as the relativistically invariant rest mass in the Klein Gordon field equation.  

5. By solving the Klein-Gordon field equation for the pair represented as a single entity we finally arrive at the right form 

of Newton’s law of gravity. Also by adding up the basic functions for single group of particles, or groups of particles, the 

right form of the gravity law between large bodies is obtained. 

6. Considering the dynamics of the group as a whole also the influence of the dynamic relativistic mass in the gravity 

equation is derived. 

7. The Klein-Gordon equation is also found to be applicable at the level of a single particle and gives a value for its mass 

in dependence of all mass around in the entire universe. Most surprising is that the calculated values are of the right order 

even though the numbers that are going into the equations are extremely large and extremely small.  

The model proposed in this document is a particle-based model in which first a Schrödinger equation is solved for a pair 

of mass-based entities. This solution is then taken into the KG-equation which comes with an attractive force between the 

particles in the pair. By taking the experimentally derived attractive force between two masses, the parameters can be 

given a numerical value.  

The model does not directly lead to the concept of curvature of space-time as it follows from the General Relativity theory. 

This does not mean that the present theory violates General Relativity. General Relativity starts from the concept of 

curved space-time and leads to Newton’s gravity law. It describes the behavior of matter as a movement in a four 

dimensional curved space. The present theory starts from quantum mechanical concepts combined with Specific 

Relativity and arrives at Newton’s law as well. One can say that Newton’s law has united the microscopic and 

macroscopic ideas.  
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Symbols used  

x, y. z, t, 𝑥′, 𝑦′, 𝑧′, 𝑡′  spatial coordinates and time in Σ, and 𝛴′ 

Σ, 𝛴′    space of observer, space of observed 

r     spherical coordinate 

𝑟𝑝     particle radius 

𝑟𝑙𝑜𝑐      local spherical coordinate 

𝑟𝑖𝑛𝑓      global spherical coordinate 

ri     spherical coordinate of i
th

 particle  

rij     distance from i
th

 particle in group (ij) in sub-space 

i     complex number (√−1 ) 

i, j, k, g    index i, j, k, g 

c     velocity of light (3x10
8
 m/sec) 

v     velocity 

g     group index g 

R, R     distance between particles and vectorial distance between particles 

m,  m0    mass, rest mass 

mi, mj    rest mass of particle i and j 

mp, me    proton mass (1.7x10
-27

kg), electron mass (0.91x10
-30

kg) 

𝒎(𝒙, 𝒚, 𝒛, 𝒕)   expectation value of interaction mass in sub-space 

M10, M20    rest masses of body 1 and 2 

M(Ru)    mass of the universe 

px, py ,pz    momentum in x, y, and z direction  

𝑝𝑥.̂  𝑝𝑦.̂ 𝑝𝑧 ̂   momentum operators 
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𝑝𝑖.̂  𝑝𝑖.̂ 𝑝𝑖𝑗 ̂     momentum operator for particle i, j and particle i in group (ij)   

P     expectation value of momentum  

Ĥ(𝑝�̂�, 𝑝�̂� , 𝑝𝑧 ,̂ 𝑥, 𝑦. 𝑧)  Hamilton operator 

E     energy 

𝐸𝑙𝑜𝑐      energy due to local interactions 

𝐸𝑖𝑛𝑓      energy in open space 

Ê(𝑡)     energy operator 

𝐸𝑖𝑗      energy of particle i in group (ij) 

𝑉(𝑥, 𝑦, 𝑧)    potential energy 

𝑉𝑖𝑗       potential energy of particle i in group (ij) 

휀𝑖𝑗 = 𝐸𝑖𝑗 − 𝑉𝑖𝑗    kinetic energy of particle i in group (ij) 

𝛾𝑘 = 1 √1 − 𝑣𝑘
2 𝑐2 ⁄⁄  relativistic transformation factor for particle k=i,j or group k=g 

𝜓𝑖(𝑥, 𝑦, 𝑧, 𝑡)   wave function of particle i 

𝜓𝑙𝑜𝑐(𝑟𝑙𝑜𝑐 , 𝑡)   local wave function 

𝜓𝑖𝑛𝑓(𝑟𝑖𝑛𝑓 , 𝑡)   wave function in free space 

𝜓𝑖𝑗,𝑡     wave function of particle i in  group (ij)  

𝜑𝑖𝑗,𝑡, 𝜑𝑖𝑗     time dependent and time independent wave function of particle i in group ij as solution of the 

     KG-equation 

𝜑12
𝑐      composite solution of the KG-equation for entity m1 and m2    

𝛿𝑘     angle 

𝛼𝑖𝑗     amplitude x rij of particle i in group (ij)  

𝛽𝑗𝑖      2π x inverse wave length of particle i in group (ij)  

ħ     Planck’s constant/2π (1.054 x10
-34

 Jsec) 

𝛾𝑖𝑗     amplitude of relativistic particle i in group (ij) in sub-space 

σ     connection factor (2.7x10
2 
Jm/kg

4
) 

G     gravity constant (6.673x10
-11

 m3/kg.sec
2
) 

𝑭𝟏𝟐     vectorial force between particles 

N     number of particles 

𝒩     number of groups 

Tk     kinetic energy  

ω     angular velocity 
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