On S-quasi-Dedekind Modules

Abdoul Djibril Diallo¹, Papa Cheikhou Diop², Mamadou Barry³

1 Département de Mathématiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal
2 Département de Mathématiques, Université de Thiès, Thiès, Sénégal
3 Département de Mathématiques et Informatiques, Université Cheikh Anta Diop, Dakar, Sénégal

Correspondence: Papa Cheikhou Diop, Département de Mathématiques, UFR SET, Université de Thiès, Thiès, Sénégal. E-mail: cheikpapa@yahoo.fr

Received: June 8, 2017 Accepted: June 23, 2017 Online Published: September 20, 2017
doi:10.5539/jmr.v9n5p97 URL: https://doi.org/10.5539/jmr.v9n5p97

Abstract

Let \(R \) be a commutative ring and \(M \) an unital \(R \)-module. A proper submodule \(L \) of \(M \) is called primary submodule of \(M \), if \(rm \in L \), where \(r \in R, m \in M \), then \(m \in L \) or \(r^nM \subseteq L \) for some positive integer \(n \). A submodule \(K \) of \(M \) is called semi-small submodule of \(M \) if, \(K + L \neq M \) for each primary submodule \(L \) of \(M \). An \(R \)-module \(M \) is called S-quasi-Dedekind module if, for each \(f \in \text{End}_R(M), f \neq 0 \) implies \(\text{Ker } f \) semi-small in \(M \). In this paper we introduce the concept of S-quasi-Dedekind modules as a generalisation of small quasi-Dedekind modules, and gives some of their properties, characterizations and examples. Another hand we study the relationships of S-quasi-Dedekind modules with some classes of modules and their endomorphism rings.

Keywords: Primary submodules, semi-small submodules, quasi-Dedekind modules, S-quasi-Dedekind modules

1. Introduction

Throughout all rings are associative, commutative with identity and all modules are unitary \(R \)-module. A submodule \(K \) of \(M \) is small in \(M \) if, \(K + N \neq M \) for each submodule \(N \) of \(M \). A proper submodule \(L \) of \(M \) is called primary submodule of \(M \), if \(rm \in L \), where \(r \in R, m \in M \), then \(m \in L \) or \(r^nM \subseteq L \) for some positive integer \(n \). A submodule \(K \) of \(M \) is called semi-small submodule of \(M \) if \(K + L \neq M \) for each primary submodule \(L \) of \(M \). An \(R \)-module \(M \) is called quasi-Dedekind module if any nonzero endomorphism of \(M \) is a monomorphism. An \(R \)-module \(M \) is called small quasi-Dedekind module if, for each \(f \in \text{End}_R(M), f \neq 0 \) implies \(\text{Ker } f \) small in \(M \). An \(R \)-module \(M \) is called S-quasi-Dedekind module if, for each \(f \in \text{End}_R(M), f \neq 0 \) implies \(\text{Ker } f \) semi-small in \(M \). Mijbass introduce and study the concept of quasi-Dedekind module (Mijbass, A. S. (1997)). Ghawi study the concept of small quasi-Dedekind module (Ghawi, Th. Y. (2010)). In this paper we introduce and study the concept of S-quasi-Dedekind as a generalization of small quasi-Dedekind module.

In the first section, we introduce S-quasi-Dedekind modules and study some basic properties of this concept.

In the second section, we study the relations between S-quasi-Dedekind modules and other related modules.

In third section, we study the endomorphism ring of S-quasi-Dedekind module.

2. Some Properties of S-quasi-Dedekind Modules

In this section, we introduce the concept of S-quasi-Dedekind module as a generalization of quasi-Dedekind module and give some basic properties examples and characterization of this concept.

Definition 1

1. A proper submodule \(L \) of \(M \) is called primary submodule of \(M \), if \(rm \in L \), where \(r \in R, m \in M \), then \(m \in L \) or \(r^nM \subseteq L \) for some positive integer \(n \).

2. An ideal \(I \) in a ring \(R \) is called primary ideal in \(R \), if \(xy \in I \), where \(x, y \in R \), then either \(x^n \in I \) or \(y^k \in I \) for some positive integers \(n \) and \(k \).

Definition 2 Let \(M \) be an \(R \)-module and \(N \leq M \).

1. \(N \) is called small submodule of \(M \) (\(N \ll M \), for short) if \(N + L \neq M \) for each submodule \(L \) of \(M \).

2. \(N \) is called semi-small submodule of \(M \) (\(N \ll_2 M \), for short) if \(N + L \neq M \) for each primary submodule \(L \) of \(M \).

3. An ideal \(J \) in a ring \(R \) is called semi-small ideal in \(R \) if \(I + J \neq R \), for each primary ideal \(I \) of \(R \).
Remark 1

1. Each small submodule is semi-small submodule.
2. For each module M, we have $\{0\}$ is a semi-small submodule of M.
3. If M is semi-simple module, then $\{0\}$ is the only semi-small submodule.

Definition 3 Let M be an R-module.

1. M is called small quasi-Dedekind if for all $f \in \text{End}_R(M)$, $f \neq 0$ implies $\text{Ker} f \ll M$.
2. M is called S-quasi-Dedekind if for all $f \in \text{End}_R(M)$, $f \neq 0$ implies $\text{Ker} f \ll_s M$.

Example 1

1. $\mathbb{Z}/4\mathbb{Z}$ as \mathbb{Z}-module is S-quasi-Dedekind.
2. Let p is a prime integer and $\mathbb{Z}(p^\infty) = \{a^p + \mathbb{Z}/a^k \dv{a \text{ integers} \text{ and} k \text{ is positive}}\}$. The only submodules of $\mathbb{Z}(p^\infty)$ are $0 \leq a^p + \mathbb{Z} \leq a^{p+1} + \mathbb{Z} \leq ...$
 Hence the \mathbb{Z}-module $\mathbb{Z}(p^\infty)$ is S-quasi-Dedekind.

Remark 2

1. It is clear that every quasi-Dedekind R-module is a S-quasi-Dedekind R-module. But the converse is not true in general, for example $\mathbb{Z}/4\mathbb{Z}$ as $\mathbb{Z}/4\mathbb{Z}$-module is S-quasi-Dedekind but it is not quasi-Dedekind.
2. Every small quasi-Dedekind R-module is a S-quasi-Dedekind R-module.
3. The direct sum of S-quasi-Dedekind modules is not necessary that a S-quasi-Dedekind module, for example each of $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z}/3\mathbb{Z}$ as \mathbb{Z}-module is S-quasi-Dedekind. But $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/3\mathbb{Z}$ is not a S-quasi-Dedekind \mathbb{Z}-module.
4. Every integral domain R is a S-quasi-Dedekind R-module (Mijbass, A. S. (1997)). But the converse need not be in general; for example $\mathbb{Z}/4\mathbb{Z}$ as $\mathbb{Z}/4\mathbb{Z}$-module is S-quasi-Dedekind module, but $\mathbb{Z}/4\mathbb{Z}$ is not an integral domain.

Proposition 1 Let M be a semi-simple R-module. Then M is S-quasi-Dedekind if and only if M is quasi-Dedekind.

Proof. \Rightarrow) Let $f \in \text{End}_R(M)$, $f \neq 0$. Since M is S-quasi-Dedekind, then $\text{Ker} f \ll_s M$. But M is semi-simple, so $\text{Ker} f = \{0\}$. Thus M is quasi-Dedekind.

\Leftarrow It is clear.

Proposition 2 Let M be a finitely generated R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. \Rightarrow) Let $f \in \text{End}_R(M)$, $f \neq 0$. Suppose that N is a proper submodule of M such that $\text{Ker} f + N = M$. Since M is a finitely generated R-module, then there exists a maximal submodule L such that $N \subseteq L$. Thus $\text{Ker} f + L = M$. But L is a primary submodule of M and $\text{Ker} f \ll_s M$, so $L = M$, a contradiction. Thus $\text{Ker} f \ll M$ and M is small quasi-Dedekind.

\Leftarrow It is clear.

Corollary 1 Let R be an Artinian principal ideal ring and let M be a co-Hopfian R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a co-Hopfian R-module, then by (Barry & all, (1997)), M is a finitely generated R-module, thus the result is obtained.

Corollary 2 Let R be an Artinian principal ideal ring and let M be a weakly co-Hopfian R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a weakly co-Hopfian R-module, then (Barry & all, (2010)), M is a finitely generated R-module, thus the result is obtained.
Corollary 3 Let R be an Artinian principal ideal ring and let M be a Dedekind finite R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. Since R is an Artinian principal ideal ring and M is a Dedekind finite R-module, then by (Barry & all, (2011)), M is a finitely generated R-module, thus the result is obtained.

Definition 4 An R-module is called a multiplication R-module if every submodule N of M is of the form IM, for some ideal I of R.

Proposition 3 Let M be a multiplication R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Proof. \(\Rightarrow \) Let \(f \in \text{End}_R(M) \) such that \(f \neq 0 \). Suppose that \(N \) is a proper submodule such that \(\text{ker} f + N = M \). Since M is a multiplication R-module, then by (El-Bast & all, (1988)), there exists a prime submodule L such that \(N \subseteq L \). Thus \(\text{ker} f + L = M \). But L is a primary submodule of M and \(\text{ker} f \ll M \), so \(L = M \). This is a contradiction. Thus \(\text{ker} f \ll M \) and M is small quasi-Dedekind.

\(\Leftarrow \) It is clear.

Corollary 4 Let M be a cyclic R-module. Then M is S-quasi-Dedekind if and only if M is small quasi-Dedekind.

Lemma 1 Let M be an R-module and let \(N \ll M \). If \(K \subseteq N \), then \(K \ll M \).

Proof. Let \(K + L = M \), for some primary submodule L of M. Since \(K \subseteq N \), then \(N + L = M \), and because \(N \ll M \), M = L, a contradiction.

The following theorem is a characterization of S-quasi-Dedekind modules.

Theorem 1 Let M be an R-module. Then M is S-quasi-Dedekind if and only if \(\text{Hom}(M/N, M) = \{0\} \), for all N \(\ll M \).

Proof. \(\Rightarrow \) Suppose that there exists \(N \ll M \) such that \(\text{Hom}(M/N, M) \neq \{0\} \), then there exists \(\phi : M/N \rightarrow M \), \(\phi \neq 0 \). Hence \(\phi \circ \pi \in \text{End}_A(M) \), where \(\pi \) is the canonical projection, and \(\phi \circ \pi = 0 \) which implies \(\text{ker} (\phi \circ \pi) \ll M \), but \(N \subseteq \text{ker} (\phi \circ \pi) \), so \(N \ll M \) by Lemma 1 which implies a contradiction.

\(\Leftarrow \) Suppose that there exists \(f \in \text{End}_A(M) \), \(f \neq 0 \) such that \(\text{ker} f \ll M \), define \(g : M \rightarrow M \) by \(g(m + \text{ker} f) = f(m) \), for all \(m \in M \). So g is well-defined and \(g \neq 0 \). Hence \(\text{Hom}(M/\text{ker} f, M) \neq \{0\} \) which is a contradiction.

Proposition 4 Let M be an R-module and let \(\overline{R} = R/J \), where J is an ideal of R such that \(J \subseteq \text{ann}_R(M) \). Then M is a S-quasi-Dedekind R-module if and only if M is a S-quasi-Dedekind R-module.

Proof. \(\Rightarrow \) We have \(\text{Hom}_R(M/K, M) = \text{Hom}_R(M/K, M) \), for all \(K \subseteq M \) by (Kasch, F. (1982)). Thus, if M is a S-quasi-Dedekind R-module then \(\text{Hom}_R(M/K, M) = \{0\} \) for all \(K \ll M \), so \(\text{Hom}_R(M/K, M) = \{0\} \) for all \(K \ll M \). Thus M is a S-quasi-Dedekind R-module.

\(\Leftarrow \) The proof of the converse is similiary.

Definition 5 Let M be an R-module and let \(N \ll M \). N is called quasi-invertible if \(\text{Hom}(M/N, M) = \{0\} \).

Lemma 2 (Mijbass (1997), Proposition 1.14) Let M be an R-module and let \(N \subseteq M \). Then \(\text{ann}_R(M) = \text{ann}_R(N) \).

Proposition 5 Let M be a S-quasi-Dedekind R-module. Then \(\text{ann}_R(M) = \text{ann}_R(N) \) for all \(N \ll M \).

Proof. Since M is a S-quasi-Dedekind R-module, so by theorem 1 \(\text{Hom}(M/N, M) = \{0\} \) for all \(N \ll M \) which implies \(N \) is a quasi-invertible submodule for all \(N \ll M \). Thus by lemma 2 \(\text{ann}_R(M) = \text{ann}_R(N) \) for all \(N \ll M \).

Lemma 3 (Abdullah & all, (2011), Proposition 1.16)

Let M and \(M' \) be R-modules and let \(f : M \rightarrow M' \) be an R-epimorphism.

If \(K \ll M \) such that \(\text{ker} f \subseteq K \), then \(f(K) \ll M' \).

Proposition 5 Let \(M_1, M_2 \) be R-modules such that \(M_1 \cong M_2 \). Then \(M_1 \) is a S-quasi-Dedekind R-module if and only if \(M_2 \) is a S-quasi-Dedekind R-module.

Proof. \(\Rightarrow \) Let \(f \in \text{End}_R(M_2) \), \(f \neq 0 \). To prove \(\text{ker} f \ll M_2 \). Since \(M_1 \cong M_2 \), there exists an isomorphism \(g : M_1 \rightarrow M_2 \) and \(g^{-1} : M_2 \rightarrow M_1 \). We have. Hence \(h = g^{-1} \circ f \circ g \in \text{End}_R(M_1) \), \(h \neq 0 \). So \(\text{ker} h \ll M_1 \), then \(g(\text{ker} h) \ll M_2 \) by lemma 3. But we can show that \(g(\text{ker} h) = \text{ker} f \) as follows; let \(y = g(x) \), \(x \in \text{ker} h \). Hence \(h(x) = 0 \); that is \(g^{-1} \circ f \circ g(x) = 0 \), then \(g^{-1} \circ f(y) = 0 \), so \(g^{-1}(f(y)) = 0 \) and hence \(f(y) = 0 \), since \(g^{-1} \) is a monomorphism, so that \(y \in \text{ker} f \). Now let \(y \in \text{ker} f \), then \(f(y) = 0 \), but \(y \in M_2 \), so there exists an \(x \in M_1 \) such that \(y = g(x) \), since g is surjective. Thus \(f(g(x)) = 0 \) and so \(f(\text{ker} f) = 0 \); that is \(h(x) = 0 \). Hence \(x \in \text{ker} h \). This implies \(y = g(x) \in g(\text{ker} h) \), thus \(\text{ker} f = \text{ker} h \), hence \(\text{ker} f \ll M_2 \).

\(\Leftarrow \) The proof the converse is similiary.
Lemma 4 Let M, M' be injective R-modules that can be embedded in each other. Then $M \cong M'$.

Proof. Since M' is injective, we may assume that $M = M' \oplus X$ and that there exists a monomorphism $f : M \rightarrow M'$. Note first that if $x_0 + f(x_1) + \ldots + f(x_n) = 0$, where $x_i \in X$, then all $x_i = 0$. In fact, $x_0 \in \text{Im} f \subseteq M'$ implies $x_0 = 0$, and so $x_1 + f(x_2) + \ldots + f^{n-1}(x_n) = 0$, since f is a monomorphism. By induction, we see that all $x_i = 0$. Therefore, we have $M'' = X \oplus f(X) \oplus f^2(X) \oplus \ldots \subseteq M$. Let $E = E(f(M'')) \subseteq M'$, and write $M' = E \oplus Y$. Since $M'' = X \oplus f(M'')$, $E(M'') = E(X \oplus f(M'')) = E(X) \oplus E(f(M'')) = X \oplus E$. On the other hand $E(M'') = E(f(M'')) = E$, so $X \oplus E \cong E$. From this, we deduce that $M = X \oplus M' = X \oplus E \oplus Y \cong E \oplus Y = M'$.

Proposition 5 Let M, M' be R-modules that can be embedded in each other. Then $E(M)$ is a S-quasi-Dedekind R-module if and only if $E(M')$ is a S-quasi-Dedekind R-module, where $E(M)$ is an injective hull of M.

Proof. Fix an embedding $f : M \rightarrow M'$. Then $f(M) \subseteq M' \subseteq E(M')$, so $E(M')$ contains a copy of $E(f(M)) \cong E(M)$. By symmetric $E(M)$ also contains a copy of $E(M')$. Since $E(M), E(M')$ are injective, then by lemma 4, $E(M) \cong E(M')$. Hence by Proposition 5, the result is obtained.

Definition 6 Let S be submodule of an R-module M. A submodule C of M is said to be a complement to S in M if C is maximal with respect to the property that $C \cap S = \{0\}$.

Remark 3

1. By Zorn’s lemma, any submodule S of an R-module has a complement; in fact, any submodule C_0 with $C_0 \cap S = \{0\}$ can be enlarged into a complement to S in M.

2. If C is a complement to S, then we have $C \oplus S \leq_e M$.

Proposition 7 Let M be any R-module and let $g : M \rightarrow E(M)$. If g is an injective endomorphism of M, then the following assertions are verified.

1. $E(M)$ is a S-quasi-Dedekind R-module.

2. If $N \leq_e M$, then $E(N)$ is a S-quasi-Dedekind R-module.

3. For any $N \leq M$, there exists $K \leq M$ such that $E(N) \oplus E(K)$ is a S-quasi-Dedekind R-module.

4. If M and M' are R-modules that can be embedded in each other for any injective R-module M', then M' is a S-quasi-Dedekind R-module.

Proof.

1. Let $f \in \text{End}_{\text{fg}}(E(M))$ such that $f \neq 0$ and $g = f_{|_M}$. Since $f_{|_M}$ injective, we have $M \cap \text{Ker} f = \{0\}$. Therefore $M \leq_e E(M)$ implies that $\text{Ker} f = \{0\}$, so $\text{Ker} f \ll_e E(M)$. Thus $E(M)$ is a S-quasi-Dedekind R-module.

2. $E(M)$, if $N \leq_e M$, then $E(N)$ and $E(M)$ is injective, so the inclusion $N \rightarrow E(M)$ is an injective enveloppe of M. Thus $E(M) = E(N)$, and so the result is obtained.

3. By Zorn’s lemma, there exists a maximal submodule K of M with respect $N \cap K = \{0\}$. Then $N \cap K \leq_e M$ and so by the proof of (2) $E(M) \cong E(N \oplus K) \cong E(N) \oplus E(K)$. Thus $E(N) \oplus E(K)$ is a S-quasi-Dedekind R-module.

4. Since M' is an R-module injective, then $E(M') = M'$. By the proposition 6, $E(M) \cong E(M') = M'$, so M' is a S-quasi-Dedekind R-module.

Lemma 5 (Lam, T. Y. (1999), P. 213)

Let R be a quasi-Frobenius ring. Then any right R-module M can be embedded in a free module.

Proposition 8 Let R be a quasi-Frobenius ring and let M be a finitely generated R-module. Then $E(M)$ is a S-quasi-Dedekind R-module if and only $E(M)$ is a small S-quasi-Dedekind R-module.

Proof. By lemma 5, we have $M \subseteq F$ for some free module F. Since M is finitely generated, we have $M \subseteq F_0 \subseteq F$ for some free module F_0 of finite rank. Thus by (Lam, T. Y. (1999), P.412), F_0 is an injective R-module, so can be found inside F_0. Thus $E(M)$ is a direct summand of F_0 and so is also finitely generated. Thus by proposition 2, the result is obtained.
Lemma 6 (Lam, T. Y. (1999), P.412-413)
For any ring, the following are equivalent:
1-R is quasi-Frobenius.
2-A right R-module is projective if and only if it is injective.

Proposition 9 Let R be a quasi-Frobenius ring and let M a projective R-module. If M is a S-quasi-Dedekind R-module, then E(M) is a S-quasi-Dedekind R-module.

Proof. By lemma 6, M is injective and so E(M) is a S-quasi-Dedekind R-module.

Proposition 10 Let M be a quasi-injective R-module, T = End_R(M) and m ∈ M. If mR is a simple R-module, then T.m is a S-quasi-Dedekind S-module.

Proof. Let t ∈ T such that tm ≠ 0. Consider the R-epimorphism: \(\phi : mR \rightarrow tmR \) given by left multiplication by t. Since mR is simple, \(\phi \) is an isomorphism. Let \(\psi = \phi^{-1} \) and extend \(\psi \) to an endomorphism \(g \in T \). Now \(gtm = \psi(tm) = \phi^{-1}(tm) = m \), so \(m \in T.m \). Thus \(T.m \) is a simple T-module. We have \(\forall f \in End_T(T.m), f ≠ 0, Ker f ≪_T T.m \). Hence \(T.m \) is a S-quasi-Dedekind S-module.

Proposition 11 Let M be a S-quasi-Dedekind and quasi-injective R-module, let N ≤ M such that for all U ≤ N, U ≪ M implies U ≪ N. Then N is a S-quasi-Dedekind R-module.

Proof. Let \(f \in End_R(N) \), \(f ≠ 0 \). To prove that \(Ker f ≪_S N \). Since M is a quasi-injectif R-module, there exists \(g \in End_R(M) \) such that \(g \circ i = i \circ f \), where \(i \) is the inclusion mapping. Then \(g(N) = f(N) ≠ 0 \). So \(Ker f ≪_S M \). But \(Ker f ≪_S Kerg \), hence \(Ker f ≪_S M \). On the other hand \(Ker f ≤ N \), so by hypothesis \(Ker f ≪_S N \). Thus N is a S-quasi-Dedekind R-module.

Proposition 12 Every direct summand of a finitely generated S-quasi-Dedekind module is a S-quasi-Dedekind module.

Proof. Let \(M = N ⊕ K \) such that M is a S-quasi-Dedekind R-module. Let \(f : K → K, f ≠ 0 \). We have \(h = i \circ f \circ p ∈ End_R(M), h ≠ 0 \), where \(p \) is the natural projection and \(i \) is the inclusion mapping. Hence \(Ker h ≪ M \), so \(Ker f ≪ M \) since M is finitely generated. But \(Ker f ≪_K Kerh \), so \(Ker f ≪ M \). On the other hand \(Ker f ≤ K \) implies \(Ker f ≪ K \) by (Ali, A. H. (2010.), Prop. 1.12). Thus K is a S-quasi-Dedekind R-module.

Remark 4 If M is a S-quasi-Dedekind R-module, \(N ≤ M \). Then it is not necessary that \(M/N \) is a S-quasi-Dedekind R-module; for example the \(\mathbb{Z} - \) module \(M = \mathbb{Z} \) is S-quasi-Dedekind. Let \(N = 12\mathbb{Z} ≤ \mathbb{Z} \), then \(M/N = \mathbb{Z}/12\mathbb{Z} \) is not a S-quasi-Dedekind \(\mathbb{Z} \)-module.

Remark 5 The homomorphic image of an S-quasi-Dedekind module is not necessary S-quasi-Dedekind; for example \(\mathbb{Z} \) as \(\mathbb{Z} \)- module S-quasi-Dedekind. But \(\pi : \mathbb{Z} → \mathbb{Z}/12\mathbb{Z}, \) where \(\pi \) is the natural projection. However \(\mathbb{Z}/12\mathbb{Z} \) as \(\mathbb{Z} \)-module is not S-quasi-Dedekind.

Lemma 7 (Abdullah & all, (2011), Prop. 1.18)
Let N and K are submodules of an R-module M such that \(N ≤ K \) and \(N ≤ L \) for each primary submodule L of M, if \(N ≪_S M \), then \(K/N ≪_S M/N \) if and only if \(K ≪_S M \).

Proposition 13 Let M be a S-quasi-Dedekind R-module such that \(M/U \) is projectif for all \(U ≪_S M \). Let \(N ≪_S M \) such that \(N ≤ L \), for each primary submodule L of M. Then \(M/N \) is a S-quasi-Dedekind R-module for all \(N ≤ M \).

Proof. Let \(K/N ≪_S M/N \), so by lemma 7, \(K ≪_S M \).

Suppose that \(Hom(M/N)/(K/N), M/N) ≠ [0] \), but \(Hom(M/N)/(K/N), M/N) ≅ Hom(M/K, M/N) \), so there exists \(f : M/K → M/N, f ≠ 0 \). Since M/K is projective, then there exists \(g : M/K → M \) such that \(\pi \circ g = f \), where \(\pi \) is the canonical projection.

Hence \(\pi \circ g(M/K) = f(M/K) ≠ 0 \), so \(g ≠ 0 \). But \(g ∈ Hom(M/K, M) \), \(K ≪_S M \). Thus \(Hom(M/K, M) ≠ [0] \), \(K ≪_S M \); that is M is not S-quasi-Dedekind, which is a contradiction. Thus \(M/N \) is a S-quasi-Dedekind R-module.

Proposition 14 Let M be a quasi-projective R-module and let \(N ≪_S M \) such that \(g^{-1}(N) ≪_S M, \) for each \(g \in \text{End}_R(M). \)

If \(N ≤ L, \) for each primary submodule L of M, then \(M/N \) is a S-quasi-Dedekind R-module.

Proof. Let \(f ∈ \text{End}_R(M/N) \) such that \(f ≠ 0 \). Since M is quasi-projective, there exists \(g ∈ \text{End}_R(M) \) such that \(\pi \circ g = f \circ \pi \) where \(\pi \) is the canonical projection.

Let \(Ker f = L/N = \{ x + N : f(x + N) = N \} = \{ x + N : \pi \circ g(x) = N \} = \{ x + N : g(x) + N = N \} = \{ x + N : g(x) ∈ N \} = \{ x + N : x ∈ g^{-1}(N) \} = g^{-1}(N)/N. \) Thus \(Ker f = g^{-1}(N)/N. \)

But \(g^{-1}(N) ≪_S M, \) so by lemma 7, \(g^{-1}(N)/N ≪_S M/N. \) That is \(Ker f ≪_S M/N. \)
3. S-quasi-Dedekind Modules and Other Related Modules

In this section, we study the relations between S-quasi-Dedekind modules and other related modules.

Definition 7

1. An R-module M is called indecomposable if $M \neq \{0\}$ and it is not a direct sum of two nonzero submodules.

2. A left principal indecomposable module of a ring R is a left submodule of R, that is a direct summand of R and is an indecomposable module.

Proposition 15 Let R be an Artinian ring which is quasi-Frobenius. Then every principal indecomposable R-module has a S-quasi-Dedekind socle.

Proof. For any primitive idempotent e, consider the principal indecomposable R-module eR. Since eR is projective, then by lemma 6, it is also injective. Let M be simple submodule of eR. Clearly $eR = E(M)$, so $M \leq eR$. In particular $\text{Soc}(eR) = M$ is S-quasi-Dedekind.

Proposition 16 Let R be quasi-Frobenius ring and two principal indecomposable R-modules M, M' such that $M \cong M'$. Then there exists two S-quasi-Dedekind R-modules M_1, M_2 such that $M_1 \cong M_2$.

Proof. Let $M_1 = \text{Soc}(M)$ and $M_2 = \text{Soc}(M')$. Then by (Lam, T. Y. (1999), P.423), M_1, M_2 are simple R-modules. If $M \cong M'$, then $M_1 \cong M_2$ and M_1, M_2 are S-quasi-Dedekind R-modules.

Proposition 17 Let M be an R-module such that every nonzero factor module of M is indecomposable. Then M is a S-quasi-Dedekind module R-module.

Proof. Let L be a proper submodule of M. Suppose that $M = L + K$, where $K \leq M$. We have $M/L \cap K \cong M/L \oplus M/K$. But $M/L \cap K$ is indecomposable so $M/L \neq \{0\}$ and $M/K = \{0\}$. Hence $M = K$. Thus $L \ll M$ and so M is a S-quasi-Dedekind module R-module.

Proposition 18 Let M be an indecomposable R-module with finite length such that $\forall f \in \text{End}_R(M), f$ is not nilpotent. Then M is a S-quasi-Dedekind module R-module.

Proof. Let $f \in \text{End}_R(M)$ such that $f \neq 0$. Since f is not nilpotent, then by (Anderson, F.W.& all (1973), P.138) $\text{Ker} f = \{0\}$. Thus M is a S-quasi-Dedekind module R-module.

Definition 8 An R-module M is said to have the direct summand intersection property (briefly SIP) if the intersection of any two direct summands is again a direct summand.

Lemma 8 Let M be an indecomposable R-module and N be any R-module. If $M \oplus N$ has the SIP, then every nonzero R-homomorphism from M to N is a monomorphism.

Proof. Assume $\text{Hom}(M, N) \neq \{0\}$ and let f be a nonzero R-homomorphism from M to N. Since $M \oplus N$ has the SIP, then $\text{Ker} f$ is a direct summand of M. But M is indecomposable so $\text{Ker} f = \{0\}$ and f is a monomorphism.

Proposition 19 Let M be an indecomposable R-module and let N be any R-module such that $\text{Hom}(M, N) \neq \{0\}$. If $M \oplus N$ has the SIP, then M is S-quasi-Dedekind. In particular, if $M \oplus M$ has the SIP, then M is S-quasi-Dedekind.

Proof. By lemma 8, there is a monomorphism f from M to N. Let $g \in \text{End}_R(M)$ such that $g \neq 0$. We claim that $\text{Ker} g \ll M$. Assume that $\text{Ker} g \ll M$, then $\text{Ker} g = \{0\}$. Since f is a monomorphism, then $\text{Ker} f \circ g = \text{Ker} f \neq \{0\}$. This is a contradiction. Thus $\text{Ker} f \ll M$. Hence M is S-quasi-Dedekind.

Definition 9 Let M be an R-module.

1. M is called local if it has exactly one maximal submodule that contains all proper submodules of M.

2. M is called hollow if $M \neq \{0\}$ and every proper submodule of M is small in M.

Remark 6

1. Every proper submodule of a local module M is semi-small in M.

2. Every Hollow R-module is S-quasi-Dedekind. But the converse is not true in general; for example \mathbb{Z} as \mathbb{Z}-module is S-quasi-Dedekind, but it is not Hollow.
Remark 7

According to (Naoum, A.G. (1990), theorem 3.2), there exists 0 \(\notin R\) such that \(\ann_R(M) = \{0\}\). Let \(M\) be a finitely generated faithful multiplication \(R\)-module and let \(N = IM\) be a proper submodule of \(M\). Then \(I_{\ann_R(M)}\) is a hollow \(R\)-module, so by (Naoum, A.G. (1990), theorem 2.2) Let \(M\) be a finitely generated faithful multiplication \(R\)-module and let \(N = IM\) be a proper submodule of \(M\). Then \(I \ll_s R\) if and only if \(N \ll_s M\).

Lemma 9

Let \(M\) be a faithful multiplication \(R\)-module, then \(\ann_M(r) = \ann_R(r).M\).

Proposition 20

Every local module \(M\) is a \(S\)-quasi-Dedekind module.

Proposition 21

Let \(M\) be a hollow \(R\)-module. Then \(M/N\) is a \(S\)-quasi-Dedekind \(R\)-module, for all proper submodule \(N\) of \(M\).

Proposition 22

Let \(M\) be an \(R\)-module such that for some proper submodule \(N\) of \(M\), \(M/N\) is Hollow and \(N \ll M\). Then \(M\) is a \(S\)-quasi-Dedekind \(R\)-module.

Definition 10

An \(R\)-module \(M\) is called faithful if \(\ann_R(M) = \{0\}\).

Definition 11

An \(R\)-module \(M\) is said to have finite uniform dimension if it does not contain a direct sum of an infinite number of non-zero submodules.

Definition 12

An \(R\)-module \(M\) is scalar if, for all \(f \in \End_R(M)\) then there exists \(r \in R\) such that \(f(x) = rx\) for all \(x \in M\).

Remark 7

Let \(M\) be an \(R\)-module. Then

1. If \(M\) has finite uniform dimension, then \(M\) is weakly co-hopfian.
2. If \(M\) is scalar, then by (Mohamed-Ali, E. A. (2006), lemma 6.2), \(\End_R(M) \cong R/\ann_R(M)\).

Proposition 23

Let \(M\) be a semisimple \(R\)-module with finite uniform dimension. Then \(M\) is a finite direct sum of \(S\)-quasi-Dedekind \(R\)-modules.

Proof. Since \(M\) is a semisimple \(R\)-module with finite uniform dimension, \(M\) is finitely generated. Thus \(M\) is a finite direct sum of simples \(R\)-modules, and so \(M\) is a finite direct sum of \(S\)-quasi-Dedekind \(R\)-modules.

Lemma 9

Let \(M\) be a faithful multiplication \(R\)-module, then \(\ann_M(r) = \ann_R(r).M\).

Proof. We have \(\ann_M(r) \subseteq M\). Since \(M\) is multiplication \(R\)-module, so \(\ann_M(r) = (\ann_M(r) : M)M\). We claim that \(\ann_M(r) = (\ann_M(r) : M)\). To prove our assertion: Let \(a \in \ann_R(r)\), then \(ar = 0\) and \(arM = \{0\}\); that is \(aM \subseteq \ann_M(r)\), so \(a \in (\ann_M(r) : M)\). Thus \(\ann_M(r) \subseteq (\ann_M(r) : M)\). Now, if \(a \in (\ann_M(r) : M)\), then \(aM \subseteq \ann_M(r)\), so \(raM = \{0\}\), this implies \(ra \in \ann_R(M) = \{0\}\). Thus \(a \in (\ann_R(r) : M)\) and hence \(\ann_M(r) = \ann_R(r).M\).

Lemma 10

(Abdullah & all, (2011), theorem 2.2) Let \(M\) be a finitely generated faithful multiplication \(R\)-module and let \(N = IM\) be a proper submodule of \(M\). Then \(I \ll_s R\) if and only if \(N \ll_s M\).

Lemma 11

Let \(M\) be a local \(R\)-module. Then \(M\) is a hollow and cyclic \(R\)-module.

Proposition 24

Let \(M\) be a semisimple \(R\)-module with finite uniform dimension. Then \(M\) is a finite direct sum of simples \(R\)-modules, and so \(M\) is a finite direct sum of \(S\)-quasi-Dedekind \(R\)-modules.

Theorem 2

Let \(M\) be a finitely generated faithful multiplication \(R\)-module. Then \(M\) is a \(S\)-quasi-Dedekind \(R\)-module if and only if \(M\) is a \(S\)-quasi-Dedekind \(R\)-module.

Proof. \(\Rightarrow\) Let \(f : R \rightarrow R\) be a nonzero \(R\)-homomorphism. Then for each \(a \in R\), \(f(a) = ar\) for some \(0 \neq r \in R\). Define \(g : M \rightarrow M\) by \(g(m) = rm\) for all \(m \in M\). It follows that \(g \neq 0\), since if \(g = 0\), then \(rM = \{0\}\) and so \(r \in \ann_R(M) = \{0\}\), which is a contradiction.

Since \(M\) is \(S\)-quasi-Dedekind, then \(\ker f \ll_s M\). But \(\ker f = \{m \in M : g(m) = rm = 0\} = \ann_M(r)M\) and by lemma 9 \(\ann_M(r) = \ann_R(r)M\), hence by lemma 10 \(\ann_M(r) = \ann_R(r)\) and so \(\ann_R(r) \ll_s R\).

However it is easy to see that \(\ker f = \ann_R(r)\). Hence \(\ker f \ll_s R\) and hence \(R\) is a \(S\)-quasi-Dedekind \(R\)-module.

\(\Leftarrow\) Let \(f : M \rightarrow M\) such that \(f \neq 0\). To prove \(\ker f \ll_s M\). Since \(M\) is a finitely generated multiplication \(R\)-module so by (Naoum, A.G. (1990), theorem 3.2), there exists \(0 \neq r \in R\) such that \(f(m) = rm\) for \(m \in M\) and \(\ker f = \{m \in M : f(m) = rm = 0\} = \ann_M(r)\).

Now define \(g : R \rightarrow R\) by \(g(a) = ra\) for all \(a \in R\), hence \(g \neq 0\), since if \(g = 0\), then \(rR = \{0\}\) and so \(r = 0\) which is a contradiction. Thus \(\ker f \ll_s R\), since \(R\) is \(S\)-quasi-Dedekind. But \(\ker f = \{a \in R : g(a) = ra = 0\} = \ann_R(r)\) and so
ann_R(r) \ll_r R. On the other hand by lemma 9 \text{ann}_M(r) = \text{ann}_R(r) \cdot M, so by lemma 10 \text{ann}_M(r) \ll_r M. Thus \text{Ker} f \ll_r M and M is a S-quasi-Dedekind R-module.

Corollary 5 Let M be an R-module. If M is a local faithful R-module. Then R is a S-quasi-Dedekind R-module.

Proof. Suppose that M is a local R-module, then by lemma 11, M is a hollow and cyclic R-module. But M is a faithful R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Corollary 6 Let R be an Artinian principal ideal ring and let M be an R-module module with finite uniform dimension. If M is a faithful multiplication R-module, then R is a S-quasi-Dedekind R-module.

Proof. Since M is an R-module module with finite uniform dimension, then M is a weakly co-Hopfian R-module, so M is a finitely generated R-module. But M is a faithful multiplication R-module, thus by theorem 2, R is a S-quasi-Dedekind.

Definition 13 An R-module M is called monoform if for each nonzero submodule N of M and for each f \in Hom(N, M), f \neq 0 implies \text{Ker} f = \{0\}.

Proposition 24 Every monoform R-module is a S-quasi-Dedekind R-module.

Remark 8 The converse of proposition 24 is not true in general; for example \mathbb{Z}/4\mathbb{Z} as \mathbb{Z}-module is S-quasi-Dedekind, but it is not monoform.

Definition 14 An R-module M is called anti-Hopfian if M is not simple and every nonzero factor module of M is isomorphic to M.

Definition 15 Let M be an R-module. M is called generalized Hopfian (gH, for short), if for each f \in End_R(M), f surjective implies \text{Ker} f \ll_r M.

Proposition 25 Let M be an anti-Hopfian R-module. If M is a gH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Let f \in End_R(M) such that f \neq 0. Since M is anti-Hopfian R-module, so by (Hirano & all (1986)), f is surjective. But M is gH R-module implies \text{Ker} f \ll_r M. Thus \text{Ker} f \ll_r M and so M is a S-quasi-Dedekind R-module.

Proposition 26 Let M be an anti-Hopfian quasi-projective R-module. If M is Dedekind finite module, then M is a S-quasi-Dedekind R-module.

Proof. Since M is Dedekind finite quasi-projective, then by (Ghorbani & all (2002) P.327), M is a gH R-module. Moreover M is an anti-Hopfian and gH R-module, thus by proposition 25, M is a S-quasi-Dedekind R-module.

Definition 16 An R-module M is called special generalized Hopfian (sgH, for short), if whenever f is a left regular element of End_R(M); that is if f is not a left zero divisor, then \text{Ker} f \ll_r M.

Theorem 3 Let M be a scalar R-module such that \text{ann}_R(M) is prime. If M is a sgH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Since M is a scalar R-module, thus by remark 7 End_R(M) \cong R/\text{ann}_R(M). Thus End_R(M) is an integral domain. Hence for each f \in End_R(M), f \neq 0, f is nonzero divisor and since M is sgH, so we get \text{Ker} f \ll_r M. Thus \text{Ker} f \ll_r M and so M is a S-quasi-Dedekind R-module.

Proposition 27 Let M be an anti-Hopfian R-module. If M is a sgH R-module, then M is a S-quasi-Dedekind R-module.

Proof. Since M is anti-Hopfian, then by ((Hirano & all (1986)), Theorem 14 P.129) End_R(M) is an integral domain, so that for each f \in End_R(M), f \neq 0 implies f is nonzero divisor. Hence \text{Ker} f \ll_r M, since M is sgH. Thus \text{Ker} f \ll_r M and so M is a S-quasi-Dedekind R-module.

Definition 18 Let M be an R-module, put \mathbb{Z}(M) = \{m \in M : \text{ann}_M(m) \leq_e R\}. M is called nonsingular if \mathbb{Z}(M) = \{0\}, and singular if \mathbb{Z}(M) = M.

Lemma 12 Let f : M \longrightarrow M’ of homomorphism of right R-modules. If N \leq_e M’, f^{-1}(N) \leq_e M.

Proof. Consider any e \in M’f^{-1}(N). Then f(e) \neq 0, so there exists r \in R such that f(e)r \in N\setminus\{0\}. Then clearly er \in f^{-1}(N)\setminus\{0\}. Thus f^{-1}(N) \leq_e M.

Remark 9 Given N \leq_e M’ and any element y \in M’, let f : R_R \longrightarrow M’ be defined by f(r) = yr. Then the lemma 12 implies f^{-1}(N) = y^{-1}N = \{r \in R : yr \in N\} \leq_e R_R.

Proposition 28 Let M be a nonsingular uniform R-module. Then M is a S-quasi-Dedekind R-module.

Proof. Let f \in End_R(M) such that f \neq 0. Then \text{Ker} f = \{0\}. If \text{Ker} f \neq \{0\}, then \text{Ker} f \leq_e M. For any y \in M, y^{-1}\text{Ker} f \leq_e R_R by remark 9. Now f(y)y^{-1}\text{Ker} f \leq f(y) \{y^{-1}\text{Ker} f\} \leq f(\text{Ker} f) = \{0\}, so f(y) \in \mathbb{Z}(M) = \{0\}, that is f = 0, a contradiction. Then
Corollary 7 Let \(M \) be a nonsingular uniform \(R \)-module. If \(M \) is injective, then \(E(M) \) is a S-quasi-Dedekind \(R \)-module.

Proof. Since \(M \) is injective, then \(E(M) = M \). By proposition 28, \(E(M) \) is a S-quasi-Dedekind \(R \)-module.

Remark 10 If \(M \) is a nonsingular module, then by (Lam, T. Y. (1999), P.277) \(\overline{E}(M) = E(M) \), where \(\overline{E}(M) \) is the rational hull of \(M \).

Corollary 8 Let \(M \) be a nonsingular uniform \(R \)-module. If \(M \) is injective, then \(\overline{E}(M) \) is a S-quasi-Dedekind \(R \)-module.

Proof. We have \(\overline{E}(M) = E(M) = M \). Thus \(\overline{E}(M) \) is a S-quasi-Dedekind \(R \)-module.

Proposition 33 Let \(M \) be a simple \(R \)-module. Then \(\text{End}_R(M) \) is a S-quasi-Dedekind \(R \)-module.

Proof. First show that \(\text{ann}_R(m) \subseteq \text{ann}_R(f(m)) \) for any \(m \in M \).

1. Follows from the fact \(\text{ann}_R(m) \subseteq \text{ann}_R(f(m)) \) for any \(m \in M \).

2. Follows directly from the definition.

Proposition 31 Let \(M \) be an \(R \)-module and set \(0 \neq N \subseteq M \) such that \(N \) and \(M/N \) are both nonsingular. If \(M \) is uniform, then \(M \) and \(N \) are both S-quasi-Dedekind \(R \)-modules.

Proof. First show that \(N \) is a S-quasi-Dedekind \(R \)-module. By lemma 13, we have \(\mathbb{Z}(M) \cap N = \mathbb{Z}(N) = \{0\} \). Therefore the projection map from \(M \) to \(M/N \) induces an injective homomorphism \(\pi : \mathbb{Z}(M) \rightarrow M/N \). Thus by lemma 13, we have \(\pi(\mathbb{Z}(M)) \subseteq \mathbb{Z}(M/N) = \{0\} \), so \(\pi = 0 \). This implies that \(\mathbb{Z}(M) = \{0\} \). Then \(M \) is a nonsingular uniform \(R \)-module, and so by proposition 28, \(M \) is a S-quasi-Dedekind \(R \)-module. It is clear that \(N \) is a nonsingular uniform \(R \)-module. Then \(N \) is a S-quasi-Dedekind \(R \)-module.

4. Some Properties of the Endomorphism Ring of S-quasi-Dedekind Module

Proposition 33 Let \(M \) be a simple \(R \)-module. Then \(\text{End}_R(M) \) is a S-quasi-Dedekind \(R \)-module.

Proof. By Schur’s lemma \(\text{End}_R(M) \) is a division ring. Thus \(\text{End}_R(M) \) is a S-quasi-Dedekind \(R \)-module.

Proposition 34 Let \(M \) be an anti-Hopfian \(R \)-module. Then \(\text{End}_R(M) \) is a S-quasi-Dedekind \(R \)-module. Proof. Since \(M \) is anti-Hopfian, then by (Hirano, Y. & all (1986), Theorem 14, P.129), \(\text{End}_R(M) \) is an integral domain. Thus \(\text{End}_R(M) \) is a S-quasi-Dedekind \(R \)-module.
Proposition 35 Let M be a nonsingular uniform R-module. Then $\text{End}_R(M)$ is a S-quasi-Dedekind ring.

Proof. Let $f \neq 0 \neq g \in \text{End}_R(M)$, then by the proposition 28, f,g are injectives and so $fg \neq 0$. Thus $\text{End}_R(M)$ is an integral domain. Hence $\text{End}_R(M)$ is a S-quasi-Dedekind ring.

Proposition 36 Let M be a scalar R-module with $\text{ann}_R(M)$ is a prime ideal of R, then $\text{End}_R(M)$ is a S-quasi-Dedekind ring.

Proof. Since M is a scalar R-module, then by remark 7, $\text{End}_R(M) \cong R/\text{ann}_R(M)$, so $\text{End}_R(M)$ is an integral domain. Hence $\text{End}_R(M)$ is a S-quasi-Dedekind ring.

Corollary 9 If M is scalar and prime R-module, then $\text{End}_R(M)$ is a S-quasi-Dedekind ring.

Proposition 37 Let M be a scalar faithful R-module. $\text{End}_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is scalar R-module, so by remark 7, $\text{End}_R(M) \cong R/\text{ann}_R(M)$. But M is faithful, thus $R/\text{ann}_R(M)$ is a S-quasi-Dedekind ring. Hence we have on the result.

Proposition 38 Let R be an Artinian principal ideal ring and let M be a weakly co-Hopfian multiplication faithful R-module. Then $\text{End}_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is a weakly co-Hopfian R-module, so M is a finitely generated R-module. Thus by (Naoum, A.G. (1990), theorem 3.2), M is a S-quasi-Dedekind ring; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Proposition 39 Let R be an Artinian principal ideal ring and let M be a co-Hopfian multiplication faithful R-module. Then $\text{End}_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is co-Hopfian R-module, so M is a finitely generated R-module. Thus M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Proposition 40 Let R be an Artinian principal ideal ring and let M be a Dedekind finite multiplication faithful R-module. Then $\text{End}_R(M)$ is a S-quasi-Dedekind ring if and only if R is a S-quasi-Dedekind ring.

Proof. Suppose that M is a Dedekind finite R-module, so M is a finitely generated R-module. Thus M is scalar R-module; that is M is scalar faithful R-module. Thus by proposition 37, the result is obtained.

Definition 18 Let M be an R-module. M is said quasi-prime if $\text{ann}_R(N)$ is a prime ideal of R.

Proposition 41 Let M be a quasi-injective scalar and quasi-prime R-module. Then $\text{End}_R(N)$ is a S-quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Assume that $0 \neq N \leq M$. Since M is a quasi-injective scalar R-module, then by (Shibab, B.N. (2004), Prop. 1.1.16), N is a scalar R-module. Thus by remark 7, $\text{End}_R(N) \cong R/\text{ann}_R(N)$. But M is a quasi-prime R-module, so $\text{ann}_R(N)$ is a prime ideal of R; that is $\text{End}_R(N)$ is an integral domain. Hence $\text{End}_R(N)$ is a S-quasi-Dedekind ring.

Corollary 10 Let M be an injective scalar and quasi-prime R-module. Then $\text{End}_R(N)$ is a S-quasi-Dedekind ring for all $0 \neq N \leq M$.

Corollary 11 Let M be a quasi-injective scalar R-module and let $0 \neq N \leq M$ be a faithful R-module. Then $\text{End}_R(N)$ is a S-quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. It follows by (Shibab, B.N. (2004), Prop. 1.1.16) and proposition 37.

References

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).