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Abstract

Optimal control problems governed by primal and dual evolution macro-hybrid mixed variational state inclusions, in
reflexive Banach spaces, are studied. This is a spatially localized macro-hybrid variational version of our mixed optimal
control theory published in Appl. Math. Optim. 68, 2013, 445-473, where the solvability analysis of the state systems is
given in terms of duality principles, and the mixed optimality analysis is performed via a perturbation conjugate duality
method. Applications to nonlinear constrained problems from mechanics exemplify the theory.
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1. Introduction

The aim of this paper is to study optimal control problems governed by primal and dual evolution macro-hybrid mixed
variational state inclusions, in functional frameworks of reflexive Banach spaces. In a mechanical sense, primal and
dual evolution mixed variational inclusions are composed, generally, of primal-conservation and dual-constitutive interior
field equations, with boundary conditions and constraints incorporated variationally as primal and dual components,
respectively, via compositional dualizations.

Our interest is to determine optimal controls of macro-hybridized evolution mixed maximal monotone variational in-
clusions, applying our mixed optimal control theory established and proposed in (Alduncin, G., 2013), where the solv-
ability analysis of the governing state systems is given in terms of duality principles, and the mixed optimality analysis
is performed via a perturbation conjugate duality method. Macro-hibridization of variational inclusions corresponds to
variational spatial localizations of global systems into families of subsystems, via nonoverlapping multidomain decom-
positions, synchronized in terms of dual transmission subdifferential constraint equations (Alduncin, G., 2007; Alduncin,
G., 2011). In this manner we shall accomplish a macro-hybrid variational version of the previous mixed optimal control
theory (Alduncin, G., 2013).

It is important to stress that macro-hybrid local primal and dual evolution mixed variational reformulations are funda-
mental in the treatment of big spatial mechanical systems with multi-space-time-scale physical response, highly non-
homogeneous and anisotropic material distribution, multi-constitutivity, as well as for parallel computing and multi-
algorithmic resolution schemes. Moreover such macro-hybrid variational structures, significantly, permit numerical im-
plementations in terms of variational internal non-conforming mixed finite element discretizations, with natural internal
boundary parallel dual synchonizations.

Applications to nonlinear constrained problems from mechanics, of diffusion and quasistatic elastoviscoplastic deforma-
tion phenomena, illustrate the theory. These mechanical state systems correspond, precisely, to macro-hybrid versions of
those mixed state systems worked out in (Alduncin, G., 2013) as representative examples.

The paper is organized as follows. Section 2, following (Alduncin, G., 2007, Alduncin, G., 2011), presents the primal
and dual evolution macro-hybrid mixed functional frameworks for the theory, of reflexive Banach spaces, defining the
admissibility subspaces of internal boundary, interface continuity transmission constraints, and stating the fundamental
macro-hybrid composition duality result. The optimal control variational problem, as well as the primal and dual gov-
erning macro-hybrid mixed inclusion state systems, are given and analyzed in Section 3, where the state solvability is
determined in terms of variational duality principles. Next, in Section 4, the necessary and sufficient macro-hybrid mixed
optimality conditions of the present theory are established, applying the perturbation conjugate duality approach of the
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mixed optimal control theory proposed in (Alduncin, G., 2013). The applications of the macro-hybrid theory, to nonlinear
multi-valued mechanical systems, are finally worked out in Section 5.

2. Preliminaries

For the stationary state functional framework of the theory, let V(Ω) and Y∗(Ω) be primal and dual mixed Ω-field reflexive
Banach spaces with topological duals V∗(Ω) and Y(Ω), related to a spatial bounded domain Ω ⊂ ℜd, d ∈ {1, 2, 3}.
Also, let H(Ω) and Z∗(Ω) be the corresponding primal and dual Hilbert pivot spaces; i.e., V(Ω) ⊂ H(Ω) ⊂ V∗(Ω) and
Y∗(Ω) ⊂ Z∗(Ω) ⊂ Y(Ω), continuously and densely embedded. On the other hand, related to the boundary of the domain,
∂Ω, assumed to be Lipschitz continuous, let B(∂Ω) be the corresponding reflexive Banach primal boundary space with
topological dual B∗(∂Ω).

Following our studies (Alduncin, G., 2007; Alduncin, G., 2011) on evolution mixed variational inclusions, for the macro-
hybrid functional frameworks of the optimal control problems to be treated, the spatial bounded domain Ω of the systems
is decomposed in terms of disjoint and connected subdomains {Ωe}, Ω =

∪E
e=1Ωe, with internal boundaries Γe = ∂Ωe ∩Ω,

e = 1, 2, ..., E, and interfaces Γek = Γe ∩ Γk, 1 ≤ e < k ≤ E, both assumed Lipschitz continuous. Accordingly, the primal
and dual Ω-field stationary spaces V(Ω) and Y∗(Ω) are considered to be decomposable in the sense

V(Ω) = {{ve} ∈ V{Ωe} ≡
∏E

e=1 V(Ωe) : {πΓe ve} ∈ Q},

Y∗(Ω) = Y∗{Ωe}
≡∏E

e=1 Y∗(Ωe),
(1)

as well as the Hilbert pivot spaces to be such that H(Ω) = H{Ωe} ≡
∏E

e=1 H (Ωe), and similarly Z∗(Ω) = Z∗{Ωe}
≡∏E

e=1 Z∗(Ωe). Here Q ⊂ B{Γe} ≡
∏E

e=1 B(Γe) is the primal admissibility subspace of internal boundary interface continuity
transmission, characterized by

Q = {{πsΓe ve} ∈ B{Γe} :⟨{δ∗
Γe

y∗e}, {πΓe ve}
⟩

B{Γe }
= 0, ∀{y∗e} ∈ Y∗{Ωe}

, {ve} ∈ V{Ωe}},
(2)

where [πΓe ] is the continuous linear internal boundary primal trace operator of the product space V{Ωe} with values in B{Γe},
and [δ∗

Γe
] is the continuous linear internal boundary dual trace operator of the product space Y∗{Ωe}

into B∗{Γe}
≡∏E

e=1 B∗(Γe).
Such local internal boundary trace operators are assumed to satisfy the compatibility conditions (Girault, V. & Raviart,
P.-A., 1986).

(C[πΓe ]) [πΓe ] ∈ L(V{Ωe}, B{Γe}) is surjective,

(C[δ∗
Γe

]) [δ∗
Γe

] ∈ L(Y∗{Ωe}
, B∗{Γe}

) is surjective,

which are fundamental for compositional dualization in a macro-hybrid variational sense.

Notice that the primal admissibility subspace Q is in fact the polar subspace (orthogonal under duality) to the dual admis-
sibility subspace Q∗ ⊂ B∗{Γe}

of internal boundary interface continuity transmission, given by

Q∗ = {{δ∗
Γe

y∗e} ∈ B∗{Γe}
:⟨{δ∗

Γe
y∗e}, {πΓe ve}

⟩
B{Γe }
= 0, ∀{y∗e} ∈ Y∗{Ωe}

, {ve} ∈ V{Ωe}}.
(3)

Moreover the following [πΓe ]-compositional dualization result is valid (Alduncin, G., 2007).

Lemma 1 Under primal compatibility condition (C[πΓe ]), macro-hybrid compositional dualization, for {ue} ∈ V{Ωe} and
{λ∗e} ∈ B∗{Γe}

,

{πΓe ue} ∈ ∂IQ∗({λ∗e}) ⇐⇒ {πT
Γe
λ∗e} ∈ ∂(IQ ◦ [πΓe ])({ue}) (4)

holds true, where IQ and IQ∗ are indicator Q- and Q∗-subspace functionals, conjugate to each other.

Proof. From the fact that the conjugate indicator functional (IQ)∗ = IQ∗ , by convex dualization {πΓe ue} ∈ ∂IQ∗ ({λ∗e}) ⇔
{λ∗e} ∈ ∂IQ({πΓe ue}). Thus, under condition (C[πΓe ]), equivalence (4) follows as the equivalence of the variational inequali-
ties of primal inclusions {λ∗e} ∈ ∂IQ({πΓe ue}) and {πT

Γe
λ∗e} ∈ ∂(IQ ◦ [πΓe ])({ue}). 2
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Regarding the primal evolution state system of the theory, related to a given time interval (0,T ) with T > 0 arbitrary
and fixed, the general evolution macro-hybrid mixed variational framework is defined by the primal and dual evolution
reflexive Banach spaces VMH = Lp(0,T ; V{Ωe}) ≡ {{ve} : [0,T ] → V{Ωe}| ∥{ve}∥V{Ωe } = [

∫ T
0 ∥{ve}(t)∥pV{Ωe }

dt]1/p < ∞},
2 ≤ p < ∞, andY∗

MH
= Lq∗ (0, T ; Y∗{Ωe}

≡ {{y∗e} : [0,T ]→ Y∗{Ωe}
| ∥{y∗e}∥Y∗{Ωe }

= [
∫ T

0 ∥{y
∗
e}(t)∥

q∗

Y∗{Ωe }
dt] 1/q∗ < ∞}, q∗ = p/(p−1),

with topological duals V∗
MH
= Lq∗(0,T ; V∗{Ωe}

) and YMH = Lp(0,T ; Y{Ωe}). The primal state solution space is defined
by WMH = {{ve} : {ve} ∈ VMH, {dve/dt} ∈ V∗

MH
} with the operator norm ∥{ve}∥WMH = ∥{ve}∥VMH + ∥{dve/dt}∥V∗MH

,
continuous and densely embedded in the space C([0,T ]; H{Ωe}) of H{Ωe}-continuos functions, and with initial values
set {{ve}(0) : {ve} ∈ WMH} = H{Ωe} (cf. (Lions, J. L., 1969)). Further the corresponding primal evolution boundary
space is defined by the reflexive Banach space BMH = Lp(0, T ; B{∂Ωe}) with dual B∗

MH
= Lq∗(0,T ; B∗{∂Ωe}

). On the other
hand, for the dual evolution macro-hybrid governing state system, the solution dual space is given byX∗

MH
= {{q∗e} : {q∗e} ∈

Y∗
MH
, {dq∗e/dt} ∈ YMH}with the norm ∥{q∗e}∥X∗MH

= ∥{q∗e}∥Y∗MH
+∥{dq∗e/dt}∥YMH , similarly continuous and densely embedded

in the space C([0,T ]; Z∗{Ωe}
) of Z∗{Ωe}

-continuos functions, and with initial values set {{q∗e}(0) : {q∗e} ∈ X∗MH
} = Z∗{Ωe}

.

3. Optimal Control of Evolution Variational Problems

In this section, we begin with the optimal control problem of the theory, governed by primal and dual evolution macro-
hybrid mixed variational state inclusions. This will be a macro-hybrid version of our recent mixed optimal control study
(Alduncin, G., 2013), whose optimality analysis will be treated in the subsequent section.

Taking into account the macro-hybrid functional frameworks stated in the Preliminaries, for the optimal control minimiza-
tion problem, let CMH = L2(0,T ; U{Ωe}) denote the evolution space of U{Ωe} ≡

∏E
e=1 U(Ωe)-controls, a reflexive Banach

space, and CadMH be a closed convex subset of admissible controls. Then the optimization problem of the theory reads as
follows,

(OMH)


Find {κe} ∈ CadMH ⊂ CMH :

JMH(({uκe }, {p∗κe }, {λ∗κe }), {κe})
≤ JMH(({uκe }, {p∗κe }{λ∗κe }), {ηe}), ∀{ηe} ∈ CMH ,

where ({uκe }, {p∗κe }, {λ∗κe }) ∈WMH×Y∗MH
×B∗

MH
or ({uκe }, {p∗κe }, {λ∗κe }) ∈ VMH×X∗MH

×B∗
MH

are corresponding κ-optimal
macro-hybrid mixed states of the primal or dual governing evolution macro-hybrid mixed systems, to be denoted by
(MHκ) and (MH∗κ), respectively. A general cost or objective functional JMH : (VMH×Y∗MH

×B∗
MH

)×CMH →ℜ∪{+∞}
will be of the macro-hybrid mixed form

JMH(({vκe }, {y∗κe }, {ν∗κe }), {ηe})

=

∫ T

0
(g1({vκe }) + g2({y∗κe }) + g3({ν∗κe }) + j({ηe}) dt,

(5)

whose integrand functional components must satisfy appropriate variational properties.

3.1 Primal Evolution Macro-Hybrid Mixed State System

Following our previous study on evolution mixed inclusions with optimal control, (Alduncin, G., 2012), we consider the
abstract primal evolution macro-hybrid mixed governing state system of optimal control problem (OMH) (cf. (Alduncin,
G., 2007; Alduncin, G., 2011)).
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(MHκ)



Given { f̃ ∗e } ∈ V∗MH
, {ge} ∈ {Lp(0,T ;R(Λe))}, {ue0 } ∈ H{Ωe},

find {ue} ∈WMH and {p∗e} ∈ Y∗MH
:

{−ΛT
e p∗e} − {πT

Γe
λ∗e} ∈

{due

dt

}
+ {∂F̃e(ue)} + {∂(ΨeC ◦ πeC )(ue)}

+{B∗eκe} − { f̃ ∗e }, inV∗
MH
,

{Λeue} ∈ {∂G∗e(p∗e)} + {ge}, in YMH,

{ue(0)} = {ue0 };
and {λ∗e} ∈ B∗MH

satisfying the dual synchronizing condition

{πΓe ue} ∈ ∂IQ∗ ({λ∗e}), in BMH,

with [B∗e] ∈ L(CMH,V∗MH
) the macro-hybrid coupling optimal control linear continuous operator.

In this macro-hybrid mixed model [Λe] ∈ L(VMH,YMH) is the linear continuous coupling operator of the system, with
range subspace {R(Λe)}, and the primal subdifferential and right hand side term are given by

[∂F̃e] = [∂Fe] + ∂({I{̂ue} ◦ [πeP ]) : VMH → 2V
∗
MH ,

−{ f̃ ∗e } = {πT
eD

p̂∗e} − { f ∗e } ∈ V∗MH
,

(6)

where [∂Fe] : VMH → 2V
∗
MH stands for the macro-hybrid primal evolution operator, and [∂G∗e] : Y∗

MH
→ 2YMH models

the dualized macro-hybrid evolution distributed primal constraint of the problem, both being maximal monotone subd-
ifferentials. Also, considering a disjoint boundary decomposition ∂Ω = ∂ΩC ∪ ∂ΩP ∪ ∂ΩD, [∂ΨeC ] : BMHC → 2B

∗
MHC

is a maximal monotone subdifferential that models the primal boundary constraints imposed to the system on the local
external sub-boundary {∂ΩeC } ⊂ ∂ΩC . Further {̂ue} ∈ BMHP and { p̂∗e} ∈ B∗MHD

correspond to the primal and dual boundary
values prescribed on the disjoint external sub-boundaries {∂ΩeP } ⊂ ∂Ω\∂ΩC and {∂ΩeD } ⊂ ∂Ω\∂ΩC\∂ΩP, respectively.
Hence, in a mechanical sense, theV∗

MH
-primal variational equation of problem (MHκ) may correspond to the localized

constitutive or balance equation of the system, with localized boundary conditions incorporated variationally (after the
application of its macro-hybrid divergence formula), and the YMH-dual subdifferential equation to a localized variational
model of the imposed interior or distributed constraints, dualized for computational purposes.

On the other hand, dual BMH-subdifferential equation of transmission imposes the internal boundary interface continuity
constraint {λ∗e} ∈ Q∗, of the spatial decomposition, via the indicator functional IQ∗ in accordance with Lemma 1. Notice
that by convex dualization the primal transmission equation is {λ∗e} ∈ ∂IQ({πΓe ue}), in B∗

MH
, for {πΓe ue} ∈ BMH.

Then, proceeding as in (Alduncin, G., 2012) (cf. (Alduncin, G., 2007)), we introduce the classical primal evolution
macro-hybrid compatibility condition

(C{Ge},[Λe]) intD({Ge}) ∩R([Λe]) , ∅,

under which the composition duality relation

[ΛT
e ∂Ge ◦ Λe] = [∂(Ge ◦ Λe)] (7)

holds true (Ekeland, I. & Temam, R., 1974). Thereby, the primal evolution macro-hybrid mixed duality principle for the
state system can be concluded, whose necessity is readily implied by compositional dualization (7) and Lemma 1.

Theorem 2 Under compatibility conditions (C{Ge},[Λe]) and (C[πΓe ]), primal evolution macro-hybrid mixed state problem
(MHκ) is solvable if, and only if, the primal evolution macro-hybridized state problem
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(PMHκ )



Find {ue} ∈WMH :

{0e} ∈
{due

dt

}
+ {∂F̃e(ue)} + {∂(Ge ◦ Λe)(ue − vge )}

+{∂(ΨeC ◦ πeC )(ue)} + ∂(IQ ◦ [πΓe ])({ue}) + {B∗eκe}

−{ f̃ ∗e }, inV∗
MH
,

{ue(0)} = {ue0 },

is solvable, where {vge } ∈ VMH is a fixed [Λe]-preimage of function {ge}.
Proof. For the sufficiency, upon the application of Lemma 1, let ({ue}, {p∗e}) ∈ WMH × Y∗MH

be a solution of the
corresponding macro-hybridized state problem

(MκMH )



Find {ue} ∈WMH and {p∗e} ∈ Y∗MH
:

{−ΛT
e p∗e} ∈

{due

dt

}
+ {∂F̃e(ue)} + {∂(ΨeC ◦ πeC )(ue)}

+∂(IQ ◦ [πΓe ])({ue}) + {B∗eκe} − { f̃ ∗e }, inV∗
MH
,

{Λeue} ∈ {∂G∗e(p∗e)} + {ge}, in YMH,

{ue(0)} = {ue0 }.

Then there is a functional {w∗e} ∈ {∂F̃e(ue)}+{∂(ΨeC ◦πeC )(ue)} ⊂ V∗
MH

such that −{w∗e}−{ΛT
e p∗e}−{due/dt}−{B∗eκe}+{ f ∗e } ∈

∂(IQ ◦ [πΓe ])({ue}). From the variational inequality of this primal inclusion, taking variations {ve} = ±{ve0 }+ {ue}, with {ve0 }
in the kernel N([πΓe ]) ⊂ VMH, it follows that −{w∗e} − {ΛT

e p∗e} − {due/dt} − {B∗eκe} + { f ∗e } belongs to the polar subspace
N([πΓe ])

◦ ⊂ V∗
MH

. Hence, by condition (C[πΓe ]), the Closed Range Theorem states that N([πΓe ])
◦ = R([πΓe ]

T ) and
consequently there is a [πΓe ]

T -preimage {λ∗e} ∈ B∗MH
such that {w∗e} = −{ΛT

e p∗e} − {πT
Γe
λ∗} − {due/dt} − {B∗eκe} + { f ∗e }. That

is, applying Lemma 1, ({ue}, {p∗e}, {λ∗e}) conforms to a solution of state problem (MHκ). 2

Furthermore, we may express primal state problem (PMHκ ) in a classical maximal monotone macro-hybridized sense,
introducing the local primal composition superpotentials, for e = 1, ..., E,

G̃eg (v) = Ge ◦ Λe(v − veg ), v ∈ V(Ωe), (8)

with effective domains and subdifferentialsD(G̃eg ) = D(Ge ◦ Λe) + veg and ∂G̃eg = ∂(Ge ◦ Λe)(· − veg ). That is, assuming
the localized qualifying Moreau-Rockafellar-Robinson conditions (Ernst, E. & Théra, M., 2009),

(CF̃e,G̃eg ,ΨeC◦πeC
)

 intD(F̃e) ∩D(G̃eg ) , ∅,

intD(F̃e + G̃eg ) ∩D(ΨeC ◦ πeC ) , ∅,

for the validity of the primal subdifferential sums

∂φ̃e ≡ ∂(F̃e + G̃eg + ΨeC ◦ πeC ) = ∂F̃e + ∂G̃eg + ∂(ΨeC ◦ πeC ), (9)

macro-hybridized primal state problem (PMHκ ) is given by

(P̃MHκ )



Find {ue} ∈WMH :

{0e} ∈
{due

dt

}
+ {∂φ̃e(ue)} + ∂(IQ ◦ [πsΓe ])({ue}) + {B∗eκe}

−{ f̃ ∗e }, inV∗
MH
,

{ue(0)} = {ue0 }.

Consequently, in accordance with Akagi and Ôtani existence result (Akagi, G. & Ôtani, M., 2004) (cf. (Alduncin, G.,
2011)), we can conclude the following.
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Theorem 3 Let the local coercivity and boundedness conditions, for e = 1, ..., E,

(C1φe ) ∥ve∥pV(Ωe) −C1∥ve∥2H(Ωe) −Ce2 ≤ Ce3 φ̃e(ve),

∀ve ∈ D(φ̃e), 2 ≤ p < ∞,

(C2φe ) ∥v∗e∥
q∗

V∗(Ωe) ≤ ℓe(∥ve∥H(Ωe)){φ̃e(ve) + 1},

∀v∗e ∈ ∂φ̃e(ve), q∗ = p/(p − 1),

ℓe a non-decreasing real function, be satisfied. Then, under conditions (CF̃e,G̃eg , ΨeC ◦πeC
), equivalent primal evolution

macro-hybridized state problems (P̃MHκ ) and (PMHκ ) attain a unique solution.

Remark 4 As usual, the uniqueness of Theorem 3 follows from the monotonicity of the primal subdifferentials ∂φe,
e = 1, 2, ..., E, utilizing the time integration by parts formula for 0 ≤ s < τ ≤ T , {ue}, {ve} ∈WMH,

∫ τ
s

⟨{due

dt

}
(t), {ve}(t)

⟩
V{Ωe }

dt = ({ue}(τ), {ve}(τ))H(Ω)

−({ue}(s), {ve}(s))H{Ωe } −
∫ τ

s

⟨{dve

dt

}
(t), {ue (t)

⟩
V{Ωe }

dt.
(10)

The existence result follows via Hilbert approximations defined by the classical, uniquely solvable, Cauchy problems
(Brézis, H., 1973),

(P̃Hκ )n



Find {uen } ∈UMH :

{0e} ∈
{due

dt

}
+ {∂φ̃H(Ωe)(ue)} + ∂(IQ ◦ [πsΓe ])({ue}) + {B∗eκe}

−{ f̃ ∗en
}, inHMH,

{uen (0)} = {uen0 },

whereUMH = {{ve} : {ve} ∈ VMH, {dve/dt} ∈HMH = L2(0,T ; H{Ωe})} ⊂WMH, φ̃H(Ωe) : H(Ωe)→ℜ∪{+∞} is such that
φ̃H(Ωe) = φ̃e in V(Ωe) and +∞ in H(Ωe)\V(Ωe), a proper lower semicontinuous functional whose ∂φ̃H(Ωe) ⊂ ∂φ̃e. Further,
f̃ ∗en
→ f̃ ∗e inVMH, and uen → uen0 in H(Ωe), are strongly convergent sequences as n→ +∞. Then, under conditions (C1φe )

and (C2φe ), the sequence of problems {(P̃Hκ )n} converge weakly to problem (P̃MHκ ), classical subdifferential version of
primal evolution problem PMHκ (cf. (Akagi, G. & Ôtani, M., 2004), Theorem 3.2).

Therefore, the macro-hybrid mixed solvability result of the present primal theory is concluded from Theorems 2 and 3.

Theorem 5 Let compatibility conditions (C{Ge}[Λe]) and (C[πΓe ]) be fulfilled. Then, under local conditions (CF̃e,G̃eg ,ΨeC◦πeC
),

(C1φe ) and (C2 φe ), e = 1, ..., E, primal evolution macro-hybrid mixed state problem (MHκ) is solvable with a unique
primalWMH-component.

3.2 Dual Evolution Macro-Hybrid Mixed State System

We next proceed with the dual version of the theory, considering as an abstract general dual evolution macro-hybrid mixed
state system, governing optimal control problem (OMH), the following (Alduncin, G., 2012),
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(MH∗κ)



Given { f ∗e ∈ Lp(0,T ;R(−ΛT
e ))}, {ge} ∈ YMH, {p∗e0

} ∈ Z∗{Ωe}
,

find {ue} ∈ VMH and {p∗e} ∈ X∗MH
:

{−ΛT
e p∗e} − {πT

Γe
λ∗e} ∈ {∂F̃e(ue)} + {∂(ΨeC ◦ πeC )(ue)}

−{ f̃ ∗e }, inV∗
MH
,

{Λeue} ∈
{dp∗

dt

}
+ {∂G∗e(p∗e)} + {Beκe} + {ge}, in YMH,

{p∗e(0)} = {p∗e0
};

and {λ∗e} ∈ B∗MH
satisfying the dual synchronizing condition

{πΓe ue} ∈ ∂IQ∗ ({λ∗e}), in BMH,

where, in a dual sense, [Be] ∈ L(CMH,YMH) is the macro-hybrid coupling optimal control linear continuous operator.

Here {R(−ΛT
e )} denotes the range subspace of the linear continuous coupling transpose operator [ΛT

e ] ∈ L(Y∗MH,V∗MH)
of the system, and primal definitions (6) are considered in force too. A mechanical interpretation of this dual case is that
nowV∗

MH
-primal equation may correspond to localized variational models of imposed interior or distributed constraints,

with incorporated local boundary conditions and constraints, and YMH-dual subdifferential equation to the localized
constitutive or balance equation of the system. Further, dual BMH-subdifferential equation is the transmission equation
of the macro-hybrid spatial nonoverlapping decomposition, which enforces the internal boundary interface continuity
constraint {λ∗e} ∈ Q∗ via the indicator functional IQ∗ , in accordance with Lemma 1. Recall that the primal transmission
equation, {λ∗e} ∈ ∂IQ({πΓe ue}) in B∗

MH
, is deduced by convex dualization, for {πΓe ue} ∈ BMH.

For the analysis of the state problem, we introduce the dual evolution macro-hybrid compatibility condition

(C({F̃|V(Ωe )+(ΨC◦πC)|V(Ωe )})∗,[−ΛT
e ])

intD(({F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe)})∗) ∩R([ − ΛT
e ]) , ∅,

under which the composition duality relation

{−Λe∂((F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe))∗) ◦ (−ΛT
e )}

= {∂((F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe))∗ ◦ (−ΛT
e ))}

(11)

is valid (Ekeland, I. & Temam, R., 1974). Then the dual evolution macro-hybrid mixed duality principle of state system
(MH∗κ) is similarly concluded as for the primal case, whose necessity follows by compositional dualization (11) and
Lemma 1. The sufficiency of the principle is established via the same arguments as for Theorem 2.

Theorem 6 Under compatibility conditions (C[πΓe ]) and (C({F̃|V(Ωe )+(ΨC◦πC) |V(Ωe )})∗,[−ΛT
e ]) dual evolution macro-hybrid mixed

state problem (MH∗κ) is solvable if, and only if, the dual evolution macro-hybridized state problem

(DMHκ )



Find {p∗e} ∈ X∗MH
:

{0e} ∈
{dp∗e

dt

}
+ {∂G∗e(p∗e)} + {∂((F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe))∗

◦(−ΛT
e ))}({p∗e + q∗

f̃ ∗e
}) + {Beκe} + {ge}, in YMH,

{p∗e(0)} = {p∗e0
},

is solvable, where {q∗
f̃ ∗e
} ∈ Y∗

MH
is a fixed [−ΛT

e ]-preimage of function { f̃ ∗e }.

Next, in order to apply Akagi and Ôtani existence Theorem (Akagi, G. & Ôtani, M., 2004), we express the dual problem
as a classical subdifferential one. Thus, we introduce the local dual composition superpotentials, for e = 1, ..., E,

H̃ f̃ ∗e
(q∗) = (F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe))∗ ◦ (−ΛT

e )(q∗e + q∗
f̃ ∗e

), q∗e ∈ Y∗(Ωe), (12)
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whose effective domains and subdifferentials are D(H̃ f̃ ∗e
) = D(F̃|V(Ωe) + (ΨC ◦ πC)|V(Ωe) )∗ ◦ (−ΛT

e )) − q∗
f̃ ∗e

and ∂H̃ f̃ ∗e
(q∗) =

∂((F̃|V(Ωe)+ (ΨC ◦πC)|V(Ωe))∗ ◦ (−ΛT
e ))(q∗+q∗

f̃ ∗e
), and assume the localized Moreau-Rockafellar-Robinson conditions (Ernst,

E. & Théra, M., 2009).

(CG∗e ,H̃ f̃∗e
) intD(G∗e) ∩D(H̃ f̃ ∗e

) , ∅

that guarantee the dual subdifferential sum rules

∂φ̃∗e ≡ ∂(G∗e + H̃e f̃ ∗
) = ∂G∗e + ∂H̃ f̃ ∗e

, e = 1, ..., E. (13)

Then problem (DMHκ ) has the subdifferential form

(D̃MHκ )


Find {p∗e} ∈ X∗MH :

{0e} ∈
{dp∗e

dt

}
+ ∂{φ̃∗e(p∗e)} + {Beκ} + {ge}, in YMH,

{p∗e(0)} = {p∗e0
},

and the following dual existence result can be concluded (cf. Remark 4).

Theorem 7 Let the local coercivity and boundedness dual conditions, for e = 1, ..., E,

(C1φ∗e ) ∥q∗e∥
q∗

Y∗(Ωe) −C∗e1
∥q∗e∥2Z(Ωe) −C∗e2

≤ C∗3 φ̃
∗
e(q∗e),

∀q∗e ∈ D(φ̃∗e), 2 ≤ q∗ < ∞,

(C2φ∗e ) ∥q∗e∥
p
Y(Ωe) ≤ ℓ∗e(∥q∗e∥Z(Ωe)){φ̃∗e(q∗e) + 1},

∀q∗e ∈ ∂φ̃∗e(q∗e), p = q∗/(q∗ − 1),

ℓ∗e a non-decreasing real function, be fulfilled. Then, under condition (CG∗e ,H̃ f̃∗e
), dual evolution equivalent state problems

(D̃MHκ ) and (DMHκ ) are uniquely solvable.

Therefore, the macro-hybrid mixed existence result of the dual theory is achieved from Theorems 6 and 7.

Theorem 8 Let compatibility conditions (C[πΓe ]) and (C({F̃|V(Ωe )+ (ΨC◦πC)|V(Ωe )})∗,[−ΛT
e ]) be satisfied. Then under local condi-

tions (CG∗e H̃ f̃∗e
), (C1φ∗e ) and (C2φ∗e ), dual evolution macro-hybrid mixed state problem (MH∗κ) is solvable with a unique

dual Y∗{Ωe}
-component.

3.3 Evolution Macro-hybrid Mixed Optimal Control Problem

Now, we can state the solvability of the optimization problem (OMH), governed by primal and dual evolution macro-hybrid
mixed state systems (MHκ) and (MH∗κ), and conclude the corresponding optimal control solvability.

In accordance with Migórski’s analysis (Migórski, S., 2001), we assume that the cost or objective functional of optimiza-
tion problem (OMH), with general macro-hybrid mixed form (5), satisfies the condition

(CJMH )

 JMH : (VMH ×Y∗MH
×B∗

MH
) × CMH →ℜ∪ {+∞} is lower

semicontinuous, bounded below, and CMH − convex.

Then the optimization solvability of the control problem is concluded.

Theorem 9 Under qualifying condition (CJ MH ), macro-hybrid optimization problem (OMH) attains a solution.

Thereby, in accordance with Theorems 2 and 3, as well as Theorems 6 and 7, the variational optimal control existence
results of the macro-hybrid mixed theory are achieved.

Corollary 10 Let conditions (CJMH ), (C[πΓe ]) and (C{Ge},{Λe}) be fulfilled. Then under local conditions (CF̃e,G̃eg ,ΨeC◦πeC
),

(C1φe ) and (C2φe ), e = 1, ..., E, there exists an optimal control pair (({ue}, {p∗e}, {λ∗e}), {κe}) ∈ (WMH×Y∗MH
×B∗

MH
)×CMH

to problem (OMH)-(MHκ),
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and

Corollary 11 Let conditions (CJMH ), (C[πΓe ]), (C({F̃|V(Ωe )+(ΨC◦πC) |V(Ωe )})∗,[−ΛT
e ]), (CG∗,H̃ f̃∗

), (C1φ∗) and (C2φ∗) be satisfied.
Then there exists an optimal control pair (({ue}, {p∗e}, {λ∗e}), {κe}) ∈ (VMH × X∗MH

× B∗
MH

) × CMH to problem (OMH)-
(M∗

κ).

4. Optimality Condition Analysis

In this section, we elaborate on the primal and dual optimality conditions for the constrained evolution macro-hybrid
mixed optimal control problem (OMH), based on our previous study (Alduncin, G., 2013), via perturbation conjugate
duality. In this manner, we extend the mixed optimal control theory to a macro-hybrid version, theory that was motivated
by the analysis of Azé and Bolintinéanu on constrained convex parabolic control problems (Azé, D. & Bolintinéanu, S.,
2000). We refer to (Alduncin, G., 2013, Section 5), where proximation penalty-duality algorithms for variational mixed
optimality conditions are derived and analyzed, issue that will not be pursued here.

4.1 Primal Optimality Conditions

Let us first treat optimal control problem (OMH) governed by the primal macro-hybrid mixed state problem (MHκ),
with associated state primal problem (PMHκ ) (cf. (Alduncin, G., 2013), Section 4.1). From here on, we assume that the
conditions of Theorems 2 and 3 hold true. Hence, as the macro-hybrid mixed state-control operator, TMH : (WMH ×
Y∗

MH
×B∗

MH
) × CMH → V∗MH

, we have

TMH(({ve}, {y∗e}, {ν∗e}), {ηe})

=

{dve

dt

}
+ {v∗ve

} + {ΛT
e y∗e} + {πT

Γe
ν∗e} + {B∗eηe},

{v∗ve
} ∈ {∂(F̃e + ΨeC ◦ πeC )(ve)},

(14)

and as the closed convex constraint domain of the primal problem

MMH = {(({ve}, {y∗e}, {ν∗e}), {ηe}) ∈ (WMH ×Y∗MH
×B∗

MH
) × CMH :

{ve} ∈
∏E

e=1D(φ̃e), {y∗e} ∈
∏E

e=1D(G∗e), {ν∗e} ∈ Q∗, {ηe} ∈ CadMH }.
(15)

Further, for the constraint qualification condition, it is assumed that there is a closed subspace Q∗
MH
⊂ V∗

MH
such that

(CTMH ) Q∗
MH
⊂ ℜ+(TMH(MMH) − { f̃ ∗e }),

and the proper convex and lower semicontinuous perturbation functional, SMH : ((WMH×Y∗MH
×B∗

MH
)×CMH)×Q∗

MH
→

ℜ∪ {+∞}, is then defined by

SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {q∗e})
= JMH(({ve}, {y∗e}, {ν∗e}), {ηe}) + IKMH ((({ve}, {y∗e}, {ν∗e}), {ηe}), {q∗e}),

(16)

withKMH ⊂ ((WMH ×Y∗MH
×B∗

MH
) × CMH) ×Q∗

MH
, the closed convex subset

KMH = {((({ve}, {y∗e}, {ν∗e}), {ηe}), {q∗e}) ∈MMH ×Q∗MH
:

{q∗e} ∈ TMH(MMH) − { f̃ ∗e }}.
(17)

Also, we introduce the marginal or infimal value convex functional µ∗MH : Q∗
MH
→ℜ∪ {+∞},

µ∗MH({q∗e}) = inf
(({ve},{y∗e},{ν∗e}),{ηe})∈WMH×Y∗MH×B∗MH )×CMH

SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {q∗e}).
(18)

Therefore, in accordance with the perturbation duality theory (Ekeland, I. & Temam, R., 1974; Rockafellar, R. T., 1974),
we can now proceed to state the primal, dual and mixed optimization problems of the optimal control theory, in a macro-
hybrid perturbation sense. Indeed, the macro-hybrid optimal control functional, JMH : (WMH ×Y∗MH

×B∗
MH

) × CMH →
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ℜ∪{+∞}, is recovered through a zero perturbation; i.e., JMH(({ve}, {y∗e}, {ν∗e}), {ηe}) = SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {0e}Q∗MH
),

and then the primal evolution macro-hybrid mixed optimal control problem in a perturbation sense is given by

(OCMH)



Find (({ue}, {p∗e}, {λ∗e}), {κe}) ∈MMH :

SMH((({ue}, {p∗e}, {λ∗e}), {κe}), {0e}Q∗MH
)

≤ SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {0e}Q∗MH
),

∀(({ve}, {y∗e}, {ν∗e}), {ηe}) ∈ (WMH ×Y∗MH
×B∗

MH
) × CMH.

Moreover, denoting the dual subspace of the constraint qualification condition closed subspace Q∗MH by QMH ⊂ VMH ,
and the conjugate of perturbation functional SMH by S∗MH : ((W∗

MH × YMH ×BMH) × C∗MH) × QMH → ℜ∪ {+∞}, the
perturbed dual convex functional πMH : QMH →ℜ∪ {+∞} is defined by

πMH({qe}) = S∗MH((({0∗e}V∗{Ωe }
, {0e}Y{Ωe } , {0e}B{Γe } ), {0

∗
e}C∗{Ωe }

), {qe}), (19)

which, in fact, corresponds to the conjugate of the marginal functional µ∗MH . Then, in a dual perturbation sense, the primal
evolution macro-hybrid mixed optimal control problem is the following

(OC∗MH)



Find {pe} ∈ D(πMH) :

−S∗MH((({0∗e}V∗{Ωe }
, {0e}Y{Ωe } , {0e}B{Γe } ), {0∗e}C∗{Ωe }

), {pe})

≥ −S∗MH((({0∗e}V∗{Ωe }
, {0e}Y{Ωe } , {0e}B{Γe } ), {0∗e}C∗{Ωe }

), {qe}),

∀{qe} ∈ QMH.

Further, the corresponding convex-concave Lagrangian, L : ((WMH × Y∗MH
×B∗

MH
) × CMH ) ×QMH → ℜ ∪ {+∞}, is

defined by

LMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {qe}) = −S∗MH(({ve },{y∗e },{ν∗e }),{ηe })
({qe})

=


JMH(({ve}, {y∗e}, {ν∗e}), {ηe}) −

⟨TMH(({ve}, {y∗e}, {ν∗e}), {ηe})

−{ f̃ ∗e }, {qe}
⟩
V∗{Ωe },V{Ωe }

, if (({ve}, {y∗e}, {ν∗e}), {ηe}) ∈DMH,

+∞, if (({ve}, {y∗e}, {ν∗e}), {ηe}) <DMH,

DMH = {(({ve}, {y∗e}, {ν∗e}), {ηe}) ∈MMH : TMH(MMH) − { f̃ ∗e }}.

(20)

Notice that DMH is the projection of set KMH on (WMH × Y∗MH
× B∗

MH
) × CMH. Here, S∗MH(({ve },{y∗e },{ν∗e }),{ηe })

: QMH →
ℜ∪ {+∞} is the conjugate of SMH(({ve },{y∗e },{ν∗e }),{ηe })

= SMH ((({ve}, {y∗e}, {ν∗e}), {ηe}), ·) : Q∗
MH
→ℜ∪ {+∞}, for (({ve}, {y∗e}, {ν∗e}),

{ηe}) ∈ (WMH ×Y∗MH
×B∗

MH
)×CMH. Thereby, in a mixed perturbation sense, the primal evolution macro-hybrid mixed

optimal control problem turns out to be

(MOCMH)



Find ((({ue}, {p∗e}, {λ∗e}), {κe}), {pe}) ∈D(LMH) :

LMH((({ue}, {p∗e}, {λ∗e}), {κe}), {pe})
≤ LMH((({ue}, {p∗e}, {λ∗e}), {κe}), {qe})

≤ LMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {qe}),
∀ ((({ve}, {y∗e}, {ν∗e}), {ηe}), {qe})

∈ ((WMH ×Y∗MH
×B∗

MH
) × CMH) ×QMH.

Lastly, we shall require the classical duality principle of the perturbation duality theory (Rockafellar, R. T., 1974; Ekeland,
I. & Temam, R., 1974),

Lemma 12 In a macro-hybrid sense, the following propositions are equivalent to each other:
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(P1) (({ue}, {p∗e}, {λ∗e}), {κe}) ∈D(JMH) and {pe} ∈ D(πMH) are respective solutions to primal and dual problems (OCMH)
and (OC∗MH), such that in f (OCMH) = sup(OC∗MH);

(P2) ((({ue}, {p∗e}, {λ∗e}), {κe}), {pe}) ∈D(LMH) is a solution to mixed problem (MOCMH).

Moreover, considering that the marginal domainD(µ∗MH) is the projection of the perturbation domainD(SMH) on Q∗
MH

,
we shall require the result (Jeyakumar, V., 1990).

Lemma 13 In a macro-hybrid sense, let the marginal domain D(µ∗MH) be such that ℜ+D(µ∗MH) is a closed subspace,
and let µ∗MH(0B∗MH

) be finite. Then

inf
(({ve},{y∗e},{ν∗e}),{ηe})∈(WMH×Y∗MH×B∗MH )×CMH

SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {0∗e}Q∗MH
)

= max
{qe}∈QMH

(−S∗MH((({0∗e}V∗MH
, {0e}YMH , {0e}BMH ), {0∗e}C∗MH

), {qe}).

(21)

Therefore, we can now establish the macro-hybrid mixed optimality condition for optimal control problem (OMH), gov-
erned by primal evolution macro-hybrid mixed state problem (MHκ) following (Alduncin, G.,2013, Theorem 4.3).

Theorem 14 A primal macro-hybrid mixed state-control (({ue}, {p∗e}, {λ∗e}), {κe}) ∈ MMH is an optimal solution of
constrained evolution primal macro-hybrid mixed problem (OMH-MHκ) if, and only if, there exists a primal qualifying
perturbation function {pe} ∈ QMH such that ((({ue}, {p∗e}, {λ∗e}), {κe}), {pe}) solves the primal macro-hybrid mixed perturbed
control variational problem

(M̃OCMH)



Find (({ue}, {p∗e}, {λ∗e}), {κe}) ∈MMH and {pe} ∈ QMH :

T T
MH
{pe} ∈ ∂JMH(({ue}, {p∗e}, {λ∗e}), {κe})

in (W∗
MH
×YMH ×BMH) × C∗

MH
,

−TMH(({ue}, {p∗e}, {λ∗e}), {κe}) ∈ ∂0({pe}) − { f̃ ∗e },
in Q∗

MH
,

that determines the optimality conditions of perturbed problem (MOCMH).

Proof. Let {q∗e} ∈ Q∗MH
and {λe} > {0e}. From constraint qualification condition (CTMH ), there is an admissible macro-

hybrid mixed state-control (({ve}, {y∗e}, {ν∗e}), {ηe}) ∈MMH such that

{λ−1
e q∗e} ∈ TMH((({ve}, {y∗e}, {ν∗e}), {ηe}) − { f̃ ∗e }.

Thus, ((({ve}, {y∗e}, {ν∗e}), {ηe}), {λ−1
e q∗e}) ∈ KMH, SMH((({ve}, {y∗e}, {ν∗e}), {ηe}), {λ−1

e q∗e}) = JMH(({ve}, {y∗e}, {ν∗e}), {ηe}) < ∞,
and by marginal functional definition (18), {λ−1

e q∗e} ∈ D(µ∗MH) and D(µ∗MH) = TMH(KMH) − { f̃ ∗e }. Thereby, Q∗
MH
=

ℜ+D(µ∗MH), and conjugate duality result (21) holds true. On the other hand, if (({ue}, {p∗e}, {λ∗e}), {κe}) ∈ MMH is a
solution of primal problem (OCMH), then there is a solution of dual problem (OC∗MH), {pe} ∈ QMH. Therefore, by Lemma
12, ((({ue}, {p∗e}, {λ∗e}), {κe}), {pe}) ∈ (WMH × Y∗MH

) × QMH is a solution of macro-hybrid primal-dual problem (OCMH)-
(OC∗MH) if, and only if, ((({ue}, {p∗e}, {λ∗e}), {κe}), {pe}) ∈ DMH × QMH is a solution of minimax problem (MOCMH), for

which primal macro-hybrid mixed state-control-perturbation problem (M̃OCMH) states its optimality conditions. 2

4. 2 Dual Optimality Conditions

We next proceed with the dual optimality part of the theory, for the optimal control problem (OMH) governed by the dual
macro-hybrid mixed state problem (MH∗κ), with associated state dual problem (DMHκ ) (cf. Alduncin, G., 2013, Section
4.2). In this subsection, the solvability conditions of Theorems 6 and 7 will be in force. Now, as the macro-hybrid mixed
state-control operator T ∗

MH
: (VMH ×X∗MH

) × CMH → YMH, we have

T ∗
MH

(({ve}, {y∗e}, {ν∗e}), {ηe})

=

{dy∗e
dt

}
+ {yy∗e } − {Λeve} + {Beηe}, {yy∗e } ∈ {G∗e(y∗e)},

(22)
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and the closed convex constraint domain of the dual problem is

M∗
MH
= {(({ve}, {y∗e}), {ηe}) ∈ (VMH ×X∗MH

) × CMH :

{ve} ∈
∏E

e=1D(F̃e + ΨeC ◦ πeC ), {y∗e} ∈
∏E

e=1D(φ̃∗e),

{ηe} ∈ CcdMH }.

(23)

For the constraint qualification dual condition, we assumed that there is a closed subspace QMH ⊂ YMH such that

(CT ∗
MH

) QMH ⊂ ℜ+(T ∗
MH

(M∗
MH

) + {ge}),

and introduce the closed convex subsetK∗
MH
⊂ ((VMH ×X∗MH

) × CMH) ×QMH,

K∗
MH
= {((({ve}, {y∗e}), {ηe}), {qe}) ∈M∗

MH
×QMH :

{qe} ∈ T ∗MH
(({ve}, {y∗e}), {ηe}) + {ge}}.

(24)

Then, we define the proper convex and lower semicontinuous perturbation functional, S∗MH : ((VMH × X∗MH
) × CMH) ×

QMH →ℜ∪ {+∞},

S∗MH((({ve}, {y∗e}), {ηe}), {qe})
= JMH(({ve}, {y∗e}), {ηe}) + IK∗MH

((({ve}, {y∗e}), {ηe}), {qe}).
(25)

Moreover, we introduce the marginal or infimal value convex functional µMH : QMH →ℜ∪ {+∞},

µMH({qe}) = inf
(({ve},{y∗e}),{ηe})∈VMH×X∗MH )×CMH

S∗MH((({ve}, {y∗e}), {ηe}), {qe}).
(26)

Thereby, following the perturbation duality theory (Ekeland, I. & Temam, R., 1974; Rockafellar, R. T., 1974), we can
state the primal, dual and mixed optimization problems of the present dual theory, in a macro-hybrid perturbation sense.
That is, the macro-hybrid optimal control functional, JMH : (VMH × X∗MH

) × CMH → ℜ ∪ {+∞}, is given in terms of a
zero perturbation; i.e., JMH(({ve}, {y∗e}), {ηe}) = SMH((({ve}, {y∗e}), {ηe}), {0e}QMH ), and then the dual evolution macro-hybrid
mixed optimal control problem in a perturbation sense is expressed by

(ÕCMH)



Find (({ue}, {p∗e}), {κe}) ∈M∗
MH

:

S∗MH((({ue}, {p∗e}), {κe}), {0e}QMH )

≤ S∗MH((({ve}, {y∗e}), {ηe}), {0e}QMH ),

∀(({ve}, {y∗e}), {ηe}) ∈ (VMH ×X∗MH
) × CMH.

Also, the perturbed dual convex functional π∗MH : Q∗
MH
→ℜ∪ {+∞} is

π∗MH({q∗e}) = SMH((({0e}V{Ωe } , {0
∗
e}Y∗{Ωe }

), {0e}C{Ωe } ), {q
∗
e}), (27)

where Q∗
MH
⊂ Y∗

MH
is the dual subspace of the perturbation QMH, and SMH : ((VMH × X∗MH

) × CMH) × Q∗MH →
ℜ∪ {+∞} is the dual perturbation conjugate. Then the dual evolution macro-hybrid mixed optimal control problem in a
dual perturbation sense is

(ÕC∗MH)



Find {s∗e} ∈ D(π∗MH) :

−SMH((({0e}V{Ωe } , {0∗e}Y∗{Ωe }
), {0e}C{Ωe } ), {s∗e})

≥ −SMH((({0e}V{Ωe } , {0∗e}Y∗{Ωe }
), {0e}C{Ωe } ), {q∗e}),

∀{q∗e} ∈ Q∗MH
.
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Further, the convex-concave dual perturbed Lagrangian, L∗MH : ((VMH ×X∗MH
) ×CMH)×Q∗

MH
→ℜ∪ {+∞}, is given by

L∗MH((({ve}, {y∗e}), {ηe}), {q∗e}) = −SMH(({ve },{y∗e }),{ηe })
({q∗e})

=


JMH(({ve}, {y∗e}), {ηe}) −

⟨{q∗e},T ∗MH
(({ve}, {y∗e}), {ηe})

+{ge}
⟩
Y∗MH ,YMH

, if (({ve}, {y∗e}), {ηe}) ∈D∗MH
,

+∞, if (({ve}, {y∗e}), {ηe}) <D∗MH
,

D∗
MH
= {(({ve}, {y∗e}), {ηe}) ∈M∗

MH : T ∗
MH

(M∗
MH

) + {ge} ⊂ QMH},

(28)

the set D∗
MH

being the projection of set K∗
MH

on (VMH × X∗MH
) × CMH. Here SMH(({ve }, {y∗e}),{ηe}) : Q∗

MH
→ ℜ ∪ {+∞}

is the conjugate of functional S∗MH(({ve },{y∗e }),{ηe })
= S∗MH((({ve}, {y∗e}), {ηe}), ·) : QMH → ℜ ∪ {+∞}, (({ve}, {y∗e}), {ηe}) ∈ (VMH

×X∗
MH

)×CMH. Consequently, in a macro-hybrid mixed perturbation sense, the dual evolution macro-hybrid mixed optimal
control problem becomes

(MOC∗MH)



Find ((({ue}, {p∗e}), {κe}), {s∗e}) ∈D(L∗MH) :

L∗MH((({ue}, {p∗e}), {κe}), {s∗e})
≤ L∗MH((({ue}, {p∗e}), {κe}), {q∗e})

≤ L∗MH((({ve}, {y∗e}), {ηe}), {q∗e}),
∀ ((({ve}, {y∗e}), {ηe}), {q∗e})

∈ ((VMH ×X∗MH
) × CMH) ×Q∗

MH
.

For this dual case, we shall also require the corresponding classical duality principle of the perturbation duality theory
(Rockafellar, R. T., 1974; Ekeland, I. & Temam, R., 1974),

Lemma 15 In a macro-hybrid sense, the following propositions are equivalent to each other:

(P3) (({ue}, {p∗e}), {κe}) ∈ D(JMH) and {s∗e} ∈ D(πMH) are solutions to primal and dual perturbed problems (ÕCMH) and

(ÕC∗MH), respectively, such that sup(ÕC∗MH) = in f (ÕCMH);

(P4) ((({ue}, {p∗e}), {κe}), {s∗e}) ∈D(L∗MH) is a solution to mixed perturbed problem (MOC∗MH).

Moreover, taking into account that the marginal domainD(µMH) is the projection of the dual perturbation domainD(S∗MH)
on QMH, we shall also require the result (Jeyakumar, V., 1990).

Lemma 16 In a macro-hybrid sense, let the marginal domain D(µMH) be such that ℜ+D(µMH) is a closed subspace,
and let µMH(0BMH ) be finite. Then

inf
(({ve},{y∗e},{νe}))∈(VMH×X∗MH )×CMH

S∗MH((({ve}, {y∗e}, {νe})), {0e}QMH )

= max
{q∗e}∈Q∗MH

(−SMH((({0∗e}V∗MH
, {0e}YMH ), {0∗e}C∗MH

), {q∗e}).
(29)

Therefore, the macro-hybrid mixed optimality condition for optimal control problem (OMH), governed by dual evolution
macro-hybrid mixed problem (MH∗κ), is stated as follows (cf. Theorem 14).

Theorem 17 A dual macro-hybrid mixed state-control (({ue}, {p∗e}), {κe}) ∈ M∗
MH

is an optimal solution of constrained
evolution dual macro-hybrid mixed problem (OMH-MH∗κ) if, and only if, there exists a dual qualifying perturbation
function {s∗e} ∈ Q∗MH

such that ((({ue}, {p∗e}), {κe}), {s∗e}) solves the dual macro-hybrid mixed control variational problem

(M̃OC∗MH)



Find (({ue}, {p∗e}), {κe}) ∈M∗
MH

and {s∗e} ∈ Q∗MH
:

T ∗T
MH
{s∗e} ∈ ∂JMH(({ue}, {p∗e}), {κe})

in (V∗
MH
×XMH) × C∗

MH
,

−T ∗
MH

(({ue}, {p∗e}), {κe}) ∈ ∂0∗({s∗e}) + {ge},
in QMH.

that gives the optimality conditions of perturbed control problem (MOC∗MH).
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5. Primal and Dual Macro-Hybrid Variational Applications

In this final section, we proceed to apply the evolution macro-hybrid mixed optimal control theory developed in the
previous sections. Here, we shall show how macro-hybridization works out, in particular, for the constrained mechanical
evolution state systems treated in (Alduncin, G., 2013), of a primal nonlinear diffusion process and a dual quasistatic
elastoviscoplastic deformation phenomena, which exemplified therein the variational optimal control theory in the mixed
sense.

We refer to (Alduncin, G., 2015) for a recent application of the mixed theory, (Alduncin, G., 2013), to a constrained
transport-flow mechanical state system in a Hilbert functional framework.

5.1 Mixed Distributed Control Nonlinear Diffusion State System

Considering the spatial bounded domain Ω stated in the preliminaries, decomposed into disjoint and connected subdo-
mains {Ωe} with Lipschitz continuous internal boundaries Γe = ∂Ωe ∩ Ω, e = 1, 2, ..., E, and interfaces Γek = Γe ∩ Γk,
1 ≤ e < k ≤ E, we illustrate the primal macro-hybrid mixed optimal control theory considering a mixed distributed intrin-
sic control nonlinear diffusion problem, modeled by a variational primal evolution state system, with primal conservation,
and dual constitutivity, distributed constraint and transmission equations (cf. Alduncin, G., 2013, Section 6.1)

(MHκd )



Find {ue} ∈WMHd and ({w∗e}, {b∗e}, {p∗e}) ∈ Y∗MHd
:

−({−gradT w∗e} + IT
VMHd

{b∗e} + IT
VMHd

{p∗e} + {πT
Γde
λ∗de
})

∈
{due

dt

}
+ ∂I{̂ue} ◦ [πdPe

]({ue}) + {πT
dD

ŵne } + {B∗de
κde },

in V∗
MHd
,

({−grad ue},IVMHd
{ue},IVMHd

{ue})

∈ ({w∗e}, {∂φ∗e(b∗e)}, {∂ϕ∗e(p∗e})), in YMHd ,

{ue(0)} = {ue0 };
and {λ∗de

} ∈ B∗
Γd

satisfying the dual synchronizing condition

{πΓde
ue} ∈ ∂IQ∗d ({λ∗de

}), in BΓd .

Here, the physical dependent fields are: the diffusive field of a transport process {ue} (e.g. of mass concentration or
temperature), the linear flux vector field {w∗e}, the divergence of the nonlinear flux vector field {b∗e} = {div w̃∗e}, and
the distributed intrinsic control source field {p∗e} implemented by a maximal monotone mechanism {∂ϕ∗e} (Duvaut, G.
& Lions, J.-L., 1972). The variational operators are the gradient grad ∈ L(VMHd ,YMHd ) with transpose gradT ∈
L(Y∗

MHd
,V∗

MHd
), and the identity operator IVMHd

: VMHd → VMHd with transpose IT
V∗

MHd

: V∗
MHd
→ V∗

MHd
. Also, the

nonlinear diffusion constitutive primal equation of the decomposed system, {b∗e} ∈ {∂φe(ue)} (⇐⇒ {ue} ∈ {∂φ∗e(b∗e)}, by
convex dualization) is determined by the local potentials and differentials, e = 1, 2, ..., E,

φe(ue) =
1
2

∫
Ωe

∥grad ue∥2dΩe +
1
p

∫
Ωe

∥grad ue∥pdΩe, (30)

∂φe(ue) = gradT (1 + ∥grad ue∥p−2)grad ue, (31)

with nonlinear flux vector fields w̃∗e = −∥grad ue∥p−2 grad ue. Thus, the local diffusion total flux vector fields turn out to
be the sum we + w̃e.

On the other hand, the diffusion macro-hybrid field {λ∗de
} ∈ B∗

Γd
corresponds to the variational internal boundary normal

linear flux trace {δ∗
Γde

we} ∈ Q∗
d
, which satisfies the dual transmission admissibility of interface continuity of (3). Moreover,

from Lemma 1, {πΓde
ue} ∈ BΓd is then the variational internal boundary diffusive trace, belonging to the primal transmis-

sion admissibility subspace of interface continuity Qd of (2). Hence, the mechanical communication of the sub-systems
is guaranteed; i.e., the transmission conditions across their interfaces

ue = uk,

w∗e ·ne = −w∗
k
·nk,

 across Γek × (0,T ), (32)
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of primal-diffusive and dual-linear flux trace continuity are variationally satisfied.

5. 1. 1 Primal Evolution Duality Principle

For an existence analysis of primal evolution macro-hybrid mixed nonlinear diffusion state problem (MHκd ), we first
introduce, as an appropriate stationary mixed functional framework of primal {ue}-diffusive fields, and dual {we}-linear
fluxes, {b∗e}-nonlinear fluxes divergence and {p∗e}-source control fields, the Sobolev reflexive Banach spaces (Adams, R.
A. & Fournier, J. J. F., 2003).

V{Ωe}d =
∏E

e=1 W1,p(Ωe), 2 < p < +∞,

Y∗{Ωe}d
=
∏E

e=1 Lq∗(Ωe) × (W1,p(Ωe))∗ × (W1,p(Ωe))∗, q∗ = p/(p − 1).
(33)

Here, Y∗{Ωe}d
corresponds to the topological dual of the space Y{Ωe}d =

∏E
e=1 Lp(Ωe) ×W1,p(Ωe) × W1,p(Ωe). Then, as

boundary spaces we have B{∂Ωe}d =
∏E

e=1 W1/q∗,p (∂Ωe) and its dual B∗{∂Ωe}d
=
∏E

e=1 W−1/q∗,q∗ (∂Ωe), for which the macro-
hybrid primal and dual boundary compatibility conditions of the theory, C[πΓe ] and C[δ∗

Γe
], are satisfied.

Now, we can apply the primal composition duality principle of Theorem 2, assuming the proper condition for local control
mechanisms (Duvaut, G. & Lions, J.-L., 1972)

(C(Ge,Λe)d ) intD(ϕe)
(
⊂ W1,p(Ωe)

)
, ∅, e = 1, 2, ..., E.

Indeed, the evolution macro-hybrid compatibility condition (C({Ge},[Λe])) of the primal theory reduces in this case to above
conditions, and then nonlinear diffusion state problem (MHκd ) is solvable if, and only if, the primal evolution macro-
hybridized state problem

(Pκd )



Find {ue} ∈WMHd :

0 ∈
{due

dt

}
+ {gradT grad(ue)} + {∂φe(ue)} + {∂ϕe(ue)}

+∂(I{̂ue} ◦ [πdPe
])({ue)}) + {πT

dD
ŵne } + ∂(IQd ◦ [πΓe ])({ue})

+{B∗de
κde }, inVMHd ,

{ue(0)} = {ue0 },

is solvable.

Hence, assuming that corresponding primal existence conditions (C1φe ) and (C2φe ), e = 1, 2, ..., E, are fulfilled, the
variational solvability results of Theorems 2 and 3 apply to nonlinear diffusion state problems (Pκd ) and (Mκd ). Notice
that in this case primal subdifferential sum (9) is valid under the proper conditions D({ϕe}) , ∅, for admissible control
mechanisms, and that, in the classical sense, the nonlinear diffusion variational operators ∂φe : W1,p

0 (Ωe) → W−1,q∗(Ωe)
are Lipschitz continuous, bounded, strongly monotone and coercive (Lions, J. L., 1969).

5. 1. 2 Primal Optimality Condition

With respect to primal evolution nonlinear diffusion state system (MHκd ), the cost functional of the macro-hybrid mixed
theory, (5), corresponds to JMHd : (VMHd ×Y∗MHd

×B∗
Γd

) × CMHd →ℜ∪ {+∞}, with the specific form

JMHd ({ve}, ({v∗e}, {d∗e}, {q∗e}, {ν∗de
}), {ηde })

=

∫ T

0
(gd1 ({ve}) + gd2 ({v∗e}, {d

∗
e}, {q∗e}, {ν∗de

})) + jd({ηde }) dt,
(34)

whose arguments are the primal {ve}-diffusive field, the dual ({v∗e}, {d∗e}, {q∗e})-linear flux-nonlinear flux divergence-intrinsic
source control field, and the dual transmission normal linear flux field {ν∗de

} of the governing state system, as well as the
own optimal control field {ηde }.
Assuming as an optimal control purpose, for the nonlinear diffusion state system, to resemble desired target profiles like
given primal diffusive field {̃ve} ∈ VMHd = Lp(0,T ; V{Ωe}d ), dual linear flux, nonlinear flux divergence and intrinsic source
control fields ({̃v∗e}, {d̃∗e}, {q̃∗e}) ∈ Y∗MHd

= Lq∗(0,T ; Y∗{Ωe}d
) and dual transmission field {̃ν∗de

} ∈ B∗
Γd
= Lq∗(0,T ; B∗{Γe}d

), the
natural cost functions would be
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gd1 (t; {ve(t)}) = wgd1
(t)

1
p
∥{ve(t)} − {̃ve(t)}∥pV{Ωe }d

,

gd2 (t; ({v∗e(t)}, {d∗e(t)}, {q∗e(t)}), {ν∗e(t)})

= wgd2
(t)

1
q∗
∥({v∗e(t)}, {d∗e(t)}, {q∗e(t)}) − ({̃v∗e(t)}, {d̃∗e(t)}{q̃∗e(t)})∥q

∗

Y∗{Ωe }d

+wgd3
(t)

1
q∗
∥{ν∗e(t)} − {̃ν∗de

(t)}∥q
∗

B∗{Γe }d
.

(35)

Similarly, considering the optimal control Hilbert space CMHd =HMHd ≡ L2(0, T ); L2
{Ωe}

),

jd(t; {ηde (t)}) = w jd (t)
1
2
∥{ηde (t)}∥2L2

{Ωe }
, {ηde } ∈ CadMHd

⊂ CMHd . (36)

Here, wgd1
,wgd2

,wgd3
,w jd are given bounded and strictly positive weight coefficients belonging to L∞(0,T ). Furthermore,

the admissible controls set CadMHd
could be defined according to technological constraints as obstacle models (Duvaut, G.

& Lions, J.-L., 1972).

Therefore, cost functional (34) turns out to be

J̃d(({vde }, ({v∗e}, {d
∗
e}, {q∗e}), {ν∗de

}), {ηde }) =
1
p
∥wgd1

({ve} − {̃ve})∥pVMHd

+
1
q∗
∥wgd2

(({v∗e}, {d
∗
e}, {q∗e}) − ({ṽ∗e}, {d̃∗e}, {q̃∗e}))∥

q∗

Y∗MHd

+
1
q∗
∥wgd3

({ν∗de
} − {̃ν∗de

})∥q
∗

B∗
Γd

+
1
2
∥w jd {ηde }∥2HMHd

(37)

that clearly satisfies the qualifying condition (CJMH ) of Theorem 9, and the optimization problem (OMH) governed by the
nonlinear diffusion process attains a solution.

Notice that in this case the macro-hybrid mixed state-control-perturbation variational problem (M̃OCMH) of Theorem
14, determines the optimality condition of primal optimal control problem (OMH)-(MHκd ), governed by the nonlinear
diffusion state system. Also the macro-hybrid mixed state-control operator TMH : (WMH ×Y∗MH

×B∗
Γ
)×CMH → V∗MH

,
(14), is given by

TMHd (({ve}, ({v∗e}, {d∗e}, {q∗e}, {ν∗de
}), {ηde })

=

{dve

dt

}
+ {v∗eve

} + {−gradT v∗e} + {d
∗
e} + {q∗e}

+{πT
Γde
ν∗de
} + {B∗eηde }, {v∗eve

} ∈ {∂I{̂ue} ◦ πdP )(ve)},

(38)

with respect to the identifications {ΛT y∗e} ∼ {−gradT u∗e + s∗e + x∗e}, {∂(F̃e + ΨCe ◦πCe )({ve}) ∼ {∂(I{ûe} ◦ πeP )({ve}), and the
right hand side term −{ f̃e

∗} ∼ {πT
eD

ŝ∗e}.
5.2 Boundary Constrained Quasistatic Elastoviscoplastic State System

We next apply the dual macro-hybrid mixed optimal control theory to a boundary constrained quasistatic elastoviscoplastic
problem in the domain Ω ⊂ ℜn, n ∈ {1, 2, 3}, decomposed into disjoint and connected subdomains {Ωe} with Lipschitz
continuous internal boundaries Γe = ∂Ωe ∩Ω, e = 1, 2, ..., E, and interfaces Γek = Γe ∩ Γk, 1 ≤ e < k ≤ E.

Let us consider a solid body occupying Ω, with boundary ∂Ω and unit outward normal vector ν, undergoing small strains
and displacements along the time interval (0,T ), with an elastoviscoplastic constitutive material (Le Tallec, P., 1990), and
a bilateral boundary contact constraint modeled by Tresca’s law of dry friction. The dual macro-hybrid mixed variational
quasistatic contact problem is given by the variational dual evolution state problem, with local primal quasistatic equi-
librium {we}-velocity equation, and local dual evolution elastoviscoplastic constitutivity {S∗e}-stress and internal boundary
{λ∗e}-transmission equations (cf. (Alduncin, G., 2013), Section 6.2)
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(M∗
κc

)



Find {we} ∈ VMHc and {S∗e} ∈ X∗MHc
:

−{HT
e Se} − {πT

Γe
λ∗ce
} ∈ {∂F̃e({we}) − {̃b∗e}, inV∗

MHc
,

{Hewe} ∈
{

Ae
dS∗e
dt

}
+ {∂Φ∗e(S∗e)} + {Bceκce }, in YMHc ,

{S∗e(0)} = {S∗e0
},

and {λ∗ce
} ∈ B∗

Γc
satisfying the dual synchronizing condition

{πΓe we} ∈ ∂IQ∗c ({λ
∗
ce
}), in BΓc .

Here, for a.e. t ∈ (0,T ), the local primal subdifferential ∂F̃e : V(Ωe)→ 2V∗(Ωe) is such that (Ernst, E., Théra, M., 2009)

∂F̃e = ∂(I{ŵe(·,t)} ◦ πDνe ) + ∂(I{0e} ◦ πCνe ) + ∂(ΨCτe , f
∗
e (·,t) ◦ πCτe ),

F̃e = I{ŵe(·,t)} ◦ πDνe + I{0e} ◦ πCνe + ΨCτe , f
∗
e (·,t) ◦ πCτe ,

D(F̃e) = Kŵe(·,t),0 = {ve ∈ V(Ωe) : πCνe ve = ŵe(·, t) in B(∂ΩDe ),

πCνe ve = 0 in B(∂ΩCe )}.

(39)

Also, as dual variational operators we have the elastic compliance operator [Ae] ∈ L(Y{Ωe},Y{Ωe}) (symmetric and positive
definite), and the dual dissipation subdifferential [∂Φ∗e] : Y∗{Ωe}

→ 2Y{Ωe } of the conjugate superpotentials Φ∗e : Y∗(Ωe) →
ℜ∪ {+∞}, e = 1, 2, ..., E, the yield functionals.

On the other hand, the local right-hand side term is

{̃b∗e} = −{π
T
Nc

ŝe} + {b∗e} ∈
E∏
e

Lp(0,T ;R(−HT
e )), (40)

where {b∗e} corresponds to the local body force field, and R(−HT
e ) is the range of the variational symmetric total small

strain rate transpose −HT
e = −1/2(∇we + ∇we

T ) ∈ L(Y∗(Ωe),V∗(Ωe)). Further {̂se} and {ŵe} are the local Neumann and
Dirichlet conditions of negative tractions and velocities prescribed on disjoint sub-boundaries (∂ΩNe ∩ ∂Ω) × (0,T ) and
(∂ΩDe ∩ ∂Ω) × (0,T ), respectively. Notice that the Tresca’s law constraint of the problem on the complementary disjoint
contact sub-boundaries ∂ΩCe ∩ ∂Ω, with prescribed shear bound functions f ∗e > 0, e = 1, 2, ..., E, locally defined by

wνe ∈ ∂Ψ∗Ce,0e
(sνe ) = {0e},

wτe ∈ ∂Ψ∗Ce, f ∗e (·,t)(sτe ) =


{0e}, ∥sτe∥ < f ∗e (·, t),
{ξesτe : ξe ≤ 0}, ∥sτe∥ = f ∗e (·, t),
∅, otherwise,

(41)

is variationally incorporated by convex compositional dualization, of the primal subdifferentials ∂(I{0e} ◦ πCνe ) of normal
impenetrability, and tangential friction dual subdifferentials ∂(ΨCτe , f

∗
e (·,t) ◦ πCτe ), (39)1. Here wνe = we·νe and wτe =

(I − νe ⊗ νe)we are the normal and tangential velocity components, and sνe = −Seνe·νe and sτe = −(I − νe ⊗ νe)Seνe the
contact pressure and tangential negative tractions.

Furthermore, in this deformation case the macro-hybrid field {λ∗ce
} ∈ B∗

Γc
results to be the variational internal boundary

traction trace {δ∗
Γce

Se} ∈ Q∗c, satisfying the dual transmission admissibility of interface continuity (3). In addition, from
Lemma 1, {πΓce

we} ∈ BMHc is the variational internal boundary velocity trace, belonging to the primal transmission
admissibility subspace of interface continuity Qc of (2). In this manner the mechanical communication of the sub-systems
is guaranteed; i.e. the transmission conditions across their interfaces, of primal-velocity and dual-traction trace continuity,

we = wk,

−S∗eνe·νe = S∗
k
νk·νk,

 across Γek × (0,T ), (42)
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are variationally fulfilled.

5. 2. 1 Dual Evolution Duality Principle

For a duality principle of problem (M∗
κc

), we apply Theorem 6 assuming the deformation macro-hybrid classical compat-
ibility conditions

(C(F̃∗e ,−HT
e )) intD(F̃∗e ) ∩ R(−HT

e ) , ∅, e = 1, 2, ..., E,

under which the corresponding compositional operator equalities −Λ∂(F̃e+ΨCe◦πCe )
∗◦(−ΛT

e ) = ∂((F̃e+ΨCe◦πCe )
∗◦(−ΛT

e ))
hold true. Then the solvability of dual macro-hybrid mixed state problem (M∗

κc
) is equivalent to the solvability of its

evolution dual macro-hybridized state problem

(D̃κc )



Find {S∗e} ∈ X∗MHc
:

{0e} ∈
{

Ae
dS∗e
dt

}
+ {∂Φ∗e(S∗e)} + {∂(F̃∗e ◦ (−HT

e ))(S∗e + R∗b̃∗e
)}

+{Bceκce }, in YMHc ,

{Se(0)} = {Se0 }.

Furthermore, assuming the local Moreau-Rockafellar-Robinson condition

(C(Φ∗e ,H̃b̃∗e
)) intD(Φ∗e) ∩D(H̃b̃∗e

) , ∅, e = 1, 2, ..., E,

where H̃b̃∗e
(·) = (F̃∗e ◦ (−HT

e ))(· + R∗b̃∗e
), with R∗b̃∗e

a fixed −HT
e -preimage of b̃∗e , the dual subdifferential sum rule ∂φ∗e ≡

∂(Φ∗e + H̃b̃∗e
) = ∂Φ∗e + ∂H̃b̃∗e

holds true, and we can apply dual existence Theorems 6 and 7 to dual state problem (D̃κc ),
once it is expressed as the classical evolution subdifferential inclusion

( ˜̃Dκc )


Find {S∗e} ∈ X∗MHc

:

{0e} ∈
{

Ae
dSe

dt

}
+ {∂φ∗e(S∗e)} + {Bceκce }, in YMHc ,

{S∗e(0)} = {S∗e0 }.

Therefore, under the corresponding coercivity and boundedness dual conditions, dual evolution macro-hybrid mixed state

control problem (M∗
κc

) has a solution if, and only if, dual evolution state problem ( ˜̃Dκc ) has a solution. We refer to (Le
Tallec, P., 1990; Temam, R., 1986; Perzyna, P., 1966; Sofonea, M., Renon, N., Shillor, M., 2004; Alduncin, G., 2011) for
some representative elastoviscoplastic constitutive models.

5. 2. 2 Dual Optimality Condition

Regarding the optimal control problem of the theory, governed by the variational dual evolution macro-hybrid mixed
deformation contact process (M∗

κc
), the general cost functional (5) corresponds to JMHc : (VMHc × Y∗MHc

) × CMHc →
ℜ∪ {+∞}, of the specific form

JMHc(({ve}, {T∗e }), {ηce }) =
∫ T

0
(g1({ve}) + g2({T∗e }) + j({ηce })) dt, (43)

for the primal {ve}-velocity and dual {T∗e }-stress fields. Further, in order to exemplify the cost functions, we assume that
the control purpose is now to drive the state of the system as close as possible to some desired target profiles. For example,
to a given primal velocity target field {̃ve} ∈ VMHc = Lp(0,T ; V{Ωe}c ) and a dual stress target field {T̃∗e } ∈ Y∗MHc

= Lq∗(0,T ;
Y∗{Ωe}c

), introducing the natural common cost functions, for {ve} ∈ VMHc and {T∗e } ∈ Y∗MHc
,

g1(t; {ve(t)}) = wg1 (t)
1
p
∥{ve(t)} − {̃ve(t)}∥pV{Ωe }c

,

g2(t; {T∗e (t)}) = wg2 (t)
1
q∗
∥{T∗e (t)} − {T̃∗e (t)}∥q

∗

Y∗{Ωe }c
,

(44)
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and for the Hilbert control space CMH c =HMHc ≡ L2(0, T ; L2
{Ωe}

) the function

j(t; {ηe(t)}) = w j(t)
1
2
∥{ηe(t)}∥2L2

{Ωe }
, {ηe} ∈ CadMHc

⊂ CMH c. (45)

Here, wg1 ,wg2 ,w j ∈ L∞(0,T ) are given bounded and strictly positive weight coefficients. Also, as mentioned in the
previous example, the set of admissible controls, CadMHc , could respond to technological constraints via obstacle models
(Duvaut, G. & Lions, J.-L., 1972). Thereby, cost functional (43) turns out to be

J̃MHc (({ve}, {T∗e }), {ηe}) =
1
p
∥wg1 ({ve} − {̃ve})∥pVMHc

+
1
q∗
∥wg2 ({Te} − {T̃e})∥q

∗

Y∗MHc
+

1
2
∥w j{ηe}∥2H∗MHc

,

(46)

which satisfies qualifying condition (CJMH ), and then optimization problem (OMH) governed by this elastoviscoplastic
deformation contact process has a solution in accordance with Theorem 9.

Lastly, with respect to the optimality condition of this deformation governing process, as established by Theorem 7, the
dual optimal control problem (OMH)-(M∗

κc
) has the optimality condition (MOC∗MH), stated by the macro-hybrid mixed

state-control-perturbation problem (M̃OC∗MH). For this example, the dual macro-hybrid mixed state-control operator
T ∗
MH c

: (VMHc ×X∗MHc
) × CMHc → YMHc , (22), is such that

T ∗
MH c

(({ve}, {T∗e }), {ηce })

=

{
Ae

dT∗e
dt

}
+ {v∗e {ve}} − {Heve} + {Bceηce }, {v∗e {ve}} ∈ {∂Φ

∗
e(T∗e )},

(47)

according to the theoretical relations {−Λeue} ∼ {−Heve} and {∂G∗e(p∗e)} ∼ {∂Φ∗e(T∗e )}, and with the right hand side term
identification {ge} ∼ {0e}.
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