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Abstract

We study the linear instability of the displacement of an Oldroyd-B fluid by air in a Hele-Shaw cell, motivated by possible
applications in Secondary Oil Recovery (SOR) process. Most numerical methods have usually failed when the Weis-
senberg numbers Wi (appearing in the constitutive relations) are near 1. We get an approximate formula of the growth rate
with a blow-up for some particular Wi = O(1). Therefore the instability at large Weissenberg numbers is due to the model,
and not to the computational methods. Our growth rate is quite similar to Saffman-Taylor’s formula (obtained when a
Newtonian liquid is displaced by air) if W1 = W2.
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1. Introduction

A Hele-Shaw cell is a technical device consisting of two parallel plates, located at a small distance from each other. With
some usual hypothesis - see (Hele-Shaw, 1898) - the averaged (across the plates) velocities of a Stokes flow are verifying
an equation quite similar with the Darcy law for the flow in a porous medium, whose permeability is depending on the
distance between the plates - see (Bear, 1972; Bird & Stewart, 1960; Lamb, 1933).

We can consider two immiscible fluids with different viscosities in a Hele-Shaw cell. The ”contact” zone is a small
region, where the viscosity display a (continuous) large variation. In the Hele-Shaw model, this zone is replaced by a
sharp interface, where a viscosity jump exists. This model can be used for study the displacement process similar with
the Secondary Oil Recovery (SOR) procedure: the oil (at low pressure) from a porous medium is pushed by a second
fluid. The linear stability of the interface between two immiscible fluids of Darcy type in a Hele-Shaw cell or porous
medium was studied in (Saffman & Taylor, 1958). The obtained growth constant is giving us the well-known Saffman-
Taylor instability criterion: the interface is unstable if the displacing fluid is less viscous. The usual displacing fluids
(some polymer-solute) used in (SOR) and the oil in a porous reservoir are often non-Newtonian fluids - the constitutive
relations between the stress and the strain-rate tensors are non linear. Then seems be useful to study the ”Saffman-Taylor”
instability in the case of such fluids.

A large number of results in the field of non-Newtonian fluids are given in (Guillope & Saut, 1992; Nittman et all, 1985;
Renardy, 2000; Schowlater, 1978; Truesdell & Noll, 1965; Zhao & Maher, 1993). The displacement of Maxwell upper-
convected fluids by air in a Hele-Shaw cell are studied numerically in (Mora & Manna, 2009; Mora & Manna, 2010).

Some numerical results concerning the instability of the interface between air (as a displacing fluid) and an Oldroyd-B
fluid in a Hele-Shaw were obtained in (Wilson, 1990). Here a blow-up of the growth constant for W2 = 0,W1 > 2.5 was
reported, similar with the fractures observed in the flows of some complex fluids in Hele-Shaw cells - see (Nase et all,
2008), (Nittman et all, 1985; Zhao & Maher, 1993).

In this paper we study the modal linear stability of the interface appearing when an Oldroyd-B fluid is displaced by air
in a Hele-Shaw cell. The Weissenberg numbers Wi appear in the constitutive relations (3) and we consider Wi = O(1).
The basic flow (the same as in (Wilson, 1990)) is described in section 2. The perturbations system is derived in section
3. We use the particular perturbations (26), depending on the arbitrary parameter α. If α checks the condition (43), then
we can neglect some terms in the constitutive relations and we get approximate expressions of some components of the
extra-stress tensor. An approximate formula of the growth rate of perturbations is given in section 4. We get dispersion
curves which are similar with numerical results given in (Wilson, 1990). Our growth constant is similar with the Saffman-
Taylor’s formula if W1 = W2. The main point is following: the particular perturbations (26) lead us to the blow-up of the
growth constant (48) for W1−W2 ≈ 0.4. Then the large Weissenberg number instability is due to the model, and not to the
computational methods. We conclude in section 5, where we further deomostrate that our basic flow becomes Newtonian
if W1 = W2 (that means the relaxation and retardation time constants are equal in the constitutive relations (3)).
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2. The Oldroyd-B Fluid and the Basic Flow

We consider a horizontal Hele-Shaw cell, parallel with the xOy plane and neglect the gravity. An Oldroyd-B fluid is
displaced by air in the positive direction of Ox. The distance between plates is denoted by b and the cell length cell is l
such that ϵ = b/l << 1. We use the following notations:

the extra-stress and strain-rate tensors: τ,S;

the velocity, pressure and the fluid viscosity: u = (u, v,w), p, µ;

the relaxation and retardation (time) constants: λ1, λ2;

the matrix containing the velocity derivatives: V;

the strain-rate tensor: S := (V + VT )/2; (Vi j)
T := V ji.

The flow equations, the free-divergence condition and the constitutive relations are

p
x
= τ11,x + τ12,y + τ13,z, p

y
= τ21,x + τ22,y + τ23,z, p

z
= τ31,x + τ32,y + τ33,z, (1)

ux + vy + wz = 0, (2)

τ + λ1τ
∇ = 2µ[S + λ2S∇], λ1 > λ2 ≥ 0, (3)

τ∇ = u · ∇τ − (Vτ + τVT ), S∇ = u · ∇S − (VS + SVT ). (4)

The last two relations are not containing the partial time derivatives τt and St, because we consider a steady flow. p
x
, p

y
, p

z
,

τi j,x, τi j,y, τi j,z are denoting the x, y, z partial derivatives of τi j and p. The following boundary conditions are used:

a) No-slip condition for the velocity components on the plates.

b) Laplace’s law in the neighborhood of the basic air-fluid interface.

We study the linear stability of the following basic flow, denoted by the super index 0:

∇p0 = (p0
x(x), 0, 0), v0 = (u0(z), 0, 0), (5)

V0 =

 0 0 u0
z

0 0 0
0 0 0

 , S0 =
1
2

(V0 + V0T ). (6)

The basic extra-stress tensor is given by the following equation

τ0 − λ1(V0τ0 + τ0V0T ) = µ{2S0 − λ2(2V0S0 + 2S0V0T )}, (7)

where

V0τ0 + τ0V0T =

 2u0
zτ

0
31 u0

zτ
0
32 u0

zτ
0
33

u0
zτ

0
32 0 0

u0
zτ

0
33 0 0

 , 2(V0S0 + S0V0T ) =

 2(u0
z )2 0 0

0 0 0
0 0 0

 .
Therefore the components of the basic extra-stress are

τ0
33 = 0, τ0

22 = 0, τ0
23 = 0, τ0

12 = 0, (8)

τ0
13 = µu

0
z , τ

0
11 = 2(λ1 − λ2)µ(u0

z )2 (9)

and we get the basic flow equations:

p0
x = τ

0
11,x + τ

0
12,y + τ

0
13,z, p0

y = τ
0
21,x + τ

0
22,y + τ

0
23,z, p0

z = τ
0
31,x + τ

0
32,y + τ

0
33,z. (10)

The equations (5) - (10) (used also in (Wilson, 1990)) give us

p0
z = 0, p0

y = 0, p0
x(x) = τ0

13,z(z). (11)

We conclude that a negative constant G exists such that p0
x(x) = µu0

zz = G, therefore the basic velocity u0 can be obtained
in terms of G:

u0 =
1

2µ
p0

x(z2 − bz) =
1

2µ
G(z2 − bz). (12)
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The following characteristic velocity U is introduced

U =< u0 >:=
1
b

∫ b

0
u0dz = − b2

12µ
p0

x, (13)

then we have the relations
u0 = (G/2µ)z(z − b) = −(6U/b2)z(z − b). (14)

The basic air-fluid interface is
x =< u0 > t = Ut. (15)

As in (Wilson, 1990), the basic pressure can depend on the time t:

p0 = G(x− < u0 > t) = G(x − Ut), x > < u0 > t = Ut. (16)

In the following we consider the moving coordinate system x = x − Ut, then the basic interface is x = 0. But (with no
confusion) we still use the notation x = 0 for the basic interface.

3. The Perturbations System

The small perturbations of the basic solution are denoted by u, v,w, p, τ,

V =

 ux uy uz

vx vy vz

0 0 0

 , S = (V + VT )/2. (17)

The perturbation of the basic interface is denoted by η. We consider that a fluid element that was originally on the interface
remains here, then it follows

ηt = u (18)

(in other words, the interface is material).

In the frame of the linear stability, the free-divergence relation is also verified by the components of the velocity pertur-
bation, then ux + vy + wz = 0. We integrate across the plates, we use the condition w = 0 on z = 0, z = b, then we
get ∫ b

0
(ux + vy) = 0.

In this paper we consider the particular perturbations such that

ux + vy = 0,

(which verify the above condition) and we get wz = 0. Then the boundary conditions are giving us w = 0, which is
obtained in (Wilson, 1990) by using a numerical method .

We introduce the small perturbations in the constitutive equations and in the expressions of the upper convected derivatives
and get

τ0 + τ + λ1(τ0 + τ)∇ = 2µ[S0 + S + λ2(S0 + S)∇], (19)

(τ0 + τ)∇ = u0τx − [V0τ0 + τ0V0T ] − [V0τ + Vτ0 + τ0VT + τV0T ], (20)

(S0 + S)∇ = u0Sx − [V0S0 + S0V0T ] − [V0S + VS0 + S0VT + SV0T ]. (21)

In the frame of the linear stability (that means by neglecting the second order terms in perturbations) it follows

τ + λ1(u0τx − E) = µ{2S + λ2(u02Sx − F)}, (22)

E := V0τ + Vτ0 + τ0VT + τV0T ,

F := 2[V0S + (V0S)T + VS0 + (VS0)T ]. (23)

We have
τ0VT = (Vτ0)T , τV0T = (V0τ)T , S0VT = (VS0)T , SV0T = (V0S)T ,
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and by using (6), (9) and (17) we get

V0τ =

 u0
zτ31 u0

zτ32 u0
zτ33

0 0 0
0 0 0

 ; Vτ0 =

 uxτ
0
11 + uzτ

0
31 0 uxτ

0
13

vxτ
0
11 + vzτ

0
31 0 vxτ

0
13

0 0 0

 ;

2V0S =

 u0
z uz u0

z vz 0
0 0 0
0 0 0

 ; 2VS0 =

 uzu0
z 0 uxu0

z
vzu0

z 0 vxu0
z

0 0 0

 ;

E =

 2(u0
zτ31 + uxτ

0
11 + τ

0
13uz) (u0

zτ32 + vxτ
0
11 + vzτ

0
13) (u0

zτ33 + uxτ
0
13)

(u0
zτ32 + vxτ

0
11 + vzτ

0
13) 0 τ0

13vx

(u0
zτ33 + uxτ

0
13) τ0

13vx 0

 ; (24)

F =

 4u0
z uz 2u0

z vz uxu0
z

2u0
z vz 0 vxu0

z
uxu0

z vxu0
z 0

 . (25)

4. The Sability Analysis

We consider the following perturbations of the basic solution:

u = f (z)EXP cos(ny), v = f (z)EXP sin(ny), EXP = exp(−n[α + x] + σt),

σ = growth constant, f (z) = βu0(z), β = O(ϵ2), dimension of α = length. (26)

We obtain a formula for the growth constant σ corresponding to the perturbations (26), which is displaying a blow-up (in
terms of the wavenumbers n) for some particular values of the Weissenberg numbers.

Near the basic interface x = 0 we use the following Laplace’s law as in (Renardy, 2000; Wilson, 1990) (see (13) and
(18) for definitions of G, η):

(G < η > + < p >)− < τ11 >= γ (< ηyy + ηzz >), η = u/σ. (27)

Here (ηyy + ηzz) is the approximate expression of the total curvature of the perturbed interface and γ is the surface tension
on the interface. The above relation gives the growth constant expression:

σ =
γ < uyy + uzz > −G < u >

< p − τ11 >
.

The problem is to compute < p− τ11 > in terms of the basic and perturbed velocities. For this, in the following we search
a particular solution τ33, τ13, τ23, τ12, px, pz, τ11 in terms of u, v, u0, v0.

We define the dimensionless quantities

x′ = x/l, y′ = y/l, z′ = z/b, ϵ = b/l << 1, u′ = u/U, v′ = v/U,

p′ = p(l/µU), γ′ = γ(1/µU), n′ = nl, σ′ = σ(l/U), α′ = α/l, t′ = t(U/l),

{τ′11, τ
′
12, τ

′
22} = {τ11, τ12, τ22}(l/µU), {τ′13, τ

′
23, τ

′
33} = {τ13, τ23, τ33}(b/µU),

Wi = λi(U/b), (28)

where Wi are the Weissenberg numbers. From (12), (13) and (26) we get

u′ = βu0′EXP′ cos(n′y′) = β6z′(1 − z′)EXP′ cos(n′y′),

v′ = βu0′EXP′ cos(n′y′) = β6z′(1 − z′)EXP′ sin(n′y′),

EXP′ = exp(−n′[α′ + x′] + σ′t′).

In the following we use only dimensionless quantities, then we omit the ′.

The flow equations and the dimensionless quantities (28) give us

px
µU
l2
− τ11,x

µU
l2
= τ12,y

µU
l2
+ τ13,z

µU
b2 , px − τ11,x = τ12,y + τ13,z

1
ϵ2
, (29)
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p − τ11 = (−1/n){τ12,y + τ13,z
1
ϵ2
}. (30)

Proposition 1. We prove that
τ33 = 0, τ31 = uz, τ32 = vz (31)

are possible solutions of the perturbations system (22).

Proof. From (22) and (28) we get
τ33 +W1ϵu0τ33,x = 0, (32)

τ31 +W1ϵu0τ31,x −W1ϵ(u0
zτ33 + uxτ

0
13) = uz +W2ϵ(u0uzx − uxu0

z ), (33)

τ32 +W1ϵ(u0τ32,x − τ0
13vx) = vz +W2ϵ(u0vzx − vxu0

z ). (34)

The equation (32) gives us the possible solution τ33 = 0. We use (26), then in the right part of (33) - (34) we get
W2ϵ(u0uzx − u0

z ux) = 0,W2ϵ(u0vzx − vxu0
z ) = 0. If τ31 = uz, τ32 = vz, in the left part of (33), (34) we get

W1ϵ(u0τ31,x + u0
zτ33 − uxτ

0
13) = W1ϵ(u0uzx − uxu0

z ) = 0,

W1ϵ(u0τ32,x − τ0
13vx) = W1ϵ(u0vzx − vxu0

z ) = 0.

Then the system (32) - (34) is verified by the expressions (31). As a consequence, we obtain

pz = τ31,x + τ32,y = µ(uzx + vzy) = 0. (35)

�
From (31)2 we get τ31,z = uzz. We use (13), (27), (30) and we obtain the dimensionless from of the Laplace’s law as
follows:

−12µU
b2 · < Uu >

σ(U/l)
+
µU

l
< p − τ11 >=

γµU
σ(U/l)

[< Uuyy >
1
l2
+ < Uuzz >

1
b2 ],

−12
ϵ2
< u >
σ
+ (−1/n){τ12,y + uzz

1
ϵ2
} = γ
σ
< uyy + uzz

1
ϵ2
> . (36)

The term < uyy > can not be neglected, being related with the curvature of the perturbed interface.

Proposition 2. If exp(σt) < 1, then ∀x ≥ 0 we have

maxn{vx} =
3β

2αe
, maxn{vxx} =

6β
α2e2 , maxn{vxxx} =

81β
2α3e3 ,

maxn{ux} =
3β

2αe
, maxn{uxx} =

6β
α2e2 , maxn{uxxx} =

81β
2α3e3 . (37)

Proof. From (14) we have u0 = 6z(1 − z) ≤ 6 · (1/4) = 3/2 and get

ux ≤ (3β/2)n exp(−nα), uxx ≤ (3β/2)n2 exp(−nα), uxxx ≤ (3β/2)n3 exp(−nα).

Consider the function F1(n) = ne−nα, then

dF1/dn = (1 − nα)e−nα, dF1/dn(1/α) = 0⇒ maxnF1 = F1(1/α) = 1/(αe).

The maximal values of n2e−nα, n3e−nα give us the relations (37). As a consequence, when α > 81/(12e) we obtain
maxn{uxxx} < maxn{uxx}. �
Remark 1. In the Figure 1 we see that ϵn3 exp(−αn) can be neglected in front n2 exp(−αn), when α = 2, ϵ = 0.02. In
practice, we have ϵ ≈ 10−3 and numerical estimates give ϵn3 exp(−αn) < 0.0003. This is the point in our procedure for
obtaining an approximate growth constant. �
Proposition 3. If exp(σt) < 1, β = O(ϵ2), (W1 −W2) = O(1), α > 11(W2 −W1)/e, then τ12,y can be approximated by
the formula

τ12,y = (uy + vx)y + 2(W1 −W2)u0
z vzy/ϵ. (38)

Proof. The constitutive relations (22) and the dimensionless quantities (28) give us

τ12,y
µU
l2
+ λ1u0τ12,xy

µU2

l3
− λ1[u0

zµvzy
U2

b2l
+ vxy2µ(λ1 − λ2)(u0

z )2 U3

l2b2 + µu
0
z vzy

U2

b2l
] =

18
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µ{(uy + vx)y
U
l2
+ λ2u0(uy + vx)xy

U2

l3
− 2λ2u0

z vzy
U2

b2l
}.

Recall Wi = λiU/b, ϵ = b/l, then we get

τ12,y +W1u0τ12,xyϵ −W1[2u0
z vzy/ϵ + 2(W1 −W2)vzy(u0

z )2] = (39)

(uy + vx)y +W2u0(uy + vx)xyϵ − 2W2u0
z vzy/ϵ.

We introduce the expression (38) in (39) and obtain

τ12,y = −W1u0ϵ{(uy + vx)yx + 2(W1 −W2)u0
z vzyx/ϵ}+ (40)

(uy + xx)y + 2(W1 −W2)u0
z vzy/ϵ + 2W1(W1 −W2)vxy(u0

z )2 +W2u0(uy + vx)xyϵ.

From the Fourier expansion (26) we have 2W1(W1 −W2)[vxy(u0
z )2 − u0u0

z vzyx] = 0, then the last relation (40) becomes

τ12,y = (uy + vx)y + 2(W1 −W2)u0
z vzy/ϵ + (W2 −W1)u0(uy + vx)xyϵ. (41)

The equation (14) and the dimensionless quantities (28) give us u0 = 6(z − z2) ≤ 3/2, u0
z = 6(1 − 2z) ≤ 6. We need

estimates of the maximal values of the terms in the right part of the expression (41). We see that:

uyy, vxy contain the factor n2e−nα, uyxy, vxxy contain the factor n3e−nα.

Then we can use Proposition 2 and get

maxn(uy + vx)y = 2 · 3β
2
· 4
α2e2 =

12β
α2e2 =

12
α2e2 ϵ

2;

maxn(W1 −W2)u0
z vzy

1
ϵ
= (W1 −W2)

36β
αeϵ
= O(1)

36
αe
ϵ;

maxn(W2 −W1)u0(uy + vx)xyϵ = |W2 −W1|
9β
2
· 27
α3e3 ϵ = O(1)

243
2α3e3 ϵ

3. (42)

The condition
α > 11|W2 −W1|/e (43)

gives us

α >
243|W2 −W1|

24e
and

243β|W2 −W1|
2α3e3 ϵ <

12β
α2e2 ϵ. (44)

As ϵ << 1, from (42) - (44) we get

maxn(W2 −W1)u0(uy + vx)xyϵ < maxn(uy + vx)yϵ << maxn(uy + vx)y.

We conclude that (W2 −W1)u0(uy + vx)xyϵ can be neglected in front of (uy + vx)y and (41) gives the relation (38). �
Remark 2. The above result is an important improvement compared with (Wilson, 1990), where instead of (26) was used
the expansion

u ∝ exp(−nx + σt cos(ny), v ∝ exp(−nx + σt) sin(ny). (45)

By using (45), the second and third partial derivatives of (u, v) with respect to x, y contain the factors n2 exp(−nx + σt)
and n3 exp(−nx + σt), which are not bounded in terms of n when x → 0, even if exp(σt) < 1. Moreover, the expansion
(45) is not giving the explicit expression of the perturbations amplitude, which in our paper is 6β|z(1 − z)|. Therefore the
expansion (26) and the condition (43) allow us to avoid the singularity near x = 0 and to neglect, in a rigorous way, some
terms in the constitutive relations. �
The expression (38) of τ12,y allow us to get the growth constant formula, as follows. The relations (29), (38) give us

p − τ = (−1/n){(uy + vx)y + 2(W1 −W2)u0
z vzy

1
ϵ
+ uzz

1
ϵ2
} =

(−1/n)[O(ϵ2) + O(ϵ) + O(1)]. (46)

Consider O(γ) = 1. Then (36) and (46) give the magnitudes of the terms appearing in the dimensionless Laplace’s law :

O(1)
σ
− 1

n
{O(ϵ2) + O(ϵ) + O(1)} = O(1)

σ
{O(ϵ2) + O(1)}. (47)
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We insert (46) in (36). As < u0 >= 1, < (u0
z )2 >= 12, we get

−12
ϵ2σ
+ (−1/n){−2n2 + 24n(W1 −W2)

1
ϵ
− 12

1
ϵ2
} = γ
σ

(−n2 − 12
1
ϵ2

).

From the last relation we obtain the following

Proposition 4. The growth rate σ corresponding to the approximate solution (38) is given by the expression

σ =
n(1 − γ) − γ(ϵ2/12)n3

n2(ϵ2/6) − 2n(W1 −W2)ϵ + 1
. (48)

�
Remark 3. In the case exp(σt) < 1, from (48) we obtain the following important results:

a) The denominator of (48) is , 0 for W1 −W2 < 1/
√

6 ≈ 0.408. Indeed , we have

W1 −W2 < 1/
√

6⇒ ∆ = (W1 −W2)ϵ2 − (ϵ2/6) < 0.

b) σ→ ∞ when W2 = 0, W1 < 1/
√

6, W1 → 1/
√

6.

c) If 0.3 < W1 < 0.408 and W2 = 0 we have a destabilization effect compared with the Saffman-Taylor growth constant
σS−T below:

σS−T = n − γ(ϵ2/12)n3. (49)

In Figure 2 we plot σ given by (48) (on the vertical axis) in terms of n (on the horizontal axis), for γ = 0.1, ϵ = 0.006,
W2 = 0 and W1 increasing from 0.1 until 0.38. The plots are similar with the numerical results given in (Wilson, 1990) .
We also also plotted the Saffman-Taylor growth rate (49). �
Proposition 5. If the hypothesis of Proposition 3 hold, then τ11,x can be approximated by the formula

τ11,x = 2uxx + 4(W1 −W2)u0
z uzx/ϵ. (50)

Proof. The dimensionless form of the constitutive relations (22) is

τ11,x
µU
l2
+ λ1u0τ11,xx

µU2

l3
− 2λ1[u0

zµuzx
U2

b2l
+ uxx2µ(λ1 − λ2)(u0

z )2 U3

l2b2 + µu
0
z uzx

U2

b2l
] =

µ{2uxx
U
l2
+ λ2u02uxxx

U2

l3
− 4λ2u0

z uzx
U2

b2l
},

then we obtain
τ11,x +W1u0τ11,xxϵ − 2W1[u0

z uzx/ϵ + uxx2(W1 −W2)(u0
z )2 + u0

z uzx/ϵ] =

2uxx + 2W2u0uxxxϵ − 4W2u0
z uzx/ϵ.

We insert the expression (50) in the last relation and get

τ11,x +W1ϵu0[2uxxx + 4(W1 −W2)u0
z uzxx/ϵ] − 2W1[u0

z uzx/ϵ + uxx2(W1 −W2)(u0
z )2 + u0

z uzx/ϵ] =

2uxx + 2W2u0uxxxϵ − 4W2u0
z uzx/ϵ. (51)

As f (z) = βu0, from (26) we have u0u0
z uzxx − uxx(u0

z )2 = 0, then it follows

τ11,x = 2uxx + 4(W1 −W2)u0
z uzx/ϵ + 2(W2 −W1)ϵu0uxxx.

As in Proposition 3, the condition (43) allows us to neglect {2(W2 −W1)ϵu0uxxx} in front of {2uxx}. Then the last above
expresion of τ11,x gives us the equation (50). �
We compute now the expression of px, by using (38) and (50) :

px = τ11,x + τ12,y + τ13,z/ϵ
2 =

2uxx + 4(W1 −W2)u0
z uzx/ϵ + (uy + vx)y + 2(W1 −W2)u0

z vzy/ϵ + uzz/ϵ
2.
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As uxx + uyy = 0, uxx + vxy = 0, uzx + vzy = 0, it follows

px = 2(W1 −W2)u0
z uzx/ϵ + uzz/ϵ

2.

We have obtained pz = 0 - see (35) - then the last above relation gives us

pxz = 2(W1 −W2)(u0
z uzx)z/ϵ + uzzz/ϵ

2 = 0. (52)

�
Now we can justify the expression of f used in (26), as follows.

Proposition 6. As before, we suppose exp(σt) < 1, (W1 −W2) = O(1). If the condition (43) holds and

β = ϵ2/27, (53)

then f (z) = βu0(z) verifies (52) with the precision order O(ϵ).

Proof. We have maxn{n exp(−nα)} = 1/(αe), then |(u0
z uzx)z| ≤ 144β/(αe). It follows

PXZ1 := 2(W1 −W2)|(u0
z uzx)z|

1
ϵ
≤ 2(W1 −W2)144

ϵ

27
· 1

11(W1 −W2)
< ϵ << 1.

As u0
zzz = 0, we conclude that f (z) = βu0(z) verifies (52) with the precision order O(ϵ). The condition (53) is in agreement

with the hypothesis β = O(ϵ2) used in (26). �
5. Conclusions

A large part of the numerical results concerning the flow of Oldroyd-B fluids failed when the Weissenberg is near 1. In
this paper we prove that this kind of instability is due to the model, and not to the numerical methods - at least in the case
of Hele-Shaw displacements.

The basic solution (5) - (10) is considered, which governs the steady displacement of an Oldroyd-B fluid by air in a Hele-
Shaw cell. We obtain the perturbations system (22) - (25) and get the growth constant corresponding to the particular per-
turbations (26). The dimensionless quantities are introduce in the relations (28) and we get the dimensionless (significant)
constitutive relations (32), (33), (34), (39), (51), where the Weissenberg numbers Wi are verifying Wi = O(1), i = 1, 2.

The perturbations (26) display bounded values for partial derivatives of (u, v) in terms of x, y, ∀x ≥ 0. The condition (43)
imposed on the parameter α (appearing in the perturbations (26)) allows us to obtain the approximate expressions (38),
(50), (48) for some components of the extra-stress tensor τ and for the growth constant σ.

If α = 0, then the perturbations (26) leads us to very high values of the derivatives of (u, v) with respect to x, y near the
interface x = 0. In this case, the estimates and the expressions given in Propositions 3 and 5 can not be obtained - see
also Remark 2.

In the case W1 = W2, the growth rate (48) is quite similar with the Saffman-Taylor formula for a Newtonian fluid displaced
by air in a Hele-Shaw cell. As we consider a 3D Hele-Shaw cell, the formula (48) contains the new term (−γn) in the
numerator and the new term n2(ϵ2/6) in the denominator.

On the other hand, when W1 = W2 (that means λ1 = λ2) our basic flow is Newtonian. Indeed, consider the tensor
A = τ0 − µ2S0 = ai j, A = AT , then the constitutive relations (7) gives us

τ0 − λ1(V0τ0 + τ0V0T ) = µ{2S0 − λ1(V02S0 + 2S0V0T )},

A − λ1(V0A + AV0T ) = 0. (54)

We have:

V0 =

 0 0 u0
z

0 0 0
0 0 0

 , V0A + AV0T =

 2u0
z a31 u0

z a32 u0
z a33

u0
z a32 0 0

u0
z a33 0 0

 (55)

and the relation (54) becomes  a11 − 2λ1u0
z a31 a12 − λ1u0

z a32 a13 − λ1u0
z a33

a21 − λ1u0
z a32 a22 a23

a31 − λ1u0
z a33 a32 a33

 = 0. (56)
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First we get a22 = a23 = a33 = 0. The third row gives a31 = 0, from the second row it follows a21 = 0 and the first row is
giving a11 = 0. Thus A = 0 and τ0 − µ2S0 = 0 - that means the basic flow (54) is Newtonian.

When W1−W2 ≈ 0.408, the growth constant formula (48) gives us a strong destabilization effect, compared with (Saffman
& Taylor, 1958) - see Remark 3 and Figure 2. Our dispersion curves are similar with the numerical results of (Wilson,
1990). We conclude that the instability for Wi = O(1) is a property specific to the used flow pattern - in our case a
Hele-Shaw displacement.

Figure 1. ϵn3 exp(−nα) (lower) and n2 exp(−nα) (upper) for α = 2, ϵ = 0.02.

Figure 2. Plot of (48) compared with (49). ϵ = 0.006, γ = 0.1,
W2 = 0,W1 = 0.1 (lower), 0.2, 0.3, 0.35, 0.37, 0.38 (upper).
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