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Abstract 

The generalized Schamel-Korteweg-de Vries (S-KdV) equation containing root of degree 𝑛 nonlinearity is a very 

attractive model for the study of ion-acoustic waves in plasma and dusty plasma. In this work, we obtain the soliton-like 

solutions, the kink solutions, and the plural solutions of the generalized S-KdV equation by using the sine-cosine method. 

These solutions may be of important significance for the explanation of some practical physical problems. It is shown that 

these two methods provide a powerful mathematical tool for solving a great many nonlinear partial differential equations 

in mathematical physics. 

Keywords: Schamel–Korteweg–de Vries equation; Schamel equation; Travelling wave solutions 

Mathematics Subject classification: 35B10; 35Q99; 35Q53  

1. Introduction 

In plasma physics, the theory of one dimensional ion-acoustic waves is a typical topic in nonlinear waves. As is known, in 

a collisionless plasma the dynamical behavior of the ions is determined by the presence of electrons and, as a result, the 

ion-acoustic wave develop in the medium. The propagation of ion-acoustic wave in different types of plasma has been 

investigated extensively over the last two decades, starting from the work of (Washimi & Taniuti, 1966) The study of 

different methods for the solution of nonlinear partial differential equations has enjoyed an intense period of activity over 

the last 30 years from both theoretical and practical points of view. Improvements in numerical techniques, together with 

the rapid advances in computer technology, have meant that many of the partial differential equations arising from 

engineering and scientific applications, which were previously intractable, can now, be routinely solved (Jawad, et al., 

2010).  

Finding the exact solutions of nonlinear evolution equations (NLEEs) plays an important role in the study of many 

physical phenomena in various fields such as fluid mechanics, solid state physics, plasma physics, chemical physics, 

optical fiber, and geochemistry. Thus, it is important to investigate the exact explicit solutions of NLEEs. In recent years, 

various powerful methods have been presented for finding exact solutions of the NLEEs in mathematical physics, such as 

modified simple equation method (Bhrawy, et al., 2013), extended F-expansion method (Ma, 1993), tanh-sech method 

(Malfliet, 1992; Khater, et al., 2002; Wazwaz, 2006), extended tanh method (Ma & Fuchssteiner, 1996; El-Wakil & 

Abdou, 2007; Fan, 2000; Maliet, 2004), sine–cosine method (Wazwaz, 2004 a; Wazwaz, 2004b; Yusufoglu & Bekir, 2006) 

and Bäcklund transformation (Ma & Lee, 2009; Khater, et al., 2006; Khater, et al., 2004; Sayed, 2013) but solving 

nonlinear equations is still an important task. Some of the nonlinear models in plasma and dust plasma are described by 

canonical models, such as the KdV, the mKdV, and so on (Hassan, 2010).  

Nonlinear wave phenomena play a major role in sciences such as fluid mechanics, plasma physics, solid state physics, 

optical fibers, chemical kinetics and geochemistry. The phenomena of dispersion, dissipation, diffusion, reaction and 

convection are very important in nonlinear wave equations. The concepts like solitons, peakons, kinks, breathers, cusps 

and compactons (Rosenau & Hyman, 1993) are now thoroughly investigated in the scientific literature. 

The ion-acoustic solitary wave is one of the fundamental nonlinear wave phenomena appearing in plasma physics. In 

(Hans Schamel, 1973) Hans Schamel studies a modified Korteweg-de Vries equation for ion-acoustic waves. The S-KdV 

equation containing a square root nonlinearity is a very attractive model for the study of ion-acoustic waves in plasmas 

and dusty plasmas. Hence, seeking new exact solutions of the generalized S-KdV equation is important. This paper is 
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organized as follows. In section 2, we briefly describe the main steps of the sine–cosine ansatz. In section 3, we will study 

the soliton-like solutions of the generalized S-KdV equation by using the sine-cosine method. Section 4 contains the 

conclusion. 

2. A Sine–Cosine Ansatz 

1. The wave variable 𝜉 = 𝑥 − 𝑐𝑡 where 𝑐 is a constant, carries a nonlinear PDE in two independent variables (Dusuel, et 

al., 1998) 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢3𝑥, … … . ) = 0,                                                  (1) 

where 𝑢(𝑥, 𝑡) is the traveling wave solution, to a nonlinear ODE 

𝑄(𝑢, 𝑢/ , 𝑢//, 𝑢///, ⋯ ) = 0.                                                   (2) 

Notice that  

𝜕

𝜕 𝑡
=  −𝑐 

𝑑

𝑑𝜉
,   

𝜕2

𝜕 𝑡2
=  𝑐2  

𝑑2

𝑑𝜉2
,     

𝜕

𝜕 𝑥
=  𝑐 

𝑑

𝑑𝜉
,   

𝜕2

𝜕 𝑥2
=   

𝑑2

𝑑𝜉2
.                         (3) 

Eq. (2) is then integrated as long as all terms contain derivatives such that integration constants are neglected. 

2. The solutions of many nonlinear equations can be expressed in the form 

𝑢(𝑥, 𝑡) =  𝜆  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ),         |𝜉| ≤  
𝜋

2 𝜇
                                                       (4) 

Or in the form 

𝑢(𝑥, 𝑡) =  𝜆  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ),          |𝜉| ≤  
𝜋

 𝜇
                                                         (5) 

where 𝜆 𝑎𝑛𝑑 𝑚 are parameters that will be determined,  𝜇  𝑎𝑛𝑑 𝑐 are the wave number and the wave speed respectively. 

We then use (Ludu & Draayer, 1998) 

𝑢(𝜉) =  𝜆  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ),                                                                                            (6) 

𝑢/(𝜉) = −  𝜆 𝜇 𝑚  𝑐𝑜𝑠 𝑚−1 (𝜇 𝜉 ) sin(𝜇𝜉 ) ,                                                            (7) 

𝑢//(𝜉) = −  𝜆 𝜇2 𝑚2  𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ) +  𝜆 𝜇2 𝑚(𝑚 − 1) 𝑐𝑜𝑠 𝑚−2 (𝜇 𝜉 ).             (8) 

and for (5) we use 

𝑢(𝜉) =  𝜆  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ),                                                                                            (9) 

𝑢/(𝜉) =   𝜆 𝜇 𝑚  𝑠𝑖𝑛 𝑚−1 (𝜇 𝜉 ) cos (𝜇𝜉 ),                                                             (10) 

𝑢//(𝜉) = −  𝜆 𝜇2 𝑚2  𝑠𝑖𝑛 𝑚 (𝜇 𝜉 ) +  𝜆 𝜇2 𝑚(𝑚 − 1) 𝑠𝑖𝑛 𝑚−2 (𝜇 𝜉 ).             (11) 

and so on for other derivatives. 

3. Substituting (6) – (8) or (9) –(11) into the reduced ODE gives a trigonometric equation of 𝑐𝑜𝑠 𝑅 (𝜇 𝜉 ) or 𝑠𝑖𝑛 𝑅  (𝜇 𝜉 ) 

terms. The parameters are then determined by first balancing the exponents of each pair of cosine or sine to determine 𝑅. 
We next collect all terms with same power in 𝑐𝑜𝑠 𝑘 (𝜇 𝜉 ) or 𝑠𝑖𝑛 𝑘 (𝜇 𝜉 ) and set to zero their coefficients to get a system 

of algebraic equations among the unknowns 𝜆, 𝜇 𝑎𝑛𝑑 𝑚. The problem is now completely reduced to a system of 

algebraic equations that can be easily solved to determine 𝜆 𝑎𝑛𝑑 𝜇. The solutions proposed in (4) and in (5) are then 

readily obtained. 

3. The Generalized S-Kdv Equation 

In this paper, a traveling wave solution for the generalized S-KdV equation ( Yang & Tang, 2015; Figen Kangalgil 2016) 

𝑢𝑡 + (𝛼 + 𝛽 𝑢 
1
𝑛) 𝑢 

1
𝑛 𝑢𝑥 + 𝛾  𝑢3𝑥 = 0,         𝑛 ≠ −2, −1, 0                        (12) 

where 𝑢(𝑥, 𝑡) refers to the perturbed ion density in a plasma with nonisothermal electrons, and 𝛼, 𝛽, 𝛾  are real constants. 

Obviously, for 𝑛 = 2, 𝛽 = 0 Equation (12) reduces to the schamel KdV equation. The KdV equation follows for 

 𝑛 = 2, 𝛼 = 0 , and the mKdV equation follows for 𝑛 =
1

2
, 𝛽 = 0. Presumably in Equation (12) other fractional 

powers of 𝑢 could be obtained by looking in more detail and different orderings between kinetic fluid effects for 

https://www.researchgate.net/profile/Figen_Kangalgil2
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nonisothermal behavior of trapped particles. In this paper, we will study Equation (12) by using the sine-cosine method. 

We first use the wave variable 𝜉 = 𝑥 − 𝑐𝑡 where 𝑐 is a constant, to carry a PDE in two independent variables (12) into 

the following ordinary differential equation 

− 𝑐 𝑢/ +  (𝛼 + 𝛽 𝑢
1
𝑛) 𝑢

1
𝑛𝑢/ +   𝛾𝑢/// = 0,                                           (13) 

where  /  =
𝑑

𝑑𝜉
, Integrating (13) once, and considering the constants of integration as zero, we can find 

− 𝑐 𝑢 +  (
 𝑛 𝛼 

𝑛 + 1
 𝑢 

1
𝑛

+1 +
 𝑛𝛽

 𝑛 + 2 
 𝑢 

2
𝑛

+1)  +   𝛾𝑢// = 0,                            (14) 

Substituting (6) – (8) into (14) yields 

−  (𝑐 𝜆 + 𝛾 𝜇2 𝑚2 𝜆)𝑐𝑜𝑠 𝑚 (𝜇 𝜉 ) +
  𝑛 𝛼

𝑛 + 1
 𝜆( 

1
𝑛

+1)𝑐𝑜𝑠 (
1
𝑛

+1)𝑚 (𝜇 𝜉 ) + 

𝑛 𝛽 

𝑛 + 2
 𝜆( 

2
𝑛

+1)𝑐𝑜𝑠 (
2
𝑛

+1)𝑚 (𝜇 𝜉 ) + 𝛾 𝜆 𝜇2 𝑚(𝑚 − 1) 𝑐𝑜𝑠 𝑚−2 (𝜇 𝜉 ) = 0.        (15) 

Equating the exponents and the coefficients of each pair of the cosine functions, we find the following system of algebraic 

equations: 

Case 1. 

 (𝑚 − 1) ≠ 0, 

(
2

𝑛
+ 1) 𝑚 = 𝑚 − 2, 

𝑐 𝜆 + 𝛾 𝜇2 𝑚2 𝜆 = 0, 

 𝑛 𝛼

𝑛 + 1
 𝜆 

1
𝑛

+1 = 0, 

𝑛 𝛽

𝑛 + 2
 𝜆 

2
𝑛

+1  + 𝛾 𝜆 𝜇2 𝑚(𝑚 − 1) = 0.                                     (16) 

Solving the system (16) yields  

𝑚 = −   𝑛 , 

𝜇 = √
−𝑐

𝛾 𝑛2 
  ,             𝛼 = 0,  

 𝜆 = (
𝑐  (𝑛 + 1)(𝑛 + 2)

  𝛽 𝑛2
)

𝑛
2 

 .                                                    (17) 

We point out that the results (17) are valid if we also use the sine method (9)-(11). Consequently, the following solutions: 

𝑢1(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(𝑛 + 2)

  𝛽 𝑛2
)

𝑛
2 

 𝑠𝑒𝑐𝑛  (√
−𝑐

𝛾 𝑛2 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0    (18) 

and  
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𝑢2(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(𝑛 + 2)

  𝛽 𝑛2
)

𝑛
2 

   𝑐𝑠𝑐𝑛  (√
−𝑐

𝛾 𝑛2 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0       (19) 

are readily obtained. It is worth noting that the results (18) and (19) are valid only if 𝑐 <  0. 

However, for 𝑐 >  0, the following solutions: 

𝑢3(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(𝑛 + 2)

  𝛽 𝑛2
)

𝑛
2 

 𝑠𝑒𝑐ℎ𝑛  (√
𝑐

𝛾 𝑛2 
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0    (20) 

and  

𝑢4(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(𝑛 + 2)

  𝛽 𝑛2
)

𝑛
2 

   𝑐𝑠𝑐ℎ𝑛  (√
𝑐

𝛾 𝑛2 
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0  (21) 

Case 2.  

(𝑚 − 1) ≠ 0, 

(
1

𝑛
+ 1) 𝑚 = 𝑚 − 2, 

𝑐 𝜆 + 𝛾 𝜇2 𝑚2 𝜆 = 0, 

𝑛 𝛽 

𝑛 + 2
 𝜆( 

2
𝑛

+1) = 0, 

  𝑛 𝛼

𝑛 + 1
 𝜆( 

1
𝑛

+1)  + 𝛾 𝜆 𝜇2 𝑚(𝑚 − 1) = 0.                                     (22) 

Solving the system (22) yields  

𝑚 = −  2 𝑛 , 

𝜇 = √
−𝑐

4𝛾 𝑛2 
  ,             𝛽 = 0,  

 𝜆 = (
𝑐  (𝑛 + 1)(2𝑛 + 1)

 2 𝛼 𝑛2
 )

𝑛

 .                                                    (23) 

 

We point out that the results (23) are valid if we also use the sine method (9)-(11). We can readily get the following 

solutions: 

𝑢5(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(2𝑛 + 1)

 2 𝛼 𝑛2
 )

𝑛

 𝑠𝑒𝑐2𝑛  (√
−𝑐

4𝛾 𝑛2 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0    (24) 

𝑢6(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(2𝑛 + 1)

 2 𝛼 𝑛2
 )

𝑛

 𝑐𝑠𝑐2𝑛  (√
−𝑐

4𝛾 𝑛2 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0     (25) 

 

𝑢7(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(2𝑛 + 1)

 2 𝛼 𝑛2
 )

𝑛

 𝑠𝑒𝑐ℎ2𝑛  (√
𝑐

4𝛾 𝑛2 
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0    (26) 
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𝑢8(𝑥, 𝑡) =  (
𝑐  (𝑛 + 1)(2𝑛 + 1)

 2 𝛼 𝑛2
 )

𝑛

 𝑐𝑠𝑐ℎ2𝑛  (√
𝑐

4𝛾 𝑛2 
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0     (27) 

Case 3. It is interesting to point out that for where   (𝑚 − 1) = 0, 

this is satisfied only when 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 0.  Consequently, we obtain 

       𝜆 = 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟,     𝜇 = √
−𝑐

𝛾 
 ,                                               (28)  

This in turn gives the solutions 

𝑢9(𝑥, 𝑡) = 𝑎  𝑐𝑜𝑠 (√
−𝑐

𝛾 
 (𝑥 − 𝑐𝑡) )  +  𝑏  𝑠𝑖𝑛 (√

−𝑐

𝛾 
 (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0      (29) 

𝑢10(𝑥, 𝑡) = 𝑎  𝑐𝑜𝑠ℎ (√
𝑐

𝛾 
 (𝑥 − 𝑐𝑡) )  +  𝑏  𝑠𝑖𝑛ℎ (√

𝑐

𝛾 
 (𝑥 − 𝑐𝑡) ) ,    𝑐 > 0    (30) 

where 𝑎 𝑎𝑛𝑑 𝑏 are arbitrary constants. These solutions of (12) are solitary wave solutions. They are linear combinations 

of kink solitary and bell solitary wave solutions.  

In particular (1) when 𝑛 = 2, 𝛼 = 0,  we obtain the KdV equation 

𝑢𝑡 + 𝛽 𝑢 𝑢𝑥 + 𝛾  𝑢3𝑥 = 0,                                                          (31) 

we have the following formal solitary wave solutions 

𝑢11(𝑥, 𝑡) =  
3 𝑐

𝛽
 𝑠𝑒𝑐2  

1

2
(√

−𝑐

𝛾 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                 (32) 

𝑢12(𝑥, 𝑡) =  
3 𝑐

𝛽
   𝑐𝑠𝑐2  

1

2
(√

−𝑐

𝛾  
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                (33) 

𝑢13(𝑥, 𝑡) =  
3 𝑐

𝛽
 𝑠𝑒𝑐ℎ2  

1

2
(√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                                (34) 

𝑢14(𝑥, 𝑡) =  
3 𝑐

𝛽
   𝑐𝑠𝑐ℎ2  

1

2
(√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                             (35) 

(2) when 𝑛 = 2, 𝛽 = 0, we obtain the S-KdV equation 

𝑢𝑡 + 𝛼 𝑢 
1
2 𝑢𝑥 + 𝛾  𝑢3𝑥 = 0,                                                          (36) 

we have the following formal solitary wave solutions 

𝑢15(𝑥, 𝑡) =  
225 𝑐2

64𝛼2
 𝑠𝑒𝑐4  

1

4
(√

−𝑐

𝛾 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                 (37) 

𝑢16(𝑥, 𝑡) =  
225 𝑐2

64𝛼2
   𝑐𝑠𝑐4  

1

4
(√

−𝑐

𝛾  
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                (38) 
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𝑢17(𝑥, 𝑡) =  
225 𝑐2

64𝛼2
 𝑠𝑒𝑐ℎ4  

1

4
(√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                                (39) 

𝑢18(𝑥, 𝑡) =  
225 𝑐2

64𝛼2
   𝑐𝑠𝑐ℎ4  

1

4
(√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                             (40) 

(3) when 𝑛 =
1

2
, 𝛽 = 0,  we obtain the mKdV equation 

𝑢𝑡 + 𝛼 𝑢 2 𝑢𝑥 + 𝛾  𝑢3𝑥 = 0,                                                              (41) 

we have the following formal solitary wave solutions 

𝑢19(𝑥, 𝑡) =  √
6 𝑐

𝛼
    𝑠𝑒𝑐 (√

−𝑐

𝛾 
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                 (42) 

𝑢20(𝑥, 𝑡) =  √
6 𝑐

𝛼
     𝑐𝑠𝑐 (√

−𝑐

𝛾  
  (𝑥 − 𝑐𝑡) ) ,    𝑐 < 0                                (43) 

𝑢21(𝑥, 𝑡) =  √
6 𝑐

𝛼
     𝑠𝑒𝑐ℎ (√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                                (44) 

𝑢22(𝑥, 𝑡) =  √
6 𝑐

𝛼
       𝑐𝑠𝑐ℎ (√

𝑐

𝛾  
(𝑥 − 𝑐𝑡) ) ,    𝑐 > 0                             (45) 

4. Conclusion 

We discuss the generalized S-KdV equation which describes the nonlinear ion-acoustic waves in a collisionless plasma 

consisting of adiabatic warm ions, a weakly relativistic electron beam and non-isothermal electrons. In this paper, we use 

the sine-cosine method to study the generalized S-KdV equation. This method provides the soliton-like solutions, the kink 

solutions, and plural solutions (Sayed & Al-Atawi, 2017). The presented exact solutions can describe various new 

features of waves and then may be useful in the theoretical and numerical studies of the considered equation. The study 

emphasizes the fact that these two methods are reliable in handling nonlinear problems. The computer symbolic systems 

such as Maple and Mathematica allow us to perform complicated and tedious calculations. 
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