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Abstract

We present a methodology for estimating causal functional linear models using orthonormal tensor product expansions.
More precisely, we estimate the functional parameters α and β that appear in the causal functional linear regression model:

Y(s) = α(s) +
∫ b

a
β(s, t)X(t)dt + E(s),

where supp β ⊂ T, and T is the closed triangular region whose vertexes are (a, a), (b, a) and (b, b).We assume we have an
independent sample {(Yk,Xk) : 1 ≤ k ≤ N, k ∈ N} of observations where the Xk’s are functional covariates, the Yk’s are
time order preserving functional responses and Ek, 1 ≤ k ≤ N, is i.i.d. zero mean functional noise.
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1. Introduction

Functional linear models are generalizations of linear models to functional data. There are three basic functional linear
models according to the functional data being the response, the covariates or both. They are written:

Y(t) = α(t) + xβ(t) + E(t),

the functional response model with scalar covariate,

y = a +

∫ b

a
β(t)X(t)dt + E(t),

the scalar response model with functional covariate, and

Y(s) = α(s) +
∫ b

a
β(s, t)X(t)dt + E(s),

the functional response model with functional covariate which is also called the fully functional model. They, as well as
their generalizations, have a wide range of applications. See all the listed references in this note.

Concerning the fully functional model, with the additional assumption that Y and X are both functions of time and are
both defined on the same time interval, [a, b], then, as already remarked in Functional Data Analysis literature, either we
admit that the values of the covariates at future times impact the values of the response at past and present times or we
admit that the support of β is contained in the closed triangular region T whose vertexes are (a, a), (b, a) and (b, b).

The later alternative is equivalent to the

“Volterra type” model

Y(s) = α(s) +
∫ s

a
β(s, t)X(t)dt + E(s) (1)

and to the “Fredholm type” model

Y(s) = α(s) +
∫ b

a
β(s, t)χT(s, t)X(t)dt + E(s) (2)
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where β is a function defined on a domain that contains T and χT is its indicator function. We will call this model Causal
Functional Linear Model.

Model (2) may be directly estimated with expansions in tensor product basis. This is possible by expanding the function
β̃, defined on the square [a, b]2 by β̃(x, y) = β(x, y) if (x, y) ∈ T and β̃(x, y) = 0 if (x, y) ∈ [a, b]2 \ T, in a series of
tensor products and using equation (2). However, we expect the convergence to be slow and also the existence of Gibbs
phenomena at the border of the triangle, more precisely, at all points (u, v) of the line segment joining (a, a) to (b, b)
for which there exists ϵ > 0, which may depend on (u, v), such that for every r > 0 the Lebesgue measure of the set
{(x, y) ∈ B((u, v), r) : | (βχT) (x, y)| > ϵ} is strictly positive. The issue here is that causality imposes the slope function to
be identically zero on the interior of the upper triangular region with vertexes on points (a, a), (b, b) and (a, b).

It is possible to obtain estimators of causal functional linear models via finite elements methods as done in (Malfait &
Ramsay, 2003) for the case of historical functional linear models.

The aim of this note is to show that we still can obtain good estimates using expansions in tensor products. This is made
possible by the construction of a symmetric extension of the slope function and the use of an algebraic trick. No additional
Gibbs phenomena is expected and convergence is faster than that associated to the direct expansion method, since now
it will be similar to that associated to the application of the direct tensor product expansion method to estimate the slope
function of a “standard” functional linear model, i.e. , one whose slope function is defined on the whole square [a, b]2

and does not present an abrupt behavior change between the lower and upper triangular regions. We remind that the
direct estimation of the slope function using tensor product expansions for causal functional linear models was unsuitable
because of the possible, very probable indeed, existence of a sharp discontinuity of the slope function at the hypotenuse
of the triangular region T.

2. Estimator Construction

Let {ϕi : i ∈ I} be an orthonormal basis of L2([a, b]).We write

α =
∑
i∈I

aiϕi, (3)

and
βχT =

∑
i, j∈I

bi jϕi ⊗ ϕ j. (4)

Now, define B as the symmetric extension of β|T to [a, b]2, i.e., ∀(s, t) ∈ T,B(t, s) = B(s, t) = β(s, t)χT(s, t).

The expansion of B is written
B =

∑
i, j∈I

bi jϕi ⊗ ϕ j. (5)

From the causal model definition we have

Y(s) = α(s) +
∫ s

a
β(s, t)X(t)dt + E(s) =

α(s) +
∫ b

a
B(s, t)χT(s, t)X(t)dt + E(s), (6)

and, multiplying by X(s), we obtain

Y(s)X(s) =

α(s)X(s) +
∫ b

a
B(s, t)χT(s, t)X(t)X(s)dt + X(s)E(s). (7)

Integrating this equation for s ∈ [a, b] gives ∫ b

a
Y(s)X(s)ds =

∫ b

a
α(s)X(s)ds+

∫ b

a

∫ b

a
B(s, t)χT(s, t)X(t)X(s)dtds +

∫ b

a
X(s)E(s)ds. (8)
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The following simple fact will permit us to continue the calculations and make the desired tensor expansions:

∫ b

a

∫ b

a
B(s, t)χT(s, t)X(t)X(s)dtds =

1
2

∫ b

a

∫ b

a
B(s, t)X(t)X(s)dtds. (9)

Equation (8) now is written ∫ b

a
Y(s)X(s)ds =

∫ b

a
α(s)X(s)ds+

1
2

∫ b

a

∫ b

a
B(s, t)X(t)X(s)dtds +

∫ b

a
X(s)E(s)ds. (10)

Now, writing Y = ∑i∈I yiϕi and X = ∑i∈I xiϕi, we have∫ b

a
Y(s)X(s)ds =

∫ b

a

∑
i∈I

yiϕi(s)
∑
j∈I

x jϕ j(s)ds =

∑
i∈I

∑
j∈I

yix j

∫ b

a
ϕi(s)ϕ j(s)ds =

∑
i∈I

∑
j∈I

yix jδi, j =
∑
i∈I

yixi. (11)

Analogously, we have

∫ b

a
α(s)X(s)ds =

∑
i∈I

aixi, (12)

and, expanding E = ∑i∈I eiϕi,

∫ b

a
E(s)X(s)ds =

∑
i∈I

eixi. (13)

Now, ∫ b

a

∫ b

a
B(s, t)X(t)X(s)dtds =

∫ b

a

∫ b

a

∑
i, j∈I

bi jϕi(s)ϕ j(t)
∑
k∈I

xkϕk(t)
∑
l∈I

xlϕl(s)dtds =

∑
i, j∈I

∑
k∈I

∑
l∈I

bi jxkxl

∫ b

a

∫ b

a
ϕi(s)ϕ j(t)ϕk(t)ϕl(s)dtds =

∑
i, j∈I

∑
k∈I

∑
l∈I

bi jxkxl

∫ b

a
ϕi(s)ϕl(s)ds

∫ b

a
ϕ j(t)ϕk(t)dt =

∑
i, j∈I

∑
k∈I

∑
l∈I

bi jxkxlδi,lδ j,k =
∑
i, j∈I

bi jx jxi. (14)

Substituting (11), (12), (13), and (14) in (10) we get

∑
i∈I

yixi =
∑
i∈I

aixi +
1
2

∑
i, j∈I

bi jx jxi +
∑
i∈I

eixi. (15)
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Note that, from (15) we have

|
∑
i∈I

yixi −
∑
i∈I

aixi −
1
2

∑
i, j∈I

bi jx jxi| = |
∑
i∈I

eixi| ≤

√∑
i∈I

e2
i

√∑
i∈I

x2
i . (16)

Equivalently, if X , 0, we write

(∑
i∈I yixi −

∑
i∈I aixi − 1

2
∑

i, j∈I bi jx jxi

)2∑
i∈I x2

i

≤
∑
i∈I

e2
i . (17)

Let us write the sample {Yk,Xk}, and noise Ek as

Yk =
∑
i∈I

ykiϕi , Xk =
∑
i∈I

xkiϕi,

and
Ek =

∑
i∈I

ekiϕi.

Now, using (17) for each k and summing over k for 1 ≤ k ≤ N, we get

N∑
k=1

(∑
i∈I ykixki −

∑
i∈I aixki − 1

2
∑

i, j∈I bi jxk jxki

)2∑
i∈I x2

ki

≤

N∑
k=1

∑
i∈I

e2
ki =

N∑
k=1

∥Ek∥22. (18)

Note that inequality (18) must be fulfilled whatever the noise energy is. We do not know how high this energy is. Thus,
to guarantee its fulfillment, we will minimize its left hand side. This is similar to minimizing the energy of the residuals
when fitting a regression model. This leads us to seek the minimum of

F (−→a ,−→b ) =
N∑

k=1

(∑
i∈I ykixki −

∑
i∈I aixki − 1

2
∑

i, j∈I bi jxk jxki

)2∑
i∈I x2

ki

(19)

with respect to ai and bi j, where−→a = (ai)i∈I ∈ ℓ2(I) and
−→
b = (bi j)(i, j)∈I2 ∈ ℓ2(I2).

Letting ∂
∂ai
F (−→a ,−→b ) = 0 and ∂

∂bi j
F (−→a ,−→b ) = 0 we obtain the following system of equations:

For all l ∈ I,
N∑

k=1

(∑
i∈I ykixki −

∑
i∈I aixki − 1

2
∑

i, j∈I bi jxk jxki

)
xkl∑

i∈I x2
ki

= 0 (20)

and, for all (l,m) ∈ I2,
N∑

k=1

(∑
i∈I ykixki −

∑
i∈I aixki − 1

2
∑

i, j∈I bi jxk jxki

)
xklxkm∑

i∈I x2
ki

= 0 (21)

Since for all (−→c ,−→d ) ∈ ℓ2(I) × ℓ2(I2) we have

d2

dt2F
(
(−→a ,−→b ) + t(−→c ,−→d )

)
=

2
N∑

k=1

(∑
i∈I cixki +

1
2
∑

i, j∈I di jxk jxki

)2∑
i∈I x2

ki

≥ 0, (22)
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every solution of the simultaneous system of equations (20) and (21) is a point of local minimum of F . Moreover, since
(22) is true for every (−→a−→b ) ∈ ℓ2(I) × ℓ2(I2), every solution of this system of equations is also a global minimum of F .
Now, observe that I is an enumerable infinite set and both (20) and (21) have infinitely many equations and unknowns. In
general, for every finite sample size N, the solutions to (20) and (21) will yield estimators for α and B that perfectly fit the
data. See (Ramsay & Silverman, 2005). In practice, we will consider a finite subset F of I to perform the expansions of
the covariates, the responses and the parameters. This will lead to the finite version of equations (20) and (21) from which
we will obtain our estimators âi and b̂i j of ai and bi j. Observe that, in general, these estimators depend on the choice of
F ⊂ I. They are based on the approximate relation∑

i∈F
yixi ≈

∑
i∈F

aixi +
1
2

∑
i, j∈F

bi jx jxi +
∑
i∈F

eixi, (23)

which comes from (15).

The estimators of the parameters α and B will be given by

α̂ =
∑
i∈F

âiϕi (24)

and
B̂ =

∑
i, j∈F

b̂i jϕi ⊗ ϕ j (25)

where âi and b̂i j are the solutions of the finite system of equations:

For all l ∈ F,
N∑

k=1

(∑
i∈F ykixki −

∑
i∈F âixki − 1

2
∑

i, j∈F b̂i jxk jxki

)
xkl∑

i∈F x2
ki

= 0 (26)

and for all (l,m) ∈ F2,
N∑

k=1

(∑
i∈F ykixki −

∑
i∈F âixki − 1

2
∑

i, j∈F b̂i jxk jxki

)
xklxkm∑

i∈F x2
ki

= 0. (27)

Observe that this is a linear system in âi and b̂i j. If the cardinality of F is p then this is a system of p2 + p equations on
p2 + p unknowns.

Finally, the estimated model will be written

Y(s) =
∑
i∈F

âiϕi(s) +
∫ s

a

∑
i, j∈F

b̂i jϕi(s)ϕ j(t)X(t)dt + E(s) (28)

or, equivalently,

Y(s) =
∑
i∈F

âiϕi(s) +
∫ b

a

∑
i, j∈F

b̂i jϕi(s)ϕ j(t)χT(s, t)X(t)dt + E(s) (29)

3. Final Remarks

The linearity of systems (26) and (27) is of great importance for computational reasons.

The choice of the basis is an important practical issue. As a general guideline, the choice of Fourier sine cosine basis
is recommended when we have non localized frequency behavior of covariates and responses, and wavelet basis shall
be chosen for the localized frequency covariates and responses. The case where we have opposite localized frequency
behaviors of covariates and responses is probably the most difficult to deal with.

Choosing a convenient finite linearly independent orthonormal set {ϕi : i ∈ F ⊂ I} to expand the data and the functional
parameters will furnish, for suitable bases, smooth estimates of the parameters for the Causal Linear Functional Model.
This is a kind of regularization that is obtained by the simple reduction the number of basis functions used in the estimation
process. See (Ramsay & Silverman, 2005). Other methods for regularization are available, such as the use of penalties
given by some functional applied to the parameters, and the use of threshold techniques on the set of estimated coefficients
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for the intercept and slope functions. The weighted sum of the integrated square of some measure of curvature for both
the mean and the slope functions can be used as a penalty functional.

In this work we focused on constructing suitable estimators of the functional parameters of causal functional linear
regression models using series expansions in a general tensor product basis. More detailed studies of these estimators is
the subject of future works.
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Horváth, L. & Kokoszka, P. (2012). Inference for Functional Data with Applications. New York: Springer.
https://doi.org/10.1007/978-1-4614-3655-3

Malfait, N. & Ramsay, J. O. (2003). The historical functional linear model. The Canadian Journal of Statistics, 31(2),
115 - 128.

Müller H-G. & Zhang, Y. (2005). Time-Varying Functional Regression for Predicting Remaining Lifetime Distributions
from Longitudinal Trajectories. Biometrics, 61(4), 1064 - 1075. https://doi.org/10.1111/j.1541-0420.2005.00378.x

Ramsay, J. O. & Silverman, B. W. (2005). Functional Data Analysis. (2nd ed.). New York: Springer- Verlag.

Ramsay, J. O. & Silverman, B. W. (2002). Applied Functional Data Analysis. New York: Springer- Verlag.
https://doi.org/10.1002/0470013192.bsa239

Wu, Y. , Fan, J., & Müller H-G. (2010). Varying-coefficient functional linear regression. Bernoulli, 16(3), 730 - 758.
https://doi.org/10.3150/09-BEJ231

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

111


