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Abstract  

In this paper, we intend to offer system of fuzzy nonlinear integral equation also numerical scheme to solve. by using the 

new and fast technique to solve our problem. we try to discuss some numerical aspects such as convergence and error 

analysis. Finally, accuracy and applicability of the proposed methods are carried out along with comparisons using some 

numerical examples. 

Keywords: Fuzzy number; system of nonlinear Fuzzy Volterra integral equation; fuzzy integral; fuzzy Remian integral; 

Modified decomposition method  

1.Introduction 

In recent years, Fuzzy systems are now used to study a various of problems ranging from fuzzy metric spaces (Park, J. H., 

2004), fuzzy topological spaces (Caldas, M. & Jafari, S., 2005), to control chaotic systems (Feng, G. & Chen, G., 2005; 

Jiang, W., Guo-Dong, Q. & Bin, D. 2005), fuzzy differential equations (Abbasbandy, S. & Allahviranloo, T., 2004; 

Abbasbandy, S., Nieto, J. J. & Alavi, M., 2005)and particle physics (Naschie, M. S. El, 2004; Allahviranloo, T., 

Khezerloo, M., Ghanbari, M. & Khezerloo, S., 2010). The topics of fuzzy integral equations (FIEs) which attracted 

growing interest for some times, particularly, in relation to fuzzy control, have been developed. The concept of integration 

of fuzzy functions was _firstly introduced by Dubois and Prade (1982). Alternative approaches were later suggested by 

Goetschel and Voxman (1986), Kaleva (1987), Matloka (1987), Seikkala (1987). Recently, some numerical methods have 

been introduced to solve fuzzy integral equation. For example Babolian et al (Dubois, D. & Prade, H., 1978) used the 

Adomian decomposition method (ADM) to solve Fredholm fuzzy integral equations of the second kind (FFIEs-2). 

Allahviranloo et al (Dubois, D. & Prade, H., 1982),nonlinear integral equations. Yalcinbas (Babolian, E., Biazar, J. & 

Vahidi, A.R., 2004), as two of the most important basic polynomials which in previous works have not been covered in 

fuzzy equations,Modified decomposition method is proposed to solve complexity composition fuzzy kernels and 

complexity fuzzy nonlinear integral equation with complexly kernels, we convert a fuzzy nonlinear integral equation to a 

system of integral equation some numerical examples are presented to show the facts about our methods.  

2. Preliminaries 

Definition 2.1,(Jiang, W., Guo-Dong, Q. & Bin, 2005）. Fuzzy set. A set.Ã = {(x,MÃ(x)), x ∈ X} is called a fuzzy set 

where MÃ(x) is the membership function of a fuzzy set A is defined by MÃ(x): X → [0,1],the value of MÃ(x) is called the 

membership degree X  

Definition 2.2,(Jiang, W., Guo-Dong, Q. & Bin, 2005). Fuzzy number. A fuzzy number is a map 𝐮̃: R → [a, b], which 

satisfying 

(1) 𝑢̃ is upper semi- continuous function, 

(2) 𝑢̃(x) = 0 outside some interval [a, d] 

(3) There are real numbers b,c such a ≤ b ≤ c ≤ d 

i) 𝑢̃(x) is a monotonic increasing function on [a, b] 

ii) 𝑢̃(x) is a monotonic decreasing function on [c, d] 

iii)  𝑢̃(x) = 1   for all x ∈ [b, c] 

The set of all fuzzy numbers (as given by Definition 1.2 ) is denoted by E1 and is a convex cone. An alternative definition 
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for parameter from of a fuzzy number is given by Kaleva [33]. 

Definition 2.3, (Abbasbandy, S., Nieto, J. J. & Alavi, M., 2005). fuzzy interval. Let u be a fuzzy set on R. u is called a 

fuzzy interval if satisfied  

u is normal: there exsist x0 ∈ R S.T u(x0) = 1 

u is convex: for all x, t ∈ R , 0 ≤ λ ≤ 1 it holds that u(λx + (1 − λ)y ≥ min {u(x), u(y)}  

u is upper semi- continuous  

[u]0 = cl{x ∈ R: u(x) > 0} is a compact subset of R 

Definition 2.4, (Abbasbandy, S., Nieto, J. J. & Alavi, M., 2005). 𝛂 − 𝐥𝐞𝐯𝐞𝐥.  

let E  be the set of all fuzzy number on R , the α − level set of a fuzzy number u ∈ E ,  0 ≤ α ≤ 1 , denoted by 

[u]α is mapping between close interval 0,1 to power set of R is defined as  

[u]α = {
[a(α), b(α)], α ∈ (0.1]
cl(supp)  , α = 0    

 

The α − level set of a fuzzy number is closed and bounded interval [u(α), u(α)], where u(α)denotes the left-hand 

endpoint of [u]αand u(α) denotes the right – hand endpoint of [u]α since each y ∈ R can be regarded as a fuzzy 

number ỹ defined by ỹ(t) = {
1 if t = y
0 if t ≠ y

 

Definition 2.5,（Naschie, M. S. El, 2004）. A fuzzy number ǔ in parametric form is a pair (u, u)of function u(α), u(α), 
0 ≤ α ≤ 1, which satisfies the following requiremenst: 

i) u(α) is a bounded left continuous non- decreasing function over [0, 1] 

ii) u(α) is a bounded left continuous non- increasing function over [0, 1] 

iii) u(α)  ≤ u(α), 0 ≤ α ≤ 1 

Definition 2.6, (Goetschel, R. & Voxman, W., 1986).For arbitrary fuzzy u = (u(α), u(α)), v = (v(α),v(α)), 0 ≤ α ≤
1 and scalar k, we define addition, subtraction, scalar product by k and multiplication are respectively as following: 

1 − addition: (u + v)(α)= (u(α)+v (α)),     (u + v)(α) = (u(α)+v(α)), 

2 − subtraction: (u − v)(α)= (u(α)-v (α)),    (u − v)(α) = (u(α)-v(α)), 

3 −  scalar product ∶ 

kǔ={
(ku(α), ku(α)) ,   k ≥ 0

(ku(α), ku(α)) ,     k < 0
                                  (9) 

4- multiplication:  

ũ ∙ ṽ = {
uv(α) = max{u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)}

uv(α) = min{u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)}
                  (10) 

Definition 2.7,( Dubois, D. & Prade, H., 1982). For arbitrary Fuzzy numbers ũ, ṽ ∈ E1, we use the distance 

D(𝑢̃, ṽ) = max {supα∈[0,1]  |u(α) − v(𝛼)| , supα∈[0,1]  |u (α) − v(α)|}      (11) 

And it is show[43] that (E1, D) is a complete metric space . 

Definition 2.8, (Dubois, D., Prade, 1986). let f̃(x) be a close and bounded fuzzy value function on [a, b]. Suppose the 

f̃α
L
(x) and f̃α

R
(x) are a Riemann - integral on [a, b] for all α ∈ [0,1], [42]. 

Let  

Aα = [∫ f̃α
L
(x) dx  ,

b

a

∫ f̃α
R
(x)

b

a

dx] 

Then we say that f̃(x) is fuzzy –Riemann – integral of [a, b], and the membership function of ∫ f̃(x) 
b

a
dx is defined by 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 10, No. 1; 2018 

34 

M
∫ f̃(x)
b
a dx

(α) = sup0≤α≤1α. 1Aα(r)    for r ∈ A0 

Definition 2.9, (Dubois, D., Prade, 1986). The integral of a fuzzy function was define in [16] by using the Riemann 

integral concept. Let f: [a, b] E1. For Fuzzy function, for each partition p={t0, …, tn} of [a, b] and for arbitrary 


i
∈ [ti−1, ti]  , 1 ≤ i ≤ n, suppose  

                                          RP=∑ f(
i
)(ti − ti−1)

n
i=1                                        (12) 

∆≔ max{|ti − ti−1|, 1 ≤ i ≤ n}. 

The define integral of f(t) over [a, b] is  

                                               ∫ f(t)dt = lim∆0 RP
b

a
 ,                                        (13) 

If the fuzzy function f(t) is continuous in metric D,its definite the integral exists and also  

(∫ 𝑓(𝑡; 𝛼)𝑑𝑡
𝑏

𝑎
 ) =∫ 𝑓

𝑏

𝑎
(𝑡; 𝛼)𝑑𝑡, 

(∫ 𝑓(𝑡; 𝛼)𝑑𝑡
𝑏

𝑎
) = ∫ 𝑓 

𝑏

𝑎
(𝑡; 𝛼)𝑑𝑡                                 (14) 

It should be noted that the fuzzy integral can be also defined using the Lebesgue – type approach. However, if 𝑓(𝑡) is 

continuous, both approaches yield the same value.More details about the properties of the fuzzy integral.  

Definition 2.10, (Tanaka, Y., Mizuno, Y. & Kado, T., 2005). Let 𝐹: 𝐼 → 𝐸𝑛 the integral of 𝐹 over, denoted by  

∫ 𝐹(𝑥)𝑑𝑥 𝑜𝑟  ∫ 𝐹(𝑥)𝑑𝑥  ,   𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑙
𝑏

𝑎𝐼
evelwise by  

[∫ 𝐹(𝑥)𝑑𝑥]
𝐼

𝛼

= ∫ 𝐹(𝑥)𝛼𝑑𝑥𝐼
= {∫ 𝑓(𝑥)𝑑𝑥 |

𝐼
 𝑓: 𝐼 → 𝑅𝑛 𝑖𝑠 𝑎  𝑚𝑎𝑠𝑢𝑎𝑟𝑠𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟  𝐹(𝑥)𝛼  𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝛼 ≤ 1  

Proposition 2.1 (Tanaka, Y., Mizuno, Y. & Kado, T., 2005). A function 𝐹, 𝐺: 𝐼 → 𝐸𝑛 be integrable and 𝜑 ∈ 𝑅. ∈ 𝑡ℎ𝑒𝑛  

1-∫(𝐹 + 𝐺) = ∫𝐹 + ∫𝐺  

2-∫𝜑𝐹 = 𝜑∫𝐹 

3-𝐷(𝐹, 𝐺)𝐼𝑆 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒  

4 − 𝐷(∫𝐹 , ∫𝐺) ≤ ∫𝐷(𝐹, 𝐺)  

Theorem 2.1.(Naschie, M. S. El, 2004) For any 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐸𝑛 𝑎𝑛𝑑 𝜑 ∈ 𝑅, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 ℎ𝑜𝑙𝑑  

i-(𝐸𝑛, 𝐷)𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒  

ii-𝐷(𝜑𝑝, 𝜑𝑞) = |𝜑|𝐷(𝑝, 𝑞) 

iii-𝐷(𝑝 + 𝑟, 𝑞 + 𝑠) = 𝐷(𝑝, 𝑞) 

iv-𝐷(𝑝 + 𝑞, 𝑟 + 𝑠) ≤ 𝐷(𝑝, 𝑟) + 𝐷(𝑞, 𝑠) 

3.Fuzzy System of Nonlinear Volterra Integral Equation 

The fuzzy system of nonlinear integral equation with integral kernel which is discussed in this work is the fuzzy system of 

nonlinear Volterra integral equation as follows: 

u1̃(x) = f̃1(x) + ∑ λ1𝑗 ∫ k1𝑗 (x, t, G̃1j (t, F̃ (t, 𝑢̃𝑗(t))))dt
x

a
𝑚
𝑗=1                      (1) 

⋮ 

uĩ(x) = f̃i(x) +∑λi𝑗∫ ki𝑗 (x, t, G̃ij (t, F̃ (t, 𝑢̃𝑗(t))))dt
x

a

𝑚

𝑗=1

 

⋮ 

u𝑚̃(x) = f̃𝑚(x) +∑λ𝑚𝑗∫ k𝑚𝑗 (x, t, G̃mj (t, F̃ (t, 𝑢̃𝑗(t)))) dt
x

a

𝑚

𝑗=1
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where  λ𝑖𝑗 > 0 (for i,j=1,…,m), f̃𝑖(x)  is a fuzzy function of x such that x, t ∈ [a, b], also k𝑖𝑗 (x, t, G̃ij (t, F̃ (t, 𝑢̃𝑗(t)))): 

I× I × E1 → E1  is analytic functions, F̃ (t, 𝑢̃𝑗(t)) : I × E
1 → E1  is fuzzy continuous functions, consider the pairs 

f̃𝑖(x) = (f𝑖(x, α), f𝑖(x, α)) and ũ𝑖(t) = (u𝑖(x, α), u𝑖(x, α)), 0 ≤ α ≤ 1 and x ∈ I = [a,b], is solution will be determined. 

Then, the parametric form of Eq. (2) is given fuzzy integral equations system as follows.  

u𝑚(x, α) = f𝑚(x, α) + ∑ λ𝑚𝑗 ∫ k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) dt
x

a
𝑚
𝑗=1               (3) 

u𝑚(x, α) = f𝑚(x, α) +∑λ𝑚𝑗∫ k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α))))dt
x

a

𝑚

𝑗=`

 

We can see that Eq. (1) convert to a system of nonlinear Volterra integral equations in crisp case in Eq (3). We have : 

u𝑚(x, α) = f𝑚(x, α) +∑λ𝑚𝑗∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) dt +∑λ𝑚𝑗∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) 𝑑𝑡
x

c

𝑚

𝑗=1

c

a

𝑚

𝑗=1

 

u𝑚(x, α) =

f𝑚(x, α) + ∑ λ𝑚𝑗 ∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))
c

a
𝑚
𝑗=1 dt + ∑ λ𝑚𝑗 ∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) 𝑑𝑡

x

c
𝑚
𝑗=1                (4) 

where 0 ≤ t ≤ c , c ≤ t ≤ x, 0 ≤ α ≤ 1. Now we will find the parameter for the Eq(4), as follows  

k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α))))

=

{
 
 

 
 k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) , k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) ≥ 0

k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) , k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) < 0 

   

Gmj (t, F (t, u𝑗𝑚(t, α))) =

{
 

 Gmj (t, F (t, u𝑗𝑚(t, α))) , Gmj (t, F (t, u𝑗𝑚(t, α))) ≥ 0  

Gmj (t, F (t, u𝑗𝑚(t, α))),   G𝑚𝑗 (t, F (t, u𝑗𝑚(t, α))) < 0 
 

Gmj (t, F (t, u𝑗𝑚(t, α))) =

{
 

 Gmj (t, F (t, u𝑗𝑚(t, α))) , Gmj (t, F (t, u𝑗𝑚(t, α))) ≥ 0 

Gmj (t, F (t, u𝑗𝑚(t, α))) , Gmj (t, F (t, u𝑗m(t, α))) < 0

 

k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) =

{
 
 

 
 k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) , k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) ≥ 0 

k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) , k𝑚𝑗 (x, t, Gmj (t, F (t, u𝑗𝑚(t, α)))) < 0 

 

Gmj (t, F (t, u𝑗𝑛−1(t, α))) =

{
 

 Gmj (t, F (t, u𝑗𝑚(t, α))) , Gjm (t, F (t, u𝑗𝑚(t, α))) ≥ 0 

Gmj (t, F (t, u𝑗𝑚(t, α))) , Gmj (t, F (t, u𝑗𝑚(t, α))) < 0
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Gmj (t, F (t, u𝑗𝑚(t, α))) =

{
 

 Gmj (t, F (t, u𝑗𝑚(t, α))) , Gmj (t, F (t, u𝑗𝑚(t, α))) ≥ 0  

Gmj (t, F (t, u𝑗𝑚(t, α))),   Gmj (t, F (t, u𝑗𝑚(t, α))) < 0 
            (5) 

Where j=1,…,m 

than  

u𝑚(x, α) = f𝑚(x, α) +∑ [
𝑚

𝑗=1
∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) dt + ∫ k𝑚𝑗(x, t, Gj (t, F (t, u𝑗𝑚(t, α))) dt

c

d

+
d

a

 

∫ k𝑚𝑗(x, t,
e

c

Gmj (t, F (t, u𝑗𝑚(t, α))) dt + ∫ k𝑚𝑗(x, t,
x

e

Gmj (t, F (t, u𝑗𝑚(t, α))) dt] 

u𝑚(x, α) = f𝑚(x, α) + ∑ [𝑚
𝑗=1 ∫ k𝑚𝑗(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) 𝑑𝑡

d

a
+ ∫ k𝑚𝑗(x, t, k(x, t, Gmj (t, F (t, u𝑗𝑚(t, α))) 𝑑𝑡

c

d
+

∫ k𝑚𝑗(x, t,
e

c
Gmj (t, F (t, u𝑗𝑚(t, α))) dt+∫ k𝑚𝑗(x, t,

x

e
Gmj (t, F (t, u𝑗𝑚(t, α))) dt]                            (6) 

where 0 ≤ t ≤ d  , d ≤ t ≤ c, c ≤ t ≤ e, e ≤ t ≤ x, 0 ≤ α ≤ 1   

This is the condition for the fuzzy nonlinear integral system. If i=n that mean we will reply equation (3) and (4) for all time 

n, for example if i=2 is mean we have two equations in fuzzy type and the parametric from equation (6) from 𝑓𝑚̃(𝑥) =
(f𝑚(x, α), f𝑚(x, α)) and 𝑢𝑚̃(𝑥) = (u𝑚(x, α), u𝑚(x, α)) respectively . 

The equation (1) is convert to the system of nonlinear volterra integral equations in crisp case. Now we will explain 

modified decomposition method to solve our system and find the approximate solution for 𝑢̃(x) 𝑎 ≤ 𝑥 ≤ 𝑏. 

4. Modified Decomposition Method 

The Adomian asserts that the decomposition method provides an efficient and computationally convenient method for 

generating approximate series solution to a widely class of equations. The method is applied as follows:  

Standard Adomian method define the solution 𝑢(𝑥, α), 𝑢(𝑥, α) the series  

{
      𝑢(𝑥, α) =  ∑ 𝑢𝑖

∞
𝑖=0  (𝑥, α)

       𝑢(𝑥, α) =  ∑ 𝑢𝑖
∞
𝑖=0  (𝑥, α)

                                   (10) 

0 ≤ α ≤ 1 

Substitution the series decomposition (10) into both side of Eq( 7) and assuming that the function 𝑓𝑖 , 𝑓𝑖 can be expressed 

as the sum of two part 𝑓𝑖0, 𝑓
𝑖0 

, 𝑓𝑖1 ,𝑓𝑖1, therefore used  

𝑓𝑖 = 𝑓𝑖0 + 𝑓𝑖1, i=1,2,3,…,m                                (11) 

𝑓
𝑖
= 𝑓

𝑖0 
+ 𝑓

𝑖1
 

In view of the assumption, we propose a slight variation is that only the part𝑓𝑖0, 𝑓
𝑖0 

 is assigned to the zeroth component 

𝑢𝑖0 , 𝑢𝑖0 and the remaining part 𝑓𝑖1 ,𝑓𝑖1 are combined with the others terms ( integral part ) to define 𝑢1𝑖𝑟  , 𝑢1𝑖𝑟, based on 

the suggestion formulate the following modified decomposition methods.rewrite equation (5). We get ∑ u𝑖𝑚(x, α)
∞
𝑖=0 =

𝑓𝑖0(x, α) + 𝑓i1(x, α) +

∑ [𝑚
𝑗=1 ∫ k𝑚𝑗(x, t, Gmj(t, F(t, [𝑅 ∑ u𝑗𝑚−1𝑖(t, α) + 𝑁∑ u𝑗𝑚−1𝑖(t, α)

∞
𝑖=0

∞
𝑖=0 )])dt +

d

a
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∫ k𝑚𝑗(x, t, Gmj (t, F(t, [𝑅 ∑ u𝑗𝑚−1𝑖(t, α) +
∞
𝑖=0

c

d

𝑁∑ u(𝑗𝑚−1)𝑖(t, α)]
∞
𝑖=0 )) dt +∫ k𝑚𝑗(x, t,

e

c
Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) + 𝑁∑ u(𝑗𝑚−1)𝑖(t, α)]

∞
𝑖=0

∞
𝑖=0 )) dt +

∫ k𝑚𝑗(x, t,
x

e
Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) + 𝑁∑ u(𝑗𝑚−1)𝑖(t, α)

∞
𝑖=0 ]∞

𝑖=0 )) dt] 

∑ u𝑖𝑚(x, α)
∞
𝑖=0 =

𝑓
𝑖0
(x, α) + 𝑓

𝑖1
(x, α) + ∑ [𝑚

𝑗=1 ∫ k𝑚𝑗(x, t, Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) + 𝑁∑ u(𝑗𝑚−1)𝑖(t, α)]
∞
𝑖=0

∞
𝑖=0 )) 𝑑𝑡

d

a
+

∫ k𝑚𝑗(x, t, Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) + 𝑁∑ u(𝑗𝑚−1)𝑖(t, α)
∞
𝑖=0

∞
𝑖=0 ])) 𝑑𝑡

c

d
+

∫ k𝑚𝑗(x, t,
e

c
Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) +

∞
𝑖=0

𝑁∑ u(𝑗𝑚−1)𝑖(t, α)
∞
𝑟=0 ])) dt+∫ k𝑚𝑗(x, t,

x

e
Gmj (t, F(t, [𝑅 ∑ u(𝑗𝑚−1)𝑖(t, α) + 𝑁∑ u(𝑗𝑚−1)𝑖(t, α)]

∞
𝑖=0

∞
𝑖=0 )) dt ] 

where 0 ≤ t ≤ d , d ≤ t ≤ c, c ≤ t ≤ e, e ≤ t ≤ x, 0 ≤ α ≤ 1   

The Modified decomposition method introduces the use of the recurrence relation  

 𝑢0m(𝑥, 𝛼)=𝑓00(𝑥, 𝛼) 

u1𝑚(x, α) = 𝑓11(x, α)

+∑ [
𝑚

𝑗=1
∫ kmj(x, t, Gmj (t, F (t, [𝑅∑uj(𝑚−1)0(t, α) + 𝑁∑uj(𝑚−1)0(t, α)

∞

𝑟=0

∞

𝑖=0

))dt
d

a

+∫ k12(x, t, G2 (t, F (t, [𝑅∑u2(𝑛−1)0(t, α) + 𝑁∑u2(𝑛−1)0(t, α)]

∞

𝑟=0

∞

𝑟=0

))dt
c

d

+∫ k21(x, t,
e

c

G1 (t, F (t, [𝑅∑u1(𝑛−1)𝑟(t, α) + 𝑁∑u1(𝑛−1)𝑟(t, α)]

∞

𝑟=0

∞

𝑟=0

))dt

+ ∫ k22(x, t,
x

e

G2 (t, F (t, [𝑅∑u2(𝑛−1)0(t, α) + 𝑁∑u2(𝑛−1)0(t, α)

∞

𝑟=0

]

∞

𝑟=0

))dt ] 

u1𝑛(𝑟+2)(x, α) =    ∫ k11(x, t, G1 (t, F (t, [𝑅∑u1(𝑛−1)(𝑟+1)(t, α) + 𝑁∑u1(𝑛−1)(𝑟+1)(t, α)

∞

𝑟=0

∞

𝑟=0

)])dt
d

a

+∫ k12(x, t, G2 (t, F (t, [𝑅∑u2(𝑛−1)(𝑟+1)(t, α) + 𝑁∑u2(𝑛−1)(𝑟+1)(t, α)]

∞

𝑟=0

∞

𝑟=0

))dt
c

d

+∫ k21(x, t,
e

c

G1 (t, F (t, [𝑅∑u1(𝑛−1)(𝑟+1)(t, α) + 𝑁∑u1(𝑛−1)(𝑟+1)(t, α)]

∞

𝑟=0

∞

𝑟=0

))dt

+ ∫ k22(x, t,
x

e

G2 (t, F (t, [𝑅∑u2(𝑛−1)(𝑟+1)(t, α) + 𝑁∑u2(𝑛−1)(𝑟+1)(t, α)

∞

𝑟=0

]

∞

𝑟=0

))dt 
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(12) 

𝑢0𝑛0(𝑥, 𝛼)=𝑓00(𝑥, 𝛼) 

 

𝑢1𝑛1(x, α) = 𝑓11(x, α) + 

∫ k12(x, t, G2 (t, F(t, [𝑅 ∑ u2(𝑛−1)0(t, α) + 𝑁∑ u2(𝑛−1)0(t, α)]
∞
𝑟=0

∞
𝑟=0 )) dt

d

a
+

∫ k11(x, t, G1(t, F(t, [𝑅 ∑ u1(𝑛−1)0(t, α) + 𝑁∑ u1(𝑛−1)0(t, α)
∞
𝑟=0

∞
𝑟=0 )])dt

𝑐

𝑑
+

∫ k22(x, t,
e

c
G2 (t, F(t, [𝑅 ∑ u2(𝑛−1)0(t, α) + 𝑁∑ u2(𝑛−1)0(t, α)

∞
𝑟=0 ]∞

𝑟=0 )) dt +

∫ k21(x, t,
x

e
G1 (t, F(t, [𝑅 ∑ u1(𝑛−1)𝑟(t, α) + 𝑁∑ u1(𝑛−1)𝑟(t, α)]

∞
𝑟=0

∞
𝑟=0 )) d 

                 𝑢1𝑛(𝑟+2)(𝑥, 𝛼) =  ∫ k12(x, t, G2 (t, F(t, [𝑅 ∑ u2(𝑛−1)(𝑟+1)(t, α) + 𝑁∑ u2(𝑛−1)(𝑟+1)(t, α)]
∞
𝑟=0

∞
𝑟=0 )) dt

d

a
+

∫ k11(x, t, G1(t, F(t, [𝑅 ∑ u1(𝑛−1)(𝑟+1)(t, α) +
∞
𝑟=0

𝑐

𝑑

𝑁∑ u1(𝑛−1)(𝑟+1)(t, α)
∞
𝑟=0 )])𝑑𝑡 + ∫ k22(x, t,

e

c
G2 (t, F(t, [𝑅 ∑ u2(𝑛−1)(𝑟+1)(t, α) +

∞
𝑟=0

𝑁∑ u2(𝑛−1)(𝑟+1)(t, α)
∞
𝑟=0 ])) dt +∫ k21(x, t,

x

e
G1 (t, F(t, [𝑅 ∑ u1(𝑛−1)(𝑟+1)(t, α) + 𝑁∑ u1(𝑛−1)(𝑟+1)(t, α)]

∞
𝑟=0

∞
𝑟=0 )) dt 

𝑘 ≥ 0 

As started before, we many need only two iteration to derive the exact solution. If more than two iteration are needed 

[𝑁(𝑢𝑗(𝑛−1)(𝑟+1)(𝑡, 𝛼), 𝑁(𝑢𝑗(𝑛−1)(𝑟+1)(𝑡, 𝛼))]  should be represented by Adomian polynomial which can easily be 

generated for all types of non- linearty. 

The choice of 𝑓𝑖0(𝑥, 𝛼), 𝑓𝑖0(𝑥, 𝛼) cantina the minimal number of terms has a strong influence on facilitating the 

recurrence relation,and as a consequence, accelerates the convergence of the solution. Also the exact selution must be a 

term of 𝑓𝑖(𝑥, 𝛼), 𝑓𝑖(𝑥, 𝛼) or to be a part of series of 𝑓𝑖(𝑥, 𝛼), 𝑓𝑖(𝑥, 𝛼).This means that the success of this method depends 

mainly on the proper choice of 𝑓𝑖0, 𝑓𝑖0  𝑎𝑛𝑑 𝑓𝑖1 , 𝑓𝑖1 . We have been unable to establish any criteria to judge what forms of 

𝑓𝑖0, 𝑓𝑖0  𝑎𝑛𝑑 𝑓𝑖1 , 𝑓𝑖1can be used to yield the acceleration demanded. At present 𝑓𝑖0, 𝑓𝑖0  𝑎𝑛𝑑 𝑓𝑖1 , 𝑓𝑖1 are selected by trials. 

Several illustrative example are used to show the pertinent features of the modified method. 

Example 5. Numerical   

Considered the following system  

𝑘11(𝑥, 𝑡, 𝐺1 (𝑡, 𝐹 (𝑡, 𝑢1𝑛−1(𝑡, 𝛼))) = 𝑡
2 (𝑢1𝑛−1(𝑡, 𝛼))

2

 

𝑘12(𝑥, 𝑡, 𝐺2 (𝑡, 𝐹(𝑡, 𝑢2𝑛−1(𝑡, 𝛼))) = (𝑥 − 𝑡)𝑡(𝑢2𝑛−1(𝑡, 𝛼))
2
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𝑘21(𝑥, 𝑡, 𝐺1 (𝑡, 𝐹 (𝑡, 𝑢1𝑛−1(𝑡, 𝛼))) = 𝑥
2𝑡 (𝑢1𝑛−1(𝑡, 𝛼))

2

 

𝑘22(𝑥, 𝑡, 𝐺2 (𝑡, 𝐹(𝑡, 𝑢2𝑛−1(𝑡, 𝛼))) = 𝑡
5(𝑢2𝑛−1(𝑡, 𝛼))

2
 

𝑓1(𝑥, 𝛼) = 𝑥𝛼 − (
𝑥9

72
+ 0.00625) 𝛼2 − 𝑥(0.000217(2 − 𝛼)2 − 0.00074𝛼 − 0.000217) + (2 − 𝛼)2(0.0000977 −

𝑥4

4

+ 0.0156) 

𝑓
1
(𝑥, 𝛼) = 𝑥(2 − 𝛼) − 𝛼2(0.0156 + 0.000977 −

𝑥10

90
− 𝑥(0.00049(2 − 𝛼)2 + 𝛼2) + (2 − 𝛼)2(0.000217 −

𝑥5

5

+ 0.00625) 

𝑓2(𝑥, 𝛼) = 𝑥
2(2 − 𝛼) − 0.00625𝑥𝛼2 − (2 − 𝛼)2(0.000044 +

𝑥6

4
− 0.0156𝑥2 +

𝑥10

10
− 0.000977) 

𝑓
2
(𝑥, 𝛼) = 𝑥2𝛼 − 0.0156𝑥2𝛼2 − 0.000217(2 − 𝛼)2 −

𝑥7

5
(2 − 𝛼)2 + 𝑥(2 − 𝛼)20.000625 −

𝑥11

11
𝛼2 + 0.000044𝛼2 

erT Teesa cuularufc nuh ulh ctcaTe ehT 

𝑢1(𝑥, 𝛼) = 𝑥𝛼    𝑎𝑛𝑑     𝑢1(𝑥, 𝛼) = 𝑥(2 − 𝛼) 

𝑢2(𝑥, 𝛼) = 𝑥
2(2 − 𝛼)  𝑎𝑛𝑑 𝑢2(𝑥, 𝛼) = 𝑥

2𝛼 

i=2 and m=2 

u1𝑛(x, α) = f1(x, α)

+ ∫ k11(x, t, G1 (t, F (t, u1𝑛−1(t, α))) dt + ∫ k12(x, t, G2 (t, F(t, u2𝑛−1(t, α))) dt
c

d

d

a

+∫ k21(x, t,
e

c

G1 (t, F(t, u1𝑛−1(t, α))) dt + ∫ k22(x, t,
x

e

G2 (t, F (t, u2𝑛−1(t, α))) dt 

u1𝑛(x, α) = f1(x, α) + ∫ k11(x, t, G1 (t, F(t, u1𝑛−1(t, α))) 𝑑𝑡
d

a
+ ∫ k12(x, t, k(x, t, G2 (t, F (t, u2𝑛−1(t, α))) 𝑑𝑡

c

d
+

∫ k21(x, t,
e

c
G1 (t, F (t, u1𝑛−1(t, α))) dt+∫ k22(x, t,

x

e
G2 (t, F(t, u2𝑛−1(t, α))) dt 

u2𝑛(x, α) = f1(x, α)
+ ∫ k11(x, t, G1 (t, F (t, u1𝑛−1(t, α))) dt + ∫ k12(x, t, G2 (t, F(t, u2𝑛−1(t, α))) dt

c

d

d

a+∫ k21(x, t,
e

c

G1 (t, F(t, u1𝑛−1(t, α))) dt + ∫ k22(x, t,
x

e

G2 (t, F (t, u2𝑛−1(t, α))) dt 

u2𝑛(x, α) = f2(x, α) + ∫ k11(x, t, G1 (t, F(t, u1𝑛−1(t, α))) 𝑑𝑡
d

a
+ ∫ k12(x, t, k(x, t, G2 (t, F (t, u2𝑛−1(t, α))) 𝑑𝑡

c

d
+

∫ k21(x, t,
e

c
G1 (t, F (t, u1𝑛−1(t, α))) dt+∫ k22(x, t,

x

e
G2 (t, F(t, u2𝑛−1(t, α))) dt 

n=0,1,… 

Now we applied modified decompositions method to solve our system  

𝑓1(𝑥, 𝛼) = 𝑓10(𝑥, 𝛼) + 𝑓11(𝑥, 𝛼) 

𝑓
1
(𝑥, 𝛼) = 𝑓

10
(𝑥, 𝛼) + 𝑓

11
(𝑥, 𝛼) 

𝑓2(𝑥, 𝛼) = 𝑓20(𝑥, 𝛼) + 𝑓21(𝑥, 𝛼) 

𝑓
2
(𝑥, 𝛼) = 𝑓

20
(𝑥, 𝛼) + 𝑓

21
(𝑥, 𝛼) 

𝑓10(𝑥, 𝛼) = 𝑥𝛼 
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𝑓11(𝑥, 𝛼) = −(
𝑥9

72
+ 0.00625)𝛼2 − 𝑥(0.000217(2 − 𝛼)2 − 0.00074𝛼 − 0.000217) + (2 − 𝛼)2(0.0000977 −

𝑥4

4

+ 0.0156) 

𝑓
10
(𝑥, 𝛼) = 𝑥(2 − 𝛼) 

𝑓
11
(𝑥, 𝛼) = −𝛼2(0.0156 + 0.000977 −

𝑥10

90
− 𝑥(0.00049(2 − 𝛼)2 + 𝛼2) + (2 − 𝛼)2(0.000217 −

𝑥5

5
+ 0.00625) 

𝑓20(𝑥, 𝛼) = 𝑥
2(2 − 𝛼) 

𝑓21(𝑥, 𝛼) = −0.00625𝑥𝛼
2 − (2 − 𝛼)2(0.000044 +

𝑥6

4
− 0.0156𝑥2 +

𝑥10

10
− 0.000977) 

𝑓
20
(𝑥, 𝛼) = 𝑥2𝛼 

𝑓
21
(𝑥, 𝛼) = −0.0156𝑥2𝛼2 − 0.000217(2 − 𝛼)2 −

𝑥7

5
(2 − 𝛼)2 + 𝑥(2 − 𝛼)20.000625 −

𝑥11

11
𝛼2 + 0.000044𝛼2 

u10(x, α) = 𝑓10(𝑥, 𝛼) = 𝑥𝛼 

u10(x, α) =𝑓
10
(𝑥, 𝛼) = 𝑥(2 − 𝛼) 

u20(x, α) = 𝑓20(𝑥, 𝛼) = 𝑥
2(2 − 𝛼) 

u20(x, α) =  𝑓20(𝑥, 𝛼) = 𝑥
2𝛼 

u11(x, α) = 𝑓11(𝑥, 𝛼) + ∫ t2 (u10(t, α))
2

dt + ∫ (x − t)t(u20(t, α))
2
dt

c

d

+
d

a

∫ 𝑥2𝑡
e

c

((u10(t, α)))
2

dt

+ ∫ t5
x

e

((u20(t, α)))
2

dt = 0 

u11(x, α) =

𝑓
11
(𝑥, 𝛼) + ∫ t2 ((u10(t, α)))

2

𝑑𝑡
d

a
+ ∫ (x − t)t ((u20(t, α))) 𝑑𝑡

c

d
+ ∫ x2𝑡

e

c
((u10(t, α)))

2

dt + ∫ 𝑡5
x

e
((u20(t, α)))

2

dt 

=0 

u21(x, α) = 𝑓21(𝑥, 𝛼) + ∫ t2 ((u1𝑛−1(t, α)))
2

dt + ∫ (x − t)t ((u20(t, α)))
2

dt
c

d

+
d

a

∫ x2𝑡
e

c

((u10(t, α)))
2

dt

+ ∫ t5
x

e

((u20(t, α)))
2

dt = 0 

u21(x, α) =

𝑓
21
(𝑥, 𝛼) + ∫ t2 ((, u10(t, α)))

2

𝑑𝑡
d

a
+ ∫ (x − t)t ((u20(t, α)))

2

𝑑𝑡
c

d
+ ∫ x2𝑡

e

c
((u10(t, α)))

2

dt+∫ t5
x

e
((u20(t, α)))

2

dt 

=0 

where 𝑎 = 0 , 𝑑 = 0.25, 𝑐 = 0.5, 𝑒 = 0.75 
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Table 1. compered between the exact solution and MDM for u11 

 

X u11  MDM 

 

Absolute error  

𝛼 0.1         0.3           0.5  0.7 0.9 1.0 0.1 0.3 0.5 0.7 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

0 0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

2 

0.0

2 

0.0

6 

0.1

0 

0.1

4 

0.1

8 

0.2

0 

0.0

2 

0.0

6 

0.1

0 

0.1

4 

0.1

8 

0.2

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

4 

0.0

4 

0.1

2 

0.2

0 

0.2

8 

0.3

6 

0.4

0 

0.0

4 

0.1

2 

0.2

0 

0.2

8 

0.3

6 

0.4

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

6 

0.0

6 

0.1

8 

0.3

0 

0.4

2 

0.5

4 

0.6

0 

0.0

6 

0.1

8 

0.3

0 

0.4

2 

0.5

4 

0.6

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

8 

0.0

8 

0.2

4 

0.4

0 

0.5

6 

0.7

2 

0.8

0 

0.0

8 

0.2

4 

0.4

0 

0.5

6 

0.7

2 

0.8

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

1.

0 

0.0

1 

0.3

0 

0.5

0 

0.7

0 

0.9

0 

01.

0 

0.0

1 

0.3

0 

0.5

0 

0.7

0 

0.9

0 

01.

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

 

Table 2. compered between the exact solution and MDM for 𝑢11 

 

X 𝑢11  MDM 

 

Absolute error  

𝛼 0.1         0.3           0.5  0.7 0.9 1.0 0.1 0.3 0.5 0.7 0.9 1.0 0.1 0.3 0. 0.7 0.9 1.0 

0 0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

0.0

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

2 

0.3

8 

0.3

4 

0.3

0 

0.2

6 

0.2

2 

0.2

0 

0.3

8 

0.3

4 

0.3

0 

0.2

6 

0.2

2 

0.2

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

4 

0.7

6 

0.6

8 

0.6

0 

0.5

2 

0.4

4 

0.4

0 

0.7

6 

0.6

8 

0.6

0 

0.5

2 

0.4

4 

0.4

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

6 

1.1

4 

1.0

2 

0.9

0 

0.7

8 

0.6

6 

0.6

0 

1.1

4 

1.0

2 

0.9

0 

0.7

8 

0.6

6 

0.6

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

8 

1.5

2 

1.3

6 

1.2

0 

1.0

4 

0.8

8 

0.8

0 

1.5

2 

1.3

6 

1.2

0 

1.0

4 

0.8

8 

0.8

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

1.

0 

1.9

0 

1.7

0 

1.5

0 

1.3

0 

1.1

1 

1.0

0 

1.9

0 

1.7

0 

1.5

0 

1.3

0 

1.1

1 

1.0

0 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 
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Table 3. compered between the exact solution and MDM for u12 

 

x u12  MDM 

 

Absolute error  

𝛼 0.1         0.3           0.

5  

0.7 0.9 1.0 0.1 0.3 0.

5 

0.7 0.9 1.0 0.1 0.3 0. 0.7 0.9 1.0 

0 00 00 00 00 00 00 00 00 00 00 00 00 000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

2 

.07

6 

.068 .0

6 

.05

2 

.04

4 

0.0

4 

.07

6 

.068 .0

6 

.05

2 

.04

4 

0.0

4 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

4 

.30

4 

.272 .2

4 

.20

8 

.17

6 

0.1

6 

.30

4 

.272 .2

4 

.20

8 

.17

6 

0.1

6 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

6 

.68

4 

.612 .5

4 

.61

2 

.39

6 

0.3

6 

.68

4 

.612 .5

4 

.61

2 

.39

6 

0.3

6 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

8 

1.2

2 

1.08

8 

.9

6 

.83

2 

.70

4 

0.6

4 

1.2

2 

1.08

8 

.9

6 

.83

2 

.70

4 

0.6

4 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

1.

0 

1.9 1.7 1.

5 

1.3 1.1 1.0 1.9 1.7 1.

5 

1.3 1.1 1.0 000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

 
Table 4. compered between the exact solution and MDM for 𝑢22 

 

X 𝑢22  MDM 

 

Absolute error  

𝛼 0.1         0.3           0.

5  

0.7 0.9 1.0 0.1 0.3 0.

5 

0.7 0.9 1.0 0.1 0.3 0. 0.7 0.9 1.0 

0 000 00 .0

0 

000 000 000 000 00 .0

0 

000 000 000 000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

2 

.00

4 

.01

2 

.0

2 

.02

8 

.03

6 

0.0

4 

.00

4 

.01

2 

.0

2 

.02

8 

.03

6 

0.0

4 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

4 

.01

6 

.04

8 

.0

8 

.11

2 

.14

4 

0.1

6 

.01

6 

.04

8 

.0

8 

.11

2 

.14

4 

0.1

6 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

6 

.03

6 

.10

8 

.1

8 

.25

2 

.32

4 

0.3

6 

.03

6 

.10

8 

.1

8 

.25

2 

.32

4 

0.3

6 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

0.

8 

.06

4 

.19

2 

.3

2 

.44

8 

.57

6 

0.6

4 

.06

4 

.19

2 

.3

2 

.44

8 

.57

6 

0.6

4 

000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

1.

0 

0.1 0.3 0.

5 

0.7 0.9 1.0 0.1 0.3 0.

5 

0.7 0.9 1.0 000

0 

00

0 

00

0 

00

0 

00

0 

00

0 

 

6. Conclusion 

This paper we are using technique for modified decomposition method to solve system of fuzzy nonlinear integral 

equation, the method above is implemented in a straight forward manner and proved by using only two iteration to get 

the exact solution . this technique is so fast and easy to get the converge for solve any equation and system for any value 

of α. The modified admian method there is one important note the exact solution must be a part of the nonhomogeneous 

function or series of nonhomogeneous   
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