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Abstract

In this paper, the notion of S -metric spaces will be introduced. We present a some tripled coincidence point results for
a mixed g-monotone mappings F : X3 → X satisfying (ψ, φ)-contractions in partially ordered complete S -metric spaces.
Also an application and some example are given to support our results.
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1. Introduction

The Banach contraction principle is the most celebrated fixed point theorem and has been generalized in various directions.
Fixed point problems for contractive mappings in metric spaces with a partially order have been studied by many authors
(Agarwal, R. P. & et al., 2008; Ćirić,& et al., 2009).

One of the remarkable generalization, known as φ-contraction, was given by Boyed and Wong (Boyd, D. W. & Wong, S.
W., 1969) in 1969. In 1997, Alber and Guerre-Delabriere (Alber, Ya., & Guerre-Delabriere, I. S., 1997), intriduced the
notion of a weak φ-contraction which generalizes Boyed and Wong results, so Banach’s result. Very recently, inspired
from the notion of weak φ-contractions, a new concept of (ψ, φ)-contractions was introduced (Cherichi, M., & Samet, B.,
2012; Dhutta, P. N., & Choudhury, B. S., 2008; Dori, D., 2009; Popescu, O., 2010; Berinde, V., & Borcut, M., 2011).

Throughout the paper, N∗ is the set of positive integers.

First we recall some notions, lemmas, and examples wich will be useful later.

Definition 1.1. (Sedghi, S., Shobe, N., & Aliouche, A., 2012) Let X be a nonempty set. A function S : X3 → [0,∞) is
said to be an S -metric on X, if for each x, y, z, a ∈ X,

1. S (x, y, z) = 0 if and only if x = y = z,

2. S (x, y, z) ≤ S (x, x, a) + S (y, y, a) + S (z, z, a).

The pair (X, S ) is called an S -metric space.

Example 1.2. (Sedghi, S., Shobe, N., & Aliouche, A., 2012) We can easily check that the following examples are
S -metric spaces.

1. Let X = Rn and || · || a norm on X. Then S (x, y, z) = ||y + z − 2x|| + ||y − z|| is an S -metric on X.

2. Let X = Rn and || · || a norm on X. Then S (x, y, z) = ||x − z|| + ||y − z|| is an S -metric on X.

3. Let X be a nonempty set and d be a ordinary metric on X. Then S (x, y, z) = d(x, z) + d(y, z) is an S -metric on X.

Lemma 1.3. (Sedghi, S. & et al., 2014) Let (X, S ) be an S -metric space. Then, we have S (x, x, y) = S (y, y, x), x, y ∈ X.
Definition 1.4. (Kim, J. K. & et al., 2016) Let (X, S ) be an S -metric space. For r > 0 and x ∈ X we define the open ball
BS (x, r) and closed ball BS [x, r] with center x and radius r as follows, respectively:

BS (x, r) = {y ∈ X : S (y, y, x) < r},
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BS [x, r] = {y ∈ X : S (y, y, x) ≤ r}.
Example 1.5. (Kim, J. K. & et al., 2016) Let X = R. Denote S (x, y, z) = |y + z − 2x| + |y − z| for all x, y, z ∈ R. Thus

BS (1, 2) = {y ∈ R : S (y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2).

Definition 1.6. (Sedghi, S. & Dung, N. V., (2014) Let (X, S ) be an S -metric space and A ⊂ X.

1. The set A is said to be an open subset of X. If for every x ∈ A there exists r > 0 such that BS (x, r) ⊂ A.

2. The set A is said to be S -bounded if there exists r > 0 such that S (x, x, y) < r for all x, y ∈ A.

3. A sequence {xn} in X converges to x if S (xn, xn, x) → 0 as n → ∞, that is for every ε > 0 there exists n0 ∈ N such
that for n ≥ n0, S (xn, xn, x) < ε. This case, we denote by limn→∞ xn = x and we say that x is the limit of {xn} in X.

4. A sequence {xn} in X is said to be Cauchy sequence if for each ε > 0, there exists n0 ∈ N such that S (xn, xn, xm) < ε
for each n,m ≥ n0.

5. The S -metric space (X, S ) is said to be complete if every Cauchy sequence is convergent.

6. Let τ be the set of all A ⊂ X with x ∈ A and there exists r > 0 such that BS (x, r) ⊂ A. Then τ is a topology on X
(induced by the S -metric S ).

Definition 1.7. (Kim, J. K. & et al., 2016) Let (X, S ) and (X ′, S ′) be two S -metric spaces, and let f : (X, S )→ (X ′, S ′)
be a function. Then f is said to be continuous at a point a ∈ X if and only if for every sequence xn in X, S (xn, xn, a) → 0
implies S ′( f (xn), f (xn), f (a))→ 0. A function f is continuous at X if and only if it is continuous at all a ∈ X.

Lemma 1.8. (Sedghi, S. & et al., 2015) Let (X, S ) be an S -metric space. If r > 0 and x ∈ X, then the ball BS (x, r) is an
open subset of X.

Lemma 1.9. (Sedghi, S. & et al., 2015) Let (X, S ) be an S -metric space. If sequence {xn} in X converges to x, then x is
unique.

Lemma 1.10. (Sedghi, S. & et al., 2012) Let (X, S ) be an S -metric space. Then the convergent sequence {xn} in X is
Cauchy.

Lemma 1.11. (Sedghi, S. & Dung, N. V., 2014) Let (X, S ) be an S - metric space. If there exist sequences {xn} and {yn}
such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S (xn, xn, yn) = S (x, x, y).

Definition 1.12. (Berinde, V. & Borcut, M., 2011) A element (x, y, z) ∈ X3 is called a tripled fixed point of F : X3 → X
if F(x, y, z) = x, F(y, x, y) = y and F(z, y, x) = z.

Definition 1.13. (Aydi, H. & et al., 2012) An element (x, y, z) ∈ X3 is called a tripled common fixed point of F : X3 → X
and g : X → X if F(x, y, z) = gx = x, F(y, x, y) = gy = y and F(z, y, x) = gz = z.

Definition 1.14. (Cherichi, M. & Samet, B., 2012) Let (X, S ) be a non-empty set. We say that the mappings F : X3 → X
and g : X → X are commutative if gF(x, y, z) = F(gx, gy, gz), for all x, y, z ∈ X.

Definition 1.15. (Borcut, M., 2012) An element (x, y, z) ∈ X3 is called a tripled coincidence point of F : X3 → X and
g : X → X if F(x, y, z) = gx, F(y, x, y) = gy and F(z, y, x) = gz.

Definition 1.16. (Berinde, V. & Borcut, M., 2011; Borcut, M., 2012) Let (X,≤) be a partially ordered set, F : X3 → X
and g : X → X.

We say that F has the mixed g-monotone property if F(x, y, z) is g-nondecreasing in x, g-nonincreasing in y and g-
nondecreasing in z, that is if, for any x, y, z ∈ X,

x1, x2 ∈ X, gx1 ≤ gx2 ⇒ F(x1, y, z) ≤ F(x2, y, z),
y1, y2 ∈ X, gy1 ≤ gy2 ⇒ F(x, y1, z) ≥ F(x, y2, z),

and

z1, z2 ∈ X, gz1 ≤ gz2 ⇒ F(x, y, z1) ≤ F(x, y, z2).
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Lemma 1.17. (Aydi, H. & et al., 2012) Consider three non-negetive real sequences {an}, {bn} and {cn}. Suppose there
exists α ≥ 0 such that

lim
n→∞

max{an, bn} = 0

and

lim
n→∞

max{an, bn, cn} = α.

Then,

lim
n→∞

supcn = α.

Definition 1.18. (Khan, M S. & et al., 1984) The function ψ : [0,+∞) → [0,+∞) is called an altering distance function
if the following properties are satisfied:

(1) ψ is continuous and non-decreasing,

(2) ψ(t) = 0 if and only if t = 0.

Let Ψ be the set of altering distances. Again, we denote by Φ the set of functions φ : [0,+∞)→ [0,+∞) such that

(i) φ is lower-continuous and non-decreasing,

(ii) φ(t) = 0 if and only if t = 0.

2. Main Results

The notion of a fixed point of N-order was first introduced by Samet and Vetro (Samet, B. & et al., 2012). Later, Berinede
and Borcut (Berinde, V. & Borcut, M., 2011) proved some tripled fixed point results (N=3) in partially ordered metric
spaces (Abbas, M. & et al., 2011; Aydi, H. &et al., 2012; Aydi, H. & Karapanar, E., 2012; Karapanar, E., 2010).

In this paper, we establish tripled coincidence point results for mapping F : X3 → X and g : X → X involving nonlinear
contractions in the setting of ordered S -metric spaces. Also, we precent an application and some examples in support of
our results

Theorem 2.8. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exist ψ ∈ Ψ and φ ∈ Φ such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv
and gz ≥ gc ≥ gw, we have:

ψ(S (F(x, y, z), F(a, b, c), F(u, v,w))) ≤ ψ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)})
−φ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}) (5)

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous, non-decreasing and commutes with F.

Suppose there exists x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Proof. Suppose x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0). Since F(X3) ⊆
g(X), by (v) we can choose x1, y1, z1 ∈ X such that g(x1) = F(x0, y0, z0), g(y1) = F(y0, x0, y0) and g(z1) = F(z0, y0, x0).
Then g(x0) ≤ g(x1), g(y0) ≥ g(y1) and g(z0) ≤ g(z1). Again from F(X3) ⊆ g(X) we can choose x2, y2, z2 ∈ X such that
g(x2) = F(x1, y1, z1), g(y2) = F(y1, x1, y1) and g(z2) = F(z1, y1, x1). Since F has the mixed g-monotone property, we have
g(x0) ≤ g(x1) ≤ g(x2), g(y0) ≥ g(y1) ≥ g(y2) and g(z0) ≤ g(z1) ≤ g(z2). Contiuing this process we can construct three
sequences {xn}, {yn} and {zn} in X such that

g(xn) = F(xn−1, yn−1, zn−1) ≤ g(xn+1) = F(xn, yn, zn),
g(yn+1) = F(yn, xn, yn) ≥ g(yn) = F(yn−1, xn−1, yn−1),
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and

g(zn) = F(zn−1, yn−1, xn−1) ≤ g(zn+1) = F(zn, yn, xn).

If, for some integer n0, we have (g(xn0+1), g(yn0+1), g(zn0+1)) = (g(xn0 ), g(yn0 ), g(zn0 )), then F(xn0 , yn0 , zn0 ) = g(xn0 ),
F(yn0 , xn0 , yn0 ) = g(yn0 ) and F(zn0 , yn0 , xn0 ) = g(zn0 ), i.e., (xn0 , yn0 , zn0 ) is a tripled coincidence point of F and g. Thus we
shall assume that (g(xn+1), g(yn+1), g(zn+1)) , (g(xn), g(yn), g(zn)) for all n ∈ N, i.e., we assume that either g(xn+1) , g(xn)
or g(yn+1) , g(yn) or g(zn+1) , g(zn).

Since g(xn) ≤ g(xn+1), g(yn) ≥ g(yn+1) and g(zn) ≤ g(zn+1), that is (xn, yn, zn) ≤ g(xn+1, yn+1, zn+1).

From (5) we have,

ψ(S (gxn+1, gxn+1, gxn)) := ψ(S (F(xn, yn, zn), F(xn, yn, zn), F(xn−1, yn−1, zn−1))
≤ ψ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)})
−φ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)})

≤ ψ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)}), (6)

ψ(S (gyn, gyn, gyn+1)) := ψ(S (F(yn−1, xn−1, yn−1), F(yn−1, xn−1, yn−1), F(yn, xn, yn)))
≤ ψ(max{S (gyn−1, gyn−1, gyn), S (gxn−1, gxn−1, gxn)})
−φ(max{S (gyn−1, gyn−1, gyn), S (gxn−1, gxn−1, gxn)})

≤ ψ(max{S (gyn, gyn, gyn−1), S (gxn, gxn, gxn−1), S (gzn, gzn, gzn−1)}), (7)

and

ψ(S (gzn+1, gzn+1, gzn)) := ψ(S (F(zn, yn, xn), F(zn, yn, xn), F(zn−1, yn−1, xn−1))
≤ ψ(max{S (gzn, gzn, gzn−1), S (gyn, gyn, gyn−1), S (gxn, gxn, gxn−1)})
−φ(max{S (gzn, gzn, gzn−1), S (gyn, gyn, gyn−1), S (gxn, gxn, gxn−1)})

≤ ψ(max{S (gzn, gzn, gzn−1), S (gyn, gyn, gyn−1), S (gxn, gxn, gxn−1)}). (8)

Since ψ : [0,+∞)→ [0,+∞) is a non-decreasing function, for a, b, c ∈ [0,∞), we have

ψ(max{a, b, c}) = max{ψ(a), ψ(b), ψ(c)}.

Then, from (6), (7) and (8), it follows that

ψ(max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)})
= max({ψ(S (gxn+1, gxn+1, gxn)), ψ(S (gyn, gyn, gyn+1)), ψ(S (gzn+1, gzn+1, gzn))})

≤ ψ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)}).

The fact that ψ is non-decreasing yields that

max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)})
≤ max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)}. (9)

Thus, max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)} is positive non-increasing sequence. Hence there
exists r ≥ 0 such that

lim
n→∞

max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)} = r. (10)

Having in mind that φ is non-decreasing, then

φ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)})
≥ φ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1)}), (11)
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so from (6)-(8), we get that

ψ(max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)})
= max({ψ(S (gxn+1, gxn+1, gxn)), ψ(S (gyn, gyn, gyn+1)), ψ(S (gzn+1, gzn+1, gzn))})

≤ ψ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1), S (gzn, gzn, gzn−1)})
−φ(max{S (gxn, gxn, gxn−1), S (gyn, gyn, gyn−1)}). (12)

On the other hand,

0 ≤ max{S (gxn, gxn, gxn−1), S (gyn−1, gyn−1, gyn)}
≤ max{S (gxn, gxn, gxn−1), S (gyn−1, gyn−1, gyn), S (gzn, gzn, gzn−1)}, (13)

so by (10), the real sequence max{S (gxn, gxn, gxn−1), S (gyn−1, gyn−1, gyn)} is bounded. Thus there exists a real number r1
with 0 ≤ r1 ≤ r and subsequences {xn(k)} of {xn} and {yn(k)} of {yn} such that

lim
n→∞

max{S (gxn(k)+1, gxn(k)+1, gxn(k)), S (gyn(k), gyn(k), gyn(k)+1)} = r1. (14)

We rewite (12)

ψ(max{S (gxn(k)+1, gxn(k)+1, gxn(k)), S (gyn(k), gyn(k), gyn(k)+1), S (gzn(k)+1, gzn(k)+1, gzn(k))})
≤ ψ(max{S (gxn(k), gxn(k), gxn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gzn(k), gzn(k), gzn(k)−1)})
−φ(max{S (gxn(k), gxn(k), gxn(k)−1), S (gyn(k), gyn(k), gyn(k)−1)}). (15)

Letting k → ∞ in (15), having in mind (10), (14), the continuity of ψ and the lower semi-contiuity of φ, we obtain

ψ(r) = lim sup
k→∞

ψ(max{S (gxn(k)+1, gxn(k)+1, gxn(k)), S (gyn(k), gyn(k), gyn(k)+1), S (gzn(k)+1, gzn(k)+1, gzn(k))})

≤ lim sup
k→∞

ψ(max{S (gxn(k), gxn(k), gxn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gzn(k), gzn(k), gzn(k)−1)})

− lim inf
k→∞

φ(max{S (gxn(k), gxn(k), gxn(k)−1), S (gyn(k), gyn(k), gyn(k)−1)})

≤ ψ(r) − φ(r1),

which implies that φ(r1) = 0, and using a property of φ, we find r1 = 0. Thanks to Lemma (2.6) together with (10) and
(14), it yields that

r =: lim
k→∞

max{S (gxn(k), gxn(k), gxn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gzn(k), gzn(k), gzn(k)−1)})

= lim sup
k→∞

S (gzn(k), gzn(k), gzn(k)−1). (16)

For any k ∈ N, we rewite (8) as

ψ(S (gzn(k)+1, gzn(k)+1, gzn(k)))
≤ ψ(max{S (gzn(k), gzn(k), gzn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gxn(k), gxn(k), gxn(k)−1)})
−φ(max{S (gzn(k), gzn(k), gzn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gxn(k), gxn, gxn(k)−1)}). (17)

Again, letting k → ∞ in (17), having in mind (10), (16) and by the properties of ψ, φ, we obtain

ψ(r) = lim sup
k→∞

(S (gzn(k)+1, gzn(k)+1, gzn(k)))

≤ lim sup
k→∞

ψ(max{S (gzn(k), gzn(k), gzn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gxn(k), gxn(k), gxn(k)−1)})

− lim inf
k→∞

φ(max{S (gzn(k), gzn(k), gzn(k)−1), S (gyn(k), gyn(k), gyn(k)−1), S (gxn(k), gxn, gxn(k)−1)})

≤ ψ(r) − φ(r),

which gives that φ(r) = 0, i.e., by (10),

lim
n→∞

max{S (gxn+1, gxn+1, gxn), S (gyn, gyn, gyn+1), S (gzn+1, gzn+1, gzn)} = 0. (18)

Our next step is to show that {gxn}, {gyn} and {gzn} are Cauchy sequences.
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Assume the contrary, i.e., {gxn}, {gyn} or {gzn} is not Cauchy sequence, i.e.,

lim
n,m→+∞

S (gxm, gxm, gxn) , 0,

or

lim
n,m→+∞

S (gym, gym, gyn) , 0,

or

lim
n,m→+∞

S (gzm, gzm, gzn) , 0.

This means that there exists ε > 0 for which we can find subsequences of integers {mk} and {nk} with nk > mk > k such
that

max{S (gxmk , gxmk , gxnk ), S (gymk , gymk , gynk ), S (gzmk , gzmk , gznk )} ≥ ε. (19)

Further, corresponding to mk we can choose nk in such a way that it is the smallest integer with nk > mk and satisfying
(19). Then

max{S (gxmk , gxmk , gxnk−1), S (gymk , gymk , gynk−1), S (gzmk , gzmk , gznk−1)} < ε. (20)

By (S3) and (20), we have

S (gxmk , gxmk , gxnk ) ≤ 2S (gxmk , gxmk , gxnk−1) + S (gxnk−1, gxnk−1, gxnk )
< 2ε + S (gxnk−1, gxnk−1, gxnk ).

Thus, by (18) we obtain

lim
k→∞

S (gxmk , gxmk , gxnk ) ≤ lim
k→∞

2S (gxmk , gxmk , gxnk−1) ≤ 2ε. (21)

Similarly, we have

lim
k→∞

S (gymk , gymk , gynk ) ≤ lim
k→∞

2S (gymk , gymk , gynk−1) ≤ 2ε. (22)

lim
k→∞

S (gzmk , gzmk , gznk ) ≤ lim
k→∞

2S (gzmk , gzmk , gznk−1) ≤ 2ε. (23)

Again by (S3) and (20), we have

S (gxmk , gxmk , gxnk ) ≤ 2S (gxmk , gxmk , gxmk−1) + S (gxmk−1, gxmk−1, gxnk )
≤ 2S (gxmk , gxmk , gxmk−1) + 2S (gxmk−1, gxmk−1, gxnk−1) + S (gxnk−1, gxnk−1, gxnk )
≤ 2S (gxmk , gxmk , gxmk−1) + 4S (gxmk−1, gxmk−1, gxmk )
+2S (gxmk , gxmk , gxnk−1) + S (gxnk−1, gxnk−1, gxnk )

< 2S (gxmk , gxmk , gxmk−1) + 4S (gxmk−1, gxmk−1, gxmk )
+2ε + S (gxnk−1, gxnk−1, gxnk ).

Letting k → ∞ and using (18), we get

lim
k→∞

S (gxmk , gxmk , gxnk ) ≤ lim
k→∞

S (gxmk−1, gxmk−1, gxnk−1) ≤ ε, (24)

lim
k→∞

S (gymk , gymk , gynk ) ≤ lim
k→∞

S (gymk−1, gymk−1, gynk−1) ≤ ε, (25)

lim
k→∞

S (gzmk , gzmk , gznk ) ≤ lim
k→∞

S (gzmk−1, gzmk−1, gznk−1) ≤ ε. (26)
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Using (19) and (24)-(26),we have

lim
k→∞

max{S (gxmk , gxmk , gxnk ), S (gymk , gymk , gynk ), S (gzmk , gzmk , gznk )}

≤ lim
k→∞

max{S (gxmk−1, gxmk−1, gxnk−1), S (gymk−1, gymk−1, gynk−1), S (gzmk−1, gzmk−1, gznk−1)}

≤ ε. (27)

Now, using inequality (5) we obtain

ψ(S (gxmk , gxmk , gxnk )) = ψ(S (F(xmk−1, ymk−1, zmk−1), F(xmk−1, ymk−1, zmk−1), F(xnk−1, ynk−1, znk−1)))
≤ ψ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1)})
−φ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1)}) (28)

ψ(S (gymk , gymk , gynk )) = ψ(S (F(ymk−1, xmk−1, ymk−1), F(ymk−1, xmk−1, ymk−1), F(ynk−1, xnk−1, ynk−1)))
≤ ψ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)})
−φ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)}), (29)

and

ψ(S (gzmk , gzmk , gznk )) = ψ(S (F(zmk−1, ymk−1, xmk−1), F(zmk−1, ymk−1, xmk−1), F(znk−1, ynk−1, xnk−1)))
≤ ψ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1)})
−φ(max{S ((xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1)}).(30)

We deduce from (28)-(30) that

ψ(max{S (gxmk , gxmk , gxnk ), S (gymk , gymk , gynk ), S (gzmk , gzmk , gznk )}
= max{ψ(S (gxmk , gxmk , gxnk )), ψ(S (gymk , gymk , gynk )), ψ(S (gzmk , gzmk , gznk ))}
≤ ψ(max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1})
−φ(max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)}). (31)

On the other hand, since

max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)}
≤ max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1}, (32)

then from (27),

lim sup
k→∞

max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)} ≤ ε.

Therefore, the real sequence {max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)}} is bounded. Thus, up to a subsequence
(still denoted the same), there exists ε1 with 0 ≤ ε1 ≤ ε such that

lim
k→∞

max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)} = ε1. (33)

Inserting this in (31) and using (27), (33) togwther with the properties of ψ, φ, we get that

ψ(ε) = lim sup
k→∞

ψ(max{S (gxmk , gxmk , gxnk ), S (gymk , gymk , gynk ), S (gzmk , gzmk , gznk )}

≤ lim sup
k→∞

ψ(max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1), S (zmk−1, zmk−1, znk−1})

− lim inf
k→∞

φ(max{S (xmk−1, xmk−1, xnk−1), S (ymk−1, ymk−1, ynk−1)})

≤ ψ(ε) − φ(ε1),

which leads to φ(ε1) = 0, so ε1 = 0. By this and (27), due to Lemma(2.6), we obtain

lim sup
k→∞

S (zmk−1, zmk−1, znk−1) = ε.
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Combining this to (19) and (26), we find

lim sup
k→∞

S (zmk , zmk , znk ) = ε.

Letting k → ∞ in (30) and using (27), we deduce

ψ(ε) ≤ ψ(ε) − φ(ε),

i.e., ε = 0, it is a contradiction. We conclude that {gxn}, {gyn} and {gzn} are Cauchy sequences in the S -metric space (X, S ),
which is complete. Then, there are x, y, z ∈ X such that {gxn}, {gyn} and {gzn} are respectively convergent to x, y and z,
i.e., we have

lim
n→∞

S (gxn, gxn, x) = lim
n→∞

S (x, x, gxn) = 0, (34)

lim
n→∞

S (gyn, gyn, y) = lim
n→∞

S (y, y, gyn) = 0, (35)

lim
n→∞

S (gzn, gzn, z) = lim
n→∞

S (z, z, gzn) = 0. (36)

From (34)-(36) and the continuity of g, we get

lim
n→∞

S (g(gxn), g(gxn), gx) = lim
n→∞

S (gx, gx, g(gxn)) = 0, (37)

lim
n→∞

S (g(gyn), g(gyn), gy) = lim
n→∞

S (gy, gy, g(gyn)) = 0, (38)

lim
n→∞

S (g(gzn), g(gzn), gz) = lim
n→∞

S (gz, gz, g(gzn)) = 0. (39)

Since gxn+1 = F(xn, yn, zn), gyn+1 = F(yn, xn, yn) and gzn+1 = F(zn, yn, xn), so the commutativity of F and g yields that

g(gxn+1) = g(F(xn, yn, zn)) = F(gxn, gyn, gzn), (40)

g(gyn+1) = g(F(yn, xn, yn)) = F(gyn, gxn, gyn), (41)

g(gzn+1) = g(F(zn, yn, xn)) = F(gzn, gyn, gxn). (42)

Now we show that F(x, y, z) = gx, F(y, x, y) = gy and F(z, y, x) = gz.
The mapping F is continuous, so since the sequences {gxn}, {gyn} and {gzn} are, respectively, convergent to x, y, z,
hence using Difinition 1.7, the sequence {F(gxn, gyn, gzn)} is convergent to F(x, y, z). Therefore, from (40), {g(gxn+1)} is
convergent to F(x, y, z). By uniquueness of the limit, from (37) we have F(x, y, z) = gx.

Similarly, one finds F(y, x, y) = gy and F(z, y, x) = gz, and this makes end to the proof.

Corollary 2.9. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exists k ∈ [0, 1) such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and
gz ≥ gc ≥ gw, we have:

S (F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}). (43)

Assume that F and g satisfy the following conditions:
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(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous, non-decreasing and commutes with F.

Suppose there exist x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Proof. It follows by taking ψ(t) = t and φ(t) = (1 − k)t for all t ≥ 0.

Corollary 2.10. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exists k ∈ [0, 1) such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and
gz ≥ gc ≥ gw, we have:

S (F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k
3

(S (gx, ga, gu) + S (gy, gb, gv) + S (gz, gc, gw)).

Assume that F and g satisfy the following conditions:

(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous, non-decreasing and commutes with F.

Suppose there exist x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Proof. It suffices to remark that

k
3

(S (gx, ga, gu) + S (gy, gb, gv) + S (gz, gc, gw)) ≤ k(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}).

In the next theorem, we omit the continuoity hypothesis of F. We need the following definition.

Definition 2.11. Let (X,≤) be a partially ordered set and S be a S -metric on X. We say that (X, S ,≤) is regular if the
following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn ≤ x for all n,

(ii) if a non-increasing sequence {yn} is such that yn → y, then y ≤ yn for all n.

Theorem 2.12. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exist ψ ∈ Ψ and φ ∈ Φ such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv
and gz ≥ gc ≥ gw, we have:

ψ(S (F(x, y, z), F(a, b, c), F(u, v,w))) ≤ ψ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)})
−φ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}). (44)

Assume that (X, S ,≤) is regular. Suppose that (g(X), S ) is complete, F has the mixed g-monotone property and F(X3) ⊆
g(X).Also assume there exist x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Proof. Proceeding exactly as in (Theorem 2.8), we have that {gxn}, {gyn} and {gzn} are Cauchy sequences in the complete
S -metric space (g(X), S ). Then, there exist x, y, z ∈ X such that gxn → gx, gyn → gy and gzn → gz. Since {gxn} and {gzn}
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are non-decreasing and {gyn} non-increasing, using the regularity of (X, S ,≤), we have gxn ≤ gx, gzn ≤ gz and gy ≤ gyn

for all n ≥ 0. Using (5), we get

ψ(S (F(x, y, z), F(x, y, z), gxn+1)) = ψ(S (F(x, y, z), F(x, y, z), F(xn, yn, zn))
≤ ψ(max{S (gx, gx, gxn), S (gy, gy, gyn), S (g, gz, gzn)})
−φ(max{S (gx, gx, gxn), S (gy, gy, gyn), S (g, gz, gzn)}). (45)

Letting n→ ∞ in inequality, we obtain that

ψ(S (F(x, y, z), F(x, y, z), gx)) ≤ ψ(0) − φ(0) = 0,

which implies that S (F(x, y, z), F(x, y, z), gx) = 0, i.e., gx = F(x, y, z).

Similarly, one can show that gy = F(y, x, y) and gz = F(z, y, x). Thus we proved that (x, y, z) is a tripled coincidence point
of F and g.

Similarly, we can state the following corollary.

Corollary 2.13. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exists k ∈ [0, 1) such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv and
gz ≥ gc ≥ gw, we have:

S (F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}).

Assume that (X, S ,≤) is regular. Suppose that (g(X), S ) is complete, F has the mixed g-monotone property and F(X3) ⊆
g(X).Also assume there exist x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Corollary 2.14. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exists k ∈ [0, 1) such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≽ ga ≥ gu, gy ≤ gb ≤ gv and
gz ≥ gc ≥ gw, we have:

S (F(x, y, z), F(a, b, c), F(u, v,w)) ≤ k
3

(S (gx, ga, gu) + S (gy, gb, gv) + S (gz, gc, gw)).

Suppose that (g(X), S ) is complete, F has the mixed g-monotone property and F(X3) ⊆ g(X). Also assume there exists
x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Remark 2.15. Other corollaries could be derived from Theorem (2.8) and (2.12) by taking g = Ix. Where I is identity
map.

Now, from previous obtained results, we will deduce some tripled coincidence point results for mappings satisfying a
contraction of integral type in S -metric space. Let us introduce first some notions from (Aydi, H. & et al., 2012).

We denote by Γ the set of functions α : [0,+∞)→ [0,+∞) satisfying the following conditions:

(i) α is a Lebesgue integrable mapping on each compact subset of [0,+∞),

(ii)for all ε > 0, we have ∫ ε

0
α(s)ds > 0.

Let N ∈ N∗ be fixed. Let {αi}1≤i≤N be a family of N functions that belong to Γ. For all t ≥ 0, we denote (Ii)i=1,2,...,N as
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follows:

I1(t) =

∫ t

0
α1(s)ds,

I2(t) =

∫ I1(t)

0
α2(s)ds =

∫ ∫ t
0 α1(s)ds

0
α2(s)ds,

...

IN(t) =

∫ IN−1(t)

0
αN(s)ds.

We have the following result.

Theorem 2.16. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exist ψ ∈ Ψ and φ ∈ Φ such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv
and gz ≥ gc ≥ gw, we have:

IN(ψ(S (F(x, y, z), F(a, b, c), F(u, v,w))) ≤ IN(ψ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}))
−IN(φ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)})). (46)

Assume that F and gsatisfy the following conditions:

(1) F(X3) ⊆ g(X),

(2) F has the mixed g-monotone property,

(3) F is continuous,

(4) g is continuous, non-decreasing and commutes with F.

Suppose there exists x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).

Proof. Take

φ̃ = IN0φ

and

ψ̃ = IN0ψ.

It is easy to show that ψ̃ ∈ Ψ and φ̃ ∈ Φ. From (46), we have

ψ̃(S (F(x, y, z), F(a, b, c), F(u, v,w)) ≤ ψ̃(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)})
−φ̃(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}). (47)

Now, applying Theorem (2.8), we obtain the desired result.

Similarly, we have

Theorem 2.17. Let (X,≤) be a partially ordered set and (X, S ) be a complete S -metric space. Let F : X3 → X and
g : X → X. Assume there exist ψ ∈ Ψ and φ ∈ Φ such that for x, y, z, a, b, c, u, v, w ∈ X, with gx ≥ ga ≥ gu, gy ≤ gb ≤ gv
and gz ≥ gc ≥ gw, we have:

IN(ψ(S (F(x, y, z), F(a, b, c), F(u, v,w))) ≤ IN(ψ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)}))
−IN(φ(max{S (gx, ga, gu), S (gy, gb, gv), S (gz, gc, gw)})).

Assume that (X, S ,≤) is regular. Suppose that (g(X), S ) is complete, F has the mixed g-monotone property and F(X3) ⊆
g(X).Also assume there exists x0, y0, z0 ∈ X such that g(x0) ≤ F(x0, y0, z0), g(y0) ≥ F(y0, x0, y0) and g(z0) ≤ F(z0, y0, x0).

Then F and g have a tripled coincidence point. That is there exist x, y, z ∈ X such that

g(x) = F(x, y, z), g(y) = F(y, x, y) and g(z) = F(z, y, x).
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3. Application to Integral Equations

We in (Gholidahneh, A., & Sedghi, S., 2017) proved coupled common fixed point theorems of integral type contraction
in ordered S -metric spaces.

In this section, we study the existence of solutions to nonlinear integral equations using the results proved in section ”Main
results”.

Consider the integral equations in the following system

x(t) = ρ(t) +
∫ T

0
M(t,m)[ f (m, x(m)) + k(m, y(m)) + h(m, z(m))]dm

y(t) = ρ(t) +
∫ T

0
M(t,m)[ f (m, y(m)) + k(m, x(m)) + h(m, y(m))]dm (48)

z(t) = ρ(t) +
∫ T

0
M(t,m)[ f (m, z(m)) + k(m, y(m)) + h(m, x(m))]dm.

We will analyze the system (48) under the following assummptions:

(i) f , k, h : [0,T ] × R→ R are continuous,

(ii) ρ : [0,T ]→ R is continuous,

(iii) M : [0,T ] × R→ [0,+∞) is continuous,

(iv) there exists q > 0 such that for all x, y ∈ R, y ≥ x,

0 ≤ f (m, y) − f (m, x) ≤ q(y − x)
0 ≤ k(m, x) − k(m, y) ≤ q(y − x)
0 ≤ h(m, y) − h(m, x) ≤ q(y − x).

(v) We suppose that

3q sup
t∈[0,T ]

∫ T

0
M(t,m)dm < 1.

(vi) There exist continuous functions α, β, γ : [0,T ]→ R such that

α(t) ≤ ρ(t) +
∫ T

0
M(t,m)[ f (m, α(m)) + k(m, β(m)) + h(m, γ(m))]dm

β(t) ≥ ρ(t) +
∫ T

0
M(t,m)[ f (m, β(m)) + k(m, α(m)) + h(m, β(m))]dm

γ(t) ≤ ρ(t) +
∫ T

0
M(t,m)[ f (m, γ(m)) + k(m, β(m)) + h(m, α(m))]dm.

We consider the space X = C([0,T ],R) of continuous functions defined on [0,T ] endowed with the (S -complete) S -metric
given by

S (u, v,w) = max
t∈[0,T ]

|u(t) − w(t)| + max
t∈[0,T ]

|v(t) − w(t)|,

for all u, v,w ∈ X. We endowed X with the partial ordered ≤ given by: x, y ∈ X, x ≼ y⇔ x(t) ≤ y(t) for all t ∈ [0,T ].

On the other hand, we may adjust as in (Nieto, J. J., & Rodriguez-Lopez, R., 2005) to prove that (X, S ,≼) is regular.

Our result is the following.

Theorem 3.1. Under assumption (i)-(iv), the system (48) has a solution in X3 = (C([0,T ]),R)3.

Proof. We consider the operators F : X3 → X and g : X → X defined dy

F(x1, x2, x3)(t) = ρ(t) +
∫ T

0
M(t,m)[ f (m, x1(m)) + k(m, x2(m)) + h(m, x3(m))]dm, g(x) = x t ∈ [0, T ],
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for all x1, x2, x3, x ∈ X.

First, we will prove that F has the mixed monotone property (since g is the identity on X).

In the fact, for x1 ≤ y1 and t ∈ [0,T ], we have

F(y1, x2, x3)(t) − F(x1, x2, x3)(t) =
∫ T

0
M(t,m)[ f (m, y1(m)) − f (m, x1(m))]dm.

Taking into account that x1(t) ≤ y1(t) and t ∈ [0,T ], so by (iv), f (m, y1(m)) ≥ f (m, x1(m)). Then F(y1, x2, x3)(t) ≥
F(x1, x2, x3)(t) for all t ∈ [0,T ], i.e.,

F(x1, x2, x3) ≤ F(y1, x2, x3).

Similarly, for x2 ≤ y2 and t ∈ [0,T ], we have

F(x1, x2, x3)(t) − F(x1, y2, x3)(t) =
∫ T

0
M(t,m)[k(m, x2(m)) − k(m, y2(m))]dm.

Having x2(t) ≤ y2(t), so by (iv), k(m, x2(m)) ≥ k(m, y2(m))). Then F(x1, x2, x3)(t) ≥ F(x1, y2, x3)(t) for all t ∈ [0,T ], i.e.,

F(x1, x2, x3) ≥ F(x1, y2, x3).

Now, for x3 ≤ y3 and t ∈ [0,T ], we have

F(x1, x2, x3)(t) − F(x1, x2, y3)(t) =
∫ T

0
M(t,m)[h(m, x3(m)) − h(m, y3(m))]dm.

Taking into account that x3(t) ≤ y3(t) and t ∈ [0,T ], so by (iv), h(m, x3(m)) ≥ f (m, y3(m)). Then F(y1, x2, x3)(t) ≥
F(x1, x2, y3)(t) for all t ∈ [0, T ], i.e.,

F(y1, x2, x3)(t) ≼ F(x1, x2, y3)(t).

Therefore, F has the mixed monotone property.

In the what follows we estimate the quantity S (F(x, y, z), F(a, b, c), F(u, v,w)) for all x, y, z, a, b, c, u, v, w ∈ X, with
x ≥ a ≥ u, y ≤ b ≤ v and z ≥ c ≥ w. Since F has the mixed monotone property, we have:

F(u, v,w) ≤ F(a, b, c) ≤ F(x, y, z).

We obtain

S (F(x, y, z), F(a, b, c), F(u, v,w))
= max

t∈[0,T ]
|F(x, y, z)(t) − F(u, v,w)(t)| + max

t∈[0,T ]
|F(a, b, c)(t) − F(u, v,w)(t)|

= max
t∈[0,T ]

(F(x, y, z)(t) − F(u, v,w)(t)) + max
t∈[0,T ]

(F(a, b, c)(t) − F(u, v,w)(t)).

Note that for all t ∈ [0,T ], from (iv), we have

F(x, y, z)(t) − F(u, v,w)(t) =

∫ T

0
M(t,m)[ f (m, x(m) − f (m, u(m))]dm

+

∫ T

0
M(t,m)[k(m, x, y(m)) − k(m, v(m))]dm

+

∫ T

0
M(t,m)[h(m, z(m)) − h(m,w(m))]dm

≤ q[ max
t∈[0,T ]

|x(m) − u(m)| + max
t∈[0,T ]

|y(m) − v(m)|

+ max
t∈[0,T ]

|z(m) − w(m)|](
∫ T

0
M(t,m)dm).
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Thus,

max
t∈[0,T ]

(F(x, y, z)(t) − F(u, v,w)(t))

≤ q[ max
t∈[0,T ]

|x(m) − u(m)| + max
t∈[0,T ]

|y(m) − v(m)| + max
t∈[0,T ]

|z(m) − w(m)|]( sup
t∈[0,T ]

∫ T

0
M(t,m)dm). (49)

Repeating this idea, we may get using definition of the S -metric S

max
t∈[0,T ]

(F(x, y, z)(t) − F(u, v,w)(t)) + max
t∈[0,T ]

(F(a, b, c)(t) − F(u, v,w)(t))

≤ q[S (x, a, u) + S (y, b, v) + S (z, c,w)]( sup
t∈[0,T ]

∫ T

0
M(t,m)dm)

≤ 3q( sup
t∈[0,T ]

∫ T

0
M(t,m)dm) max{S (x, a, u) + S (y, b, v) + S (z, c,w)}.

From (v), we have 3q(supt∈[0,T ]

∫ T
0 M(t,m)dm) < 1. This proves that the operator F satisfies the contractive condition

appearing in Corollary (2.13).

Let α, β, γ be the functions in assumption (vi), then by (vi), we get

α ≥ F(α, β, γ), β ≥ F(β, α, β), γ ≤ F(γ, β, α).

Applying orollary (2.13), we deduce the existence of x1, x2, x3 ∈ X such that

x1 = F(x1, x2, x3), x2 = F(x2, , x1, x2), x3 = F(x3, x2, x1),

i.e., (x1, x2, x3) is a solution of the system (48).

4. Example

In this section, we state one example to support the usability of our results for S -metric spaces. Before we present our
example we worth to mantion the following remark.

Remark 4.1. All our results still valid if (u, v,w) = (a, b, c).

Example 4.2. Let X = [0, 1] with usual order. Define S : X3 → X by

S (x, y, z) = max{|x − z|, |y − z|}.

Define F : X3 → X by

F(x, y, z) =


0, if y ≥ min{x, z},

z − y
4

, if x ≥ z ≥ y,
x − y

4
, if z ≥ x ≥ y.

Also, define ψ, φ : [0,+∞)→ [0,+∞) by ψ(t) = t and φ(t) = 1
2 t. Then

a. (X, S ,≤) is a complete regular S -metric space.

b. For x, y, z, u, v,w ∈ X with x ≥ u ≥ u, y ≤ v ≤ v and z ≥ w ≥ w, we have

ψ(S (F(x, y, z), F(x, y, z), F(u, v,w))) ≤ ψ(max{S (x, x, u), S (y, y, v), S (z, z,w)})
−φ(max{S (x, x, u), S (y, y, v), S (z, z,w)}).

c.F has the mixed monotone property.

Proof. To prove (b), given x, y, z, u, v,w ∈ X with x ≥ u, y ≤ v and z ≥ w. Then:

Case 1: y > min{x, z} and v ≥ min{u,w}. Here, we have

ψ(S (F(x, y, z), F(x, y, z), F(u, v,w))) = 0
≤ ψ(max{S (x, x, u), S (y, y, v), S (z, z,w)})
−φ(max{S (x, x, u), S (y, y, v), S (z, z,w)})

121



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 5; 2017

Case 2: y ≥ min{x, z} and u ≥ w ≥ v. Here, we have y ≤ v ≤ w ≤ u ≤ x and y ≤ v ≤ w ≤ z. Hence y = v = w = u = x or
y = v = w = z. Therefore

ψ(S (F(x, y, z), F(x, y, z), F(u, v,w))) = 0
≤ ψ(max{S (x, x, u), S (y, y, v), S (z, z,w)})
−φ(max{S (x, x, u), S (y, y, v), S (z, z,w)})

Cace 3: y ≥ min{x, z} and w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z and y ≤ v ≤ u ≤ x. Thus y = u = v = w = z or
y = v = u = x. Therefore

ψ(S (F(x, y, z), F(x, y, z), F(u, v,w))) = 0
≤ ψ(max{S (x, x, u), S (y, y, v), S (z, z,w)})
−φ(max{S (x, x, u), S (y, y, v), S (z, z,w)})

Case 4: x ≥ z ≥ y and v ≥ min{u,w}.
Suppose w ≤ v, then w − y ≤ v − y and hence

z − y = z − w + w − y ≤ z − w + v − y =
1
2

[S (z, z,w) + S (v, v, y)]

≤ max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Then

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
z − y

4
,

z − y
4

, 0) =
z − y

2

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Suppose v < w, then u ≤ v < w and hence u ≤ v ≤ w ≤ z ≤ x. So

z − y ≤ x − y = x − u + u − y

≤ (x − u) + (v − y) =
1
2

[S (x, x, u) + S (v, v, y)]

≤ max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Therefore,

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
z − y

4
,

z − y
4

, 0) =
z − y

2

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Case 5: z ≥ x ≥ y and v ≥ min{u,w} . Suppose u ≤ v, then u − y ≤ v − y and hence

x − y = x − u + u − y ≤ (x − u) + (v − y) =
1
2

[S (x, x, u) + S (v, v, y)]

≤ max{S (x, x, u), S (y, y, v), S (z, z,w)}.
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Therefore,

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
x − y

4
,

x − y
4

, 0)

=
x − y

2

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Suppose v < u, then w ≤ v < u and hence w ≤ v < u ≤ x ≤ z. So

x − y ≤ z − y = z − w + w − y ≤ (z − w) + (v − y) =
1
2

[S (z, z,w) + S (v, v, y)]

≤ max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Therefore,

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
x − y

4
,

x − y
4

, 0)

=
x − y

2

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Case 6: x ≥ z ≥ y and u ≥ w ≥ v. Here, we have

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
z − y

4
,

z − y
4

,
w − v

4
)

=
1
2
|(z − w) + (v − y)|

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Case 7: x ≥ z ≥ y and w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z ≤ x. Thus,

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
z − y

4
,

z − y
4

,
u − v

4
)

=
1
2
|(z − u) + (v − y)|

≤ 1
2

[(x − u) + (v − y)]

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.
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Case 8: z ≥ x ≥ y and u ≥ w ≥ v. Here, we have y ≤ v ≤ w ≤ u ≤ x ≤ z. Therefore, we have

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
x − y

4
,

x − y
4

,
w − v

4
)

=
1
2
|(x − w) + (v − y)|

≤ 1
2

(|z − w| + |v − y|)

=
1
2

[S (z, z,w) + S (v, v, y)]

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

Case 9: z ≥ x ≥ y, w ≥ u ≥ v. Here, we have y ≤ v ≤ u ≤ w ≤ z. Therefore, we have

S (F(x, y, z), F(x, y, z), F(u, v,w)) = S (
x − y

4
,

x − y
4

,
u − v

4
)

≤ 1
2

(|x − u| + |v − y|)

=
1
2

[S (x, x, u) + S (v, v, y)]

≤ 1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}
= max{S (x, x, u), S (y, y, v), S (z, z,w)}

−1
2

max{S (x, x, u), S (y, y, v), S (z, z,w)}.

To prove (c), let x, y, z ∈ X. To show that F(x, y, z) is monotone non-decreasing in x, let x1, x2 ∈ X with x1 ≤ x2. If
y ≥ min{x1, z}, then F(x1, y, z) = 0 ≤ F(x2, y, z).

If y < min{x1, z}, then

F(x1, y, z) =
min(x1, z) − y

4
≤ min(x2, z) − y

4
= F(x2, y, z).

Therefore, F(x, y, z) is monotone non-decreasing in x. Similaly, we may show that F(x, y, z) is monotone non-decreasing
in z and monotone non-increasing in y. Thus, by Theorem (2.12) and Remark (4.1), F has a tripled fixed point. Here,
(0,0,0) is the unique tripled fixed point of F.
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