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Abstract

This paper is a complement of our work in (Cui & Li, 2011) where we have established the global subsonic circulatory
solution for the polytropic gas. In this paper, we are concerned with the global stability of the 2-D subsonic circulatory
flow around a perturbed circular body for the isothermal gas. The flow is assumed to be isothermal, isentropic, irrotational
and described by a steady Euler equations, which can be reduced into a second order quasilinear elliptic equation in a
exterior domain with suitable physical conditions. The unique existence and the state of the flow at infinity are obtained
under nature physical assumption.
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1. Introduction

We are concerned with the global stability problem of a 2-D perturbed subsonic circulatory flow for the isothermal gas. In
(Courant & Friedrichs, 1948) the special subsonic circulatory flows are constructed when the obstacle is regular circular
body. If the obstacle is suitably perturbed, the global subsonic circulatory flow is stable? L.Bers (see Bers, 1945) uses the
pesudo-complex analysis method to obtain the global existence of the subsonic circulatory flow under the conditions that
the adiabatic exponent γ = −1. In (Cui & Li, 2011), we have established the global existence of the subsonic circulatory
flows solutions for inviscid gases with adiabatic exponent 1 < γ < 3. In the present paper, our goal is to establish the
global existence and stability of subsonic circulatory flows solution for the subsonic isothermal gas around a perturbed
circular body. The so-called isothermal gas means that the pressure P and the density ρ of gas are described by the state
equation P = Aρ for some constant A > 0 (see Cui & Yin, 2007 and the references therein). In this case, the sound speed
is a constant independent of the density ρ.

We will use 2-D steady isentropic Euler system to describe the motion of gas
∂1(ρu1) + ∂2(ρu2) = 0,
∂1(P + ρu2

1) + ∂2(ρu1u2) = 0,
∂1(ρu1u2) + ∂2(P + ρu2

2) = 0,
(1)

where ρ > is the density, u = (u1, u2) is the velocity, and P = P(ρ) is the pressure of the flow. For the isothermal gas, the
state equation is P = Aρ, A > 0 is a fixed constant. In this case, c(ρ) =

√
A is the local sound speed.

In addition, we assume the gas is irrotational, that is

∂x2 u1 = ∂x1 u2. (2)

As in (Courant & Friedrichs, 1948), the last two equations in (1) together (2) yield the Bernoulli’s law:

1
2
|u|2 + A ln ρ = B,

here the term A ln ρ is the specific enthalpy for the isothermal gas and B is the Bernoulli’ constant.

We now give a mathematical description on the subsonic circulatory flows for the isothermal gas around the circular body

{(x1, x2) : r =
√

x2
1 + x2

2 ≤ 1 + δ(x)}. Set Ω = {r : r > 1 + δ(x)} with δ(x) satisfies

supp(δ(x)) ⊂ {x :
2
3
≤ r ≤ 3

2
}, ∥δ(x)∥C2,α(R2) ≤ ε, (3)
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for some α ∈ (0, 1) and ε ∈ (0, 1).

The solid wall ∂Ω is assumed to be impermeable

(u1, u2) · ν⃗ = 0 on ∂Ω, (4)

where ν⃗ stands for the unit exterior normal to the boundary ∂Ω.

As in (Cui & Li, 2011), through application of Green formula on the first equation in (1), the mass-flux of the circulatory
flow should be invariant along each radial ray l which starts from the boundary ∂Ω, so the flow should satisfy the following
generalized mass-flux condition

lim
r→∞

1
lnr

∫
l
(ρu1, ρu2) · n⃗ds = e

B
A , (5)

here n⃗ is the out normal of l.

Based on the first equation in (1) and the condition (4), we can introduced a stream function ψ such that

ψx1 = ρu2, ψx2 = −ρu1, with ψ = m on ∂Ω, (6)

here m is some fixed constant.

Thus the irrotationality can be written as div( 1
ρ
∇ψ) = 0. Notice that from the Bernoulli’s law we can solve

∂1ρ =
1

ρ(2B − 2A ln ρ − A)
(
∂1ψ∂

2
11ψ + ∂2ψ∂

2
12ψ
)
, ∂2ρ =

1
ρ(2B − 2A ln ρ − A)

(
∂1ψ∂

2
12ψ + ∂2ψ∂

2
22ψ
)
,

with the term ρ(2B − 2A ln ρ − A) = ρ(|∇ψ
ρ
|2 − A) < 0 holds for the subsonic flow.

Therefore, if ψ ∈ C2(Ω) ∩C0(Ω), the nonlinear problem (1)-(5) is equivalent to
(
(∂2ψ)2 − Aρ2)∂2

11ψ − 2∂1ψ∂2ψ∂
2
12ψ +

(
(∂1ψ)2 − Aρ2)∂2

22ψ = 0, in Ω,
1
2 |∇ψ|2 + Aρ2 ln ρ = Bρ2, in Ω,
ψ = m, on ∂Ω,

lim|x|→+∞
ψ(x)
ln |x| = e

B
A .

(7)

We can get the circulatory subsonic solution (ψ0(r), ρ0(r)) of the system (7) in the domain Ω0 = {x : |x| > 1} by the
analogous methods as in (Cui & Li, 2011), with each streamline being a circle and the center being at the origin just as
illustrated in (Courant & Friedrichs, 1948). For the specific details, one can see the appendix in this paper.

ρ0(r) = exp
( 1

A
(
B − 1

2r2

))
, ψ0(r) =

∫ r

1
ρ0(s)

1
s

ds + m. (8)

Remark 1.1 From the subsonic property of (ψ0(r), ρ0(r)) in the domain Ω0, there exits a constant r0 ∈ ( 1
2 , 1) and a small

constant c0 > 0 such that

A >
1
r2

0

+ c0, (9)

then the background solution (ψ0(r), ρ0(r)) given by (8) can be extended into [r0,∞) which also satisfy the system (7) in
the domain R2\Br0 (0).

Our main result in this paper is

Theorem 1.1 There exists a small constant ε0 > 0 which is dependent on A and B, such that for any ε < ε0, the problem
(7) has a unique circulatory subsonic solution (ψ, ρ) ∈ C2,α(Ω) × C1,α(Ω). Moreover, |∇(ψ(x) − ψ0(r))| and |ρ(x) − ρ0(r)|
tend to zero as |x| → ∞ with decay rates |x|−2 and |x|−3 respectively.

Remark 1.2 From the physical point of view (see Bers, 1958; Finn & Gilbarg, 1957), the subsonic circulatory flow solution
in Theorem 1.1 is stable, since it satisfies lim|x|→∞ u(x) = (0, 0).
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2. The Reformulation on Problem (7)

As in (Cui & Li, 2011), it is convenient to use the coordinates transformation: z1 = x1(1 + δ(x))−1, z2 = x2(1 + δ(x))−1. In
this case, the exterior domain Ω is changed into Ω0 and ∂1 = (1 + o11(z))∂z1 + o12(z)∂z2 , ∂2 = o21(z)∂z1 + (1 + o22(z))∂z2 .

oi j(z) = − δ(x)
1 + δ(x)

δi j −
x j∂iδ(x)

(1 + δ(x))2 ;

supp(oi j(z)) ⊂ {x :
1
2
≤ |x| ≤ 3

2
}, |oi j(z)|(3)

1,α ≤ Cε, i, j = 1, 2. (10)

By a tedious computation, the first two equation in (7) can be written as respectively(
(∂z2ψ)2 − Aρ2)∂2

z1
ψ − 2∂z1ψ∂z2ψ∂

2
z1z2
ψ +
(
(∂z1ψ)2 − Aρ2)∂2

z2
ψ = G1(z,∇zψ, ρ), (11)

and
1
2
|∇zψ|2 + Aρ2 ln ρ = Bρ2 −G2(z,∇zψ), (12)

where

G1(z,∇zψ, ρ) = O
( 2∑

i=1

2∑
j=1

(|oi j(z)| + |∇zoi j(z)|)(|∇zψ|3 + |∇zψ|2|∇2
zψ| + ρ2|∇zψ| + ρ2|∇2

zψ|
))
, (13)

G2(z,∇zψ) =
1
2
(
o2

11(z) + 2o11(z) + o2
21(z)
)
(∂z1ψ)2 +

(
(1 + o11(z))o12(z) + o21(z)(1 + o22(z))

)
∂z1ψ∂z2ψ

+
1
2
(
o2

12(z) + 2o22(z) + o2
22(z)
)
(∂z2ψ)2. (14)

Using the notations Φ = ψ − ψ0 and Ψ = ρ − ρ0, then the nonlinear problem (7) can be changed into
L(Φ) = ∆Φ − (∑2

i=1
∑2

j=1 ai j(z)∂2
i jΦ +

∑2
i=1 bi(z)∂iΦ

)
= − 1

Aρ2
0
F1(z,∇Φ,Ψ), in Ω0,

Ψ = 1
Π(z)
(
∂1ψ0∂1Φ + ∂2ψ0∂2Φ

)
+ F2(z,∇Φ,Ψ), in Ω0,

Φ = 0, on |z| = 1,
lim|z|→∞

Φ(z)
ln |z| = 0,

(15)

where

a11(z) =
(∂2ψ0)2

Aρ2
0

=
z2

2

Ar4 ,

a12(z) = −∂1ψ0∂2ψ0

Aρ2
0

= − z1z2

Ar4 ,

a22(z) =
(∂1ψ0)2

Aρ2
0

=
z2

1

Ar4 ,

b1(z) =
2
(
∂1ψ0∂

2
22ψ0 − ∂2ψ0∂

2
12ψ0
)

Aρ2
0

− 2∂1ψ0△ψ0

ρ0Π(z)
=

2z1

r2(Ar2 − 1)
,

b2(z) =
2
(
∂2ψ0∂

2
11ψ0 − ∂1ψ0∂

2
12ψ0
)

Aρ2
0

− 2∂2ψ0△ψ0

ρ0Π(z)
=

2z2

r2(Ar2 − 1)
, (16)

and

F1(z,∇Φ,Ψ) = G1(z,∇ψ, ρ) +G4(z,∇Φ,Ψ),
F2(z,∇Φ,Ψ) = G2(z,∇ψ) +G3(z,∇Φ,Ψ)

)
,

G3(z,∇Φ,Ψ) =
1
2
|∇Φ|2 − BΨ2 + A(ρ2 ln ρ − ρ2

0 ln ρ0 − ρ0(2 ln ρ0 + 1)Ψ),

G4(z,∇Φ,Ψ) = A∆ψ(Ψ2 + 2ρ0F1(z,∇Φ,Ψ)) +
2Aρ0

Π(z)
∆Φ(∂1ψ0∂1Φ + ∂2ψ0∂2Φ)

−∂2
11ψ(∂2Φ)2 − ∂2

22ψ(∂1Φ)2 + 2∂2
12ψ∂1Φ∂2Φ + 2∂1ψ0∂2Φ∂

2
12Φ

−2∂1ψ0∂1Φ∂
2
22Φ + 2∂2ψ0∂1Φ∂

2
12Φ − 2∂2ψ0∂2Φ∂

2
11Φ, (17)
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here Π(z) ≡ ρ0(2B − 2A ln ρ0 − A) = ρ0
( 1

r2 − A
)
< 0.

We introduce some weighted Hölder space and corresponding norms which have been used in (Gilbarg & Tudinger, 1998;
Chen, 2009; Cui & Li, 2011 and so on). For x, y ∈ Ω0, let us write rx = |x|, ry = |y| and rxy = min(rx, ry). For k ∈ Z+ ∪ {0},
0 < α < 1, l ∈ R and u ∈ Ck,α(Ω0), we define

|u|(l)k,0 =

k∑
j=0

sup
x∈D0,|β|= j

r j+l
x |Dβu(x)|, |u|(l)k,α = |u|

(l)
k,0 + sup

x,y∈D0,|β|=k
rk+l+α

x,y
|Dβu(x) − Dβu(y)|

|x − y|α .

and the corresponding function space is defined as

H(l)
k,α = {u ∈ Ck,α(Ω0) : |u|(l)k,α < +∞}.

Based on above, Theorem 1.1 follows the following conclusion:

Theorem 2.1 There exists some positive constants ε0, C depending on A, B, such that for any ε < ε0, the problem (15)
has a unique global solution (Φ,Ψ) ∈ C2,α(Ω0) ×C1,α(Ω0) with the following estimate

|Φ|(0)
2,α + |∇Φ|

(2)
1,α + |Ψ|

(3)
1,α ≤ Cε, (18)

where 0 < α < 1.

3. The Proof of the Theorem 2.1

In order to solve the nonlinear problem (15), a quasilinear elliptic boundary value problem on the unbounded domain Ω0
coupled with a algebraic equation, the key is to establish the uniform weighted Hölder estimate. As in (Cui & Li, 2011;
Gilbarg & Tudinger, 1998), based on this estimate we can use the continuity method to solve the linearized problem of
(15). Furthermore, by this estimate together with the standard fixed-point argument in (Gilbarg & Tudinger, 1998), we
can arrive at the existence and uniqueness of the solution of the nonlinear problem (15). So we need study the following
problem for any σ ∈ [0, 1] :



Lσ(Φσ) = ∆Φσ − σ
(∑2

i=1
∑2

j=1 ai j(z)∂2
i jΦσ +

∑2
i=1 bi(z)∂iΦσ

)
≡ ∂2

rΦσ +
1
r ∂rΦσ +

1
r2 ∂

2
θΦσ + σc1(r) 1

r ∂rΦσ + σc2(r) 1
r2 ∂

2
θΦσ

= − 1
Aρ2

0(r) F1(z,∇Φ,Ψ), in Ω0,

Ψσ =
1
Π(z)
(
∂1ψ0∂1Φσ + ∂2ψ0∂2Φσ

)
+ F2(z,∇Φ,Ψ), in Ω0,

Φσ = 0, on |r| = 1,
lim|z|→∞

Φσ(z)
ln |z| = 0.

(19)

with c1(r) = − 3A− 1
r2

A(A− 1
r2 )

1
r2 < 0, c2(r) = − 1

Ar2 .

From the subsonic property (9) together with (16), we have

0 < c0A−1|ξ|2 ≤ (1 − 1
Ar2

0

)|ξ|2 ≤ |ξ|2 − σ
2∑

i=1

2∑
j=1

ai j(z)ξiξ j ≤ |ξ|2,∀z ∈ Ω0, ξ ∈ R2\{0}, σ ∈ [0, 1],

and

2∑
i=1

2∑
j=1

|ai j|(2)
0,α +

2∑
i=1

|bi|(3)
1,α ≤ C.

With respect to the source terms F1(z,∇Φ,Ψ), F2(z,∇Φ,Ψ) in (19), we give the detailed estimates as following:
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Lemma 3.1 For (∇ψ, ρ) ∈ H(1)
1,α × H(0)

1,α, then we have

|G1(z,∇zψ, ρ)|(4)
0,α ≤ Cε

((|ρ|(0)
0,α
)2
+
(|∇zψ|(1)

1,α
)2)|∇zψ|(1)

1,α;

|G2(z,∇zψ)|(3)
1,α ≤ Cε(|∇zψ|(1)

1,α)2;

|F1(z,∇Φ,Ψ)|(4)
0,α ≤ Cε

((|ρ|(0)
0,α
)2
+
(|∇zψ|(1)

1,α
)2)|∇zψ|(1)

1,α +C
(
1 + |∇zψ|(1)

1,α
)(

(|∇Φ|(1)
1,α)2 + (|Ψ|(1)

0,α)2
)
;

|F2(z,∇Φ,Ψ)|(3)
1,α ≤ C

((|∇Φ|(2)
1,α
)2
+
(|Ψ|(2)

1,α
)2
+ ε
(|∇zψ|(1)

1,α
)2);

|F1(z,∇Φ1,Ψ1) − F2(z,∇Φ2,Ψ2)|(4)
0,α ≤ C

(
ε

2∑
j=1

(
(|ρ j|(0)

1,α)2 + |ρ j|(0)
1,α + (|∇zψ j|(1)

1,α)2)
+

2∑
k=1

2∑
l=1

(1 + |∇zψk |(1)
1,α)(|∇Φl|(1)

1,α + |Ψl|(2)
1,α)
)(|∇z(Φ1 − Φ2)|(1)

1,α + |Ψ1 − Ψ2|(2)
1,α
)
;

|F2(z,∇Φ1,Ψ1) − F1(z,∇Φ2,Ψ2)|(3)
1,α ≤ C

( 2∑
j=1

(|∇Φ j|(2)
1,α + |Ψ j|(2)

1,α + ε|∇zψ j|(1)
1,α
))(|∇(Φ1 − Φ2)|(1)

1,α + |Ψ1 − Ψ2|(2)
1,α
)
.

Proof. The Lemma is only a direct computation which we omit, using (13), (14), (17) and (10).

Now we try to obtain the weighted Hölder norm of the solution to (19), which is motivated by Lemma 6.20 in (Gilbarg
& Tudinger, 1998). In the following, by the separation variable method as in (Cui & Li, 2011; Li, Xu & Yin, 2015), the
estimate of the infinity state of the solution to (19) is established. This together with the weighted Hölder estimate in
(Gilbarg & Tudinger, 1998), we can get the uniform weighted Hölder estimate.

Lemma 3.2 (Weighted Hölder estimate) For any given (Φ,Ψ) ∈ C2,α(Ω0)×C1,α(Ω0), if Φσ ∈ C2(Ω0)∩C(Ω0) is a solution
of the problem (19) for any σ ∈ [0, 1], then there exists a generic constant C > 0 independent of σ and δ such that

|Φσ|(0)
2,α + |∇Φσ|

(2)
1,α + |Ψσ|

(3)
1,α ≤ C(|F1(z,∇Φ,Ψ)|(3)

0,α + |F2(z,∇Φ,Ψ)|(3)
1,α). (20)

where the generic constant C > 0 is independent of σ, δ.

Proof. We firstly establish the L∞ bound by the separation variable method as in (Cui & Li, 2011). Set

Φσ(r, θ) = R0(r) +
∞∑

n=1

(
R1

n(r) cos(nθ) + R2
n(r) sin(nθ)

)
, (21)

then by (19) we can solve

R′′0 (r) +
(
1 + σc1(r)

)1
r

R′0(r) = f0(r), R0(1) = 0, lim
r→∞

R0(r)
ln r

= 0; (22)

(Ri
n)′′(r) +

1
r

(Ri
n)′(r) − n2

r2 Ri
n(r) = f i

n(r), Ri
n(1) = 0, lim

r→∞

Ri
n(r)
ln r

= 0, (23)

where

f0(r) = − 1
2πAρ2

0(r)

∫ 2π

0
F1(z,∇Φ,Ψ)dθ,

f 1
n (r) =

1
π

∫ 2π

0

(
− 1

Aρ2
0(r)

F1(z,∇Φ,Ψ) + σ
(
c1(r)

1
r
∂rΦσ + c2(r)

1
r2 ∂

2
θΦσ
))

cos(nθ)dθ,

f 2
n (r) =

1
π

∫ 2π

0

(
− 1

Aρ2
0(r)

F1(z,∇Φ,Ψ) + σ
(
c1(r)

1
r
∂rΦσ + c2(r)

1
r2 ∂

2
θΦσ
))

sin(nθ)dθ.

Then R0(r) and Ri
n(r)(n ≥ 1; i = 1, 2) have the expressions as

R0(r) = −
∫ r

1
e−
∫ y

1 c3(s)ds
∫ ∞

y
e
∫ l

1 c3(s)ds f0(l)dldy, (24)

Ri
n(r) =

1
2n

r−n
∫ +∞

1
s−n+1 f i

n(s)ds − 1
2n

rn
∫ +∞

r
s−n+1 f i

n(s)ds − 1
2n

r−n
∫ r

1
sn+1 f i

n(s)ds. (25)
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By the expressions of ci(r)(i = 1, 2) and the subsonic property in (9), one has

c3(r) = (1 + σc1(r))
1
r
, 0 <

c4

r
≤ e−

∫ r
1 c3(s)ds ≤ c5

r
, (26)

here c4 and c5 are positive constants independent of σ and δ.

From (24)-(26), we have the following estimates
|R0(r)| ≤ C| f0|(3)

0,0 ≤ C|F1(z,∇Φ,Ψ)|(3)
0,0,

|R0(r) +
∫ ∞

1 e−
∫ r

1 c3(s)ds
∫ ∞

r e
∫ l

1 c3(s)ds f0(l)dldr| ≤ C|F1(z,∇Φ,Ψ)|(3)
0,0r−1,

|Ri
n(r)| ≤ C

n2 | f i
n|

(3)
0,0r−1 ≤ C

n2

(
|F1(z,∇Φ,Ψ)|(3)

0,0 + σr−1|∇Φσ|(1)
1,0

)
r−1,

(27)

Finally, combing (21) with (27) yields the following L∞ estimates:
|Φσ(z)| ≤ C

(
|F1(z,∇Φ,Ψ)|(3)

0,0 + σ|∇Φσ|
(1)
1,0r−2

)
,

|Φσ(z) +
∫ ∞

1 e−
∫ r

1 c3(s)ds
∫ ∞

r e
∫ l

1 c3(s)ds f0(l)dldr| ≤ C
(
|F1(z,∇Φ,Ψ)|(3)

0,0 + σ|∇Φσ|
(1)
1,0r−1

)
r−1,

(28)

As in (Cui & Li, 2011; Gilbarg & Tudinger, 1998), we set V(z) = e2d − edrβ , z ∈ Ω0, in which the constants d > 0 and
β < 0 will be determined later. A direct computation yields

∆V − σ
2∑

i=1

2∑
j=1

ai j(z)∂2
i jV − σ

2∑
i=1

bi(z)∂iV

= −(βd)rβ−2edrβ(βdrβ + β
)
+ σA−1(βd)rβ−4edrβ +

2σ(βd)rβ−4edrβ

A − 1
r2

< −(βd)2r2β−2edrβ (29)

Notice that | 1
Aρ2

0(r) F1(z,∇Φ,Ψ)| ≤ C1|F1(z,∇Φ,Ψ)|(3)
0,0r−3, where C1 > 0 is dependent of A and B. we can choose β = − 1

2

and set V̂l(z) =
(|F1(z,∇Φ,Ψ)|(3)

0,0+ l−2σ|∇Φσ|(1)
1,0
)
V(z) for any l > 1. Then there exists a suitably large constant d > 0 which

is independent of σ, δ, ε and l such that

Lσ
(
V̂l(z) − Φσ

)
< 0, in Ω0,

V̂l(z) − Φσ > 0, on |z| = 1, V̂l(z) − Φσ > 0, as |z| → +∞.

here the L∞ estimates (28) play the key poles.

Then it follows the maximum principle in (Gilbarg & Tudinger, 1998) that

|Φσ|(0)
0,0 ≤ e2d(|F1(z,∇Φ,Ψ)|(3)

0,0 + l−2σ|∇Φσ|(1)
1,0
)
. (30)

From Lemma 6.20 in (Gilbarg & Tudinger, 1998) together with (30) and the estimate (28), we have

|Φσ|(0)
2,α ≤ C

(|Φσ|(0)
0,0 + |F1(z,∇Φ,Ψ)|(2)

0,α
) ≤ C

(|F1(z,∇Φ,Ψ)|(3)
0,α + l−2σ|∇Φσ|(1)

1,0
)
. (31)

and

|∇Φσ|(2)
1,α ≤ C

(
|Φσ +

∫ ∞
1 e−

∫ r
1 c3(s)ds

∫ ∞
r e

∫ l
1 c3(s)ds f0(l)dldr|(1)

0,0 + |F1(z,∇Φ,Ψ)|(3)
0,α

)
≤ C
(
|F1(z,∇Φ,Ψ)|(3)

0,α + σ|∇Φσ|
(1)
1,0r−1

)
. (32)

Connecting (31)-(32) with the second equation in (19) and setting l > 1 large enough, then we have

|Φσ|(0)
2,α + |∇Φσ|

(2)
1,α + |Ψσ|

(3)
1,α ≤ C(|F1(z,∇Φ,Ψ)|(3)

0,α + |F2(z,∇Φ,Ψ)|(3)
1,α).

Thus we have completed the proof of Lemma 3.2.
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Lemma 3.3(Cui & Li, 2011) For each F(z) ∈ H(3)
0,α(Ω0), the following problem
∆φ = F(z), in Ω0,
φ = 0, on |z| = 1,
lim|z|→∞

φ(z)
ln |z| = 0,

(33)

has a unique solution φ ∈ C2,α(Ω0) satisfying

|φ|(0)
2,α + |∇φ|

(2)
1,α ≤ C|F|(3)

0,α.

Proof of Theorem 2.1. Since the uniform weighted Hölder estimate (20) for any σ ∈ [0, 1] is derived, the existence of the
solution to the linearized problem of (15) can be solved by the continuity method. Furthermore, using the standard fixed
point argument, one can derive the existence and uniqueness of the solution of nonlinear problem (15).

Firstly, by Lemma 3.3 together with the uniform weighted Hölder estimate (20) and the continuity method in ( Gilbarg &
Tudinger, 1998), we know that for any (Φ̂, Ψ̂), if |∇Φ̂|(2)

1,α + |Ψ̂|
(3)
1,α is bounded, the linearized problem

L1(Φ) = ∆Φ −
(∑2

i=1
∑2

j=1 ai j(z)∂2
i jΦ +

∑2
i=1 bi(z)∂iΦ

)
= − 1

Aρ2
0(r) F1(z,∇Φ̂, Ψ̂), in Ω0,

Ψ = 1
Π(z)∂1ϕ0∂1Φ +

1
Π(z)∂2ϕ0∂2Φ + F2(z,∇Φ̂, Ψ̂), in Ω0,

Φ = 0, on |z| = 1,
lim|z|→∞

Φ(z)
ln |z| = 0,

(34)

has a unique solution (Φ,Ψ) with the estimate

|Φ|(0)
2,α + |∇Φ|

(2)
1,α + |Ψ|

(3)
1,α ≤ C

(
|F1(z,∇Φ̂, Ψ̂)|(3)

0,α + |F2(z,∇Φ̂, Ψ̂)|(3)
1,α

)
. (35)

We now construct a mapping as in (Cui & Li, 2011): T (Φ̂, Ψ̂) = (Φ,Ψ). For any two (Φ̂i, Ψ̂i)(i = 1, 2) satisfying
|∇Φ̂i|(2)

1,α+ |Ψ̂i|(3)
1,α < δwith δ > 0 to be determined, then the problem (34) have two corresponding solutions (Φi,Ψi)(i = 1, 2)

respectively. In addition, according to Lemma 3.1 and Lemma 3.2, we have

|Φi|(0)
2,α + |∇Φi|(2)

1,α + |Ψi|(3)
1,α ≤ C

(
|F1(z,∇Φ̂i, Ψ̂i)|(3)

1,α + |F2(z,∇Φ̂i, Ψ̂i)|(3)
0,α

)
≤ C
(
ε + δ2),

where the generic constant C is independent of ε and δ.

Let δ = 1
1+3C and ε0 = δ

2, then for 0 < ε < ε0, we get |Φi|(0)
2,α + |∇Φi|(2)

1,α + |Ψi|(3)
1,α < δ. This implies that T is a continuous

mapping from Ξδ = {(Φ,Ψ) : |∇Φ|(2)
1,α + |Ψ|

(3)
1,α < δ,Φ||z|=1 = 0, lim|z|→∞

Φ(z)
ln |z| = 0} into itself. By (35) together with Lemma

3.1, we also have the estimate

|Φ1 − Φ2|(0)
2,α + |∇(Φ1 − Φ2)|(2)

1,α + |Ψ1 − Ψ2|(3)
1,α

≤ C(ε + δ)
(
|∇(Φ̂1 − Φ̂2)|(2)

1,α + |Ψ̂1 − Ψ̂2|(3)
1,α

)
≤ 4

5

(
|∇(Φ̂1 − Φ̂2)|(2)

1,α + |Ψ̂1 − Ψ̂2|(3)
1,α

)
.

This implies that T is contractible in Ξδ and the nonlinear problem (15) has a unique solution (Φ, ψ) ∈ Ξδ which satisfies

|Φ|(0)
2,α + |∇Φ|

(2)
1,α + |Ψ|

(3)
1,α ≤ Cε.

Thus Theorem 2.1 is proved. By the inverse of the coordinate z1 = x1(1 + δ(x))−1, z2 = x2(1 + δ(x))−1 and the assumption
that δ(x) has compact support, then the proof of Theorem 1.1 is obvious.
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Appendix

In this appendix, we will construct the background solutions (8) for the nonlinear problem (7) in the exterior domain
Ω0 = {x : |x| > 1}. As illustrated in section 104 in (Courant & Friedrichs, 1948), we know the the streamlines of
the circulatory flow in the domain Ω0 are constituted with circles with the center at the origin. So we introduce the
polar coordinate transformation x1 = r cos θ, x2 = r sin θ, and decompose (u10, u20) as u10 = U10 cos θ − U20 sin θ, u20 =

U10 sin θ + U20 cos θ. As in (Cui & Li, 2011) the system (1)-(5) can be written as
∂r(ρ0U10) + 1

r ∂θ(ρ0U20) = 0,
∂rU20 +

1
r U20 = 0,

1
2 |U20|2 + A ln ρ0 = B,
U10 ≡ 0,

(36)

and

lim
r→∞

1
ln r

∫ r

1
(ρ0U20)(s, θ)ds = e

B
A . (37)

It follows from (36) that

ρ0 = ρ0(r), U20 =
κ

r
,

κ2

2r2 + A ln ρ0(r) = B, (38)

where k is some constant to be determined.

ρ0(r) = exp
( 1

A
(
B − κ2

2r2

))
. (39)

Moreover, by the definition of stream function in (6), the corresponding stream function ψ0(r) satisfies

ψ0(r) =
∫ r

1
ρ0(s)

κ

s
ds + m. (40)

Combining (37) with (40), we have

lim
r→∞

ψ0(r)
ln r

= lim
r→∞

rρ0(r)
κ

r
= e

B
A .

This together with (39) yields κ ≡ 1, (8) is arrived at.
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