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Abstract 

The main purpose of this project is to explore the nine chain ringed game and to solve it through various ways including 

induction and recursive methods. Associating this game with the binary codes 








0

1
 and 

0

1

 
 
 

 where the two numbers 

represent whether the respective ring is on the 1st row-the ring being on the sword or the 2nd row-the ring being off the 

sword. First, we explored the problem with two mathematical models to find the existing patterns. Then, by the usage of 

induction, we found the general form of the quickest number of moves needed depending on the number of rings without 

the repetition of any situation. Hence we called this path a beautiful solution. Similarly, by the usage of induction, we 

determined the smallest number of steps needed to get from one situation to another situation. Meanwhile, we also 

formulated nonrepeating sequences to represent which ring will be moved at which step of the beautiful solution’s 

procedure. Finally, we concluded the project by aggregating the data into a generating function. 

Keywords: nine rings, Gray Code, binary code, matrix, recursion, function, sequence 

1. Introduction 

1.1 Research Motives 

Nine rings is an ancient Chinese game (Wu, 2003; Zhang, W. & Rasmussen, P. 2010). Although the game has been 

introduced for a long time, unfamiliar beginners have difficulties in the operations of the game. To unlock it, one must 

follow rigorous steps. In this study, we found a nature of the binary function (Press, et al, 1992) in the game as we 

explored solutions steps, which we combined with a computer software to create a new and easy operation model (Hsu, 

1969, 2010; Rosiene, J.A. & Rosiene, C.P., 2014 ). We will use the binary to explore the nine rings operation, the 

connection between nine rings and Gray code (Gardner, 1986; Kuao, 2014; Weisstein, 2011), to create a new method for 

nine rings operation model (Matrixlab-examples.com, 2009), and to extend it into a three-state game.  

1.2 Purpose of the Study 

First, we construct a mathematical model to help exploring the nine-ring solution, using 2xn order array graphs 

(Schwartz & Mathematics, 2011), to explore the isomorphic relationship between the array operation mathematical 

model and the nine-ring solution. 

Second, through the 2xn order array graph mathematical model, we investigate the perfect solution of the nine rings, 

and further explore the general solutions for n rings. 

Thirdly, we discuss the characteristics of the transformation function between the state matrices in the 2xn order array 

graph and the n-bit binary numbers, and explore the relationship between the n rings operation mode and its state 

change. 

Fourth, we explore its generating function through the number sequence recursive relations formed by the number of 

operations in the perfect solutions for the n rings (Young, Z. S., 2010). 

mailto:cs2777726@gmail.com
https://doi.org/10.5539/jmr.v9n6pxx
http://dl.acm.org/author_page.cfm?id=84459055257&CFID=983202687&CFTOKEN=66630489
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Mathematics&search-alias=books&field-author=Mathematics&sort=relevancerank
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2 Research Methods 

2.1 Construction of the "array operation" Mathematical Model 

2.1.1 Nine Rings Solution State 

Nine chain game is to separate the nine rings from the main sword. Through physical manipulation, it is not difficult to 

find that each buckle has fundamental two states: when the buckle hanging on the main sword and when the buckle is 

relieved from the main sword. We refer it as the P state, a “pass” state and the F state, a “free” state, respectively, as 

shown in Figure 1 and 2: 

 

Figure 1. All buckles are in the P state 

 

Figure 2. All buckles are in the F state 

The so-called "one operation step" of the nine rings refers to a buckle from the P state to F state, or from the F state to P 

state in one manipulation. 

After the experience analysis of experimental operations, we found the following phenomena listed as follows: 

(1) No matter whether the buckle is in the P state or F state, not every buckle can change its state. 

(2) The state of the outermost first buckle can be changed regardless of the buckle in the P state or the F state. Therefore, 

as long as the state change of the outermost first buckle is completed, we refer it as" T" operation (Take operation). 

(3) If the outermost first buckle is in the P state, the next buckle inside can be changed no matter it is in the P state or the 

F state. Once the state change of the buckle is completed, we refer it as "L" operation (Lay operation). 

(4) Complete the removal of nine rings from the main sword requires a serial operation process of the "T" operations 

and "L" operations. 

2.1.2 Establish a Mathematical Model for Easy Operation and in-depth Discussion 

Since the operation of the nine-ring props is not conducive to problem exploration, we try to convert the props operation 

into the following array graph in Figure 3 to simplify each buckle operation and define a mathematical model formation 

as follows: 

 

 

Fig.3 Conversion of state diagrams between nine-ring and 2x 9-order array graphs 
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(1) Black circle in the first row on the array graph represents the buckle on the nine ring main sword, in the P state. 

Black circle in the second row refers to the buckle off from the main sword, in the F state. 

(2) The binary system indicates the buckle state on the nine rings props in which “1” indicates a buckle on the main 

sword and “0” refers to buckles off from the main sword. The positions of nine buckles can be continuously represented 

in a 9-bit binary number. 201278 )( aaaaa  symbolizes nine-buckle positions on the nine-ring props in a solution 

process. Similarly, the 2x9 matrix indicates the position of black circle on the 2×9 order array graph, in which a vector  










0

1
shows that black circle is in the first row, and 









1

0
refers to black circle in the second row. 

Thus the state of the black circle on the 2×9 order array graph can be described as a 2x9 matrix in which 










018

018

bbb

aaa




 indicates the positions of nine black circles on a 2×9 order array graph in the operation process. 

Therefore, it can be deduced that there is a one-to-one correspondence between the symbolic representations of these 

two states. 

(Description) 

Through the corresponding figure transformation, all the buckles on the nine-ring main sword in the 2×9 order array 

graph correspond to black circle in the first row one by one, a P state. On contrarily, the buckles from the nine-ring main 

sword are mapped to the black circle in the second row one by one in the 2×9 order array graph, a F state. Therefore, the 

state of the nine-ring buckle is consistent with the black circle state of the 2×9 order array graph. The correspondence 

between these two states is one-to-one. 

(3) For buckle state changes in the nine-ring props, there are two operating functions, "T" and "L" operations. 

For example, the state in Figure 3 is characterized by a 2-bit binary representation a 2(010110100) .Then

22 )1(01011010)0T(01011010  , and
22 100)1(010110)100L(01011   

Because the state of the buckle on the nine-ring props is isomorphic to the state on the 2×9 order array graph, the 

following correspondence is also satisfied: 



















010100101

101011010

110100101

001011010
T ； 



















110000101

001111010

110100101

001011010
L  

Thus, there is a one-to-one correspondence between the operations in the black circle state change on the 2×9 order 

array graph and the state change solution of the buckles on the nine-ring props. 

(4) "T" operation can be performed on the first and second buckles to the right in Figure 3, where "L" operation can be 

done on the fourth buckle. The states of the 2nd, 5th, 6th, 7th, 8th and 9th buckles can’t be changed. 

In conclusion, we find that if the nine-ring solution is transformed into the state change model on the 2×9 order array 

graph, it is equivalent to discuss whether there is a series of "T" and "L" operations that changes the initial state matrix 










000000000

111111111
into unlocked state matrix 









111111111

000000000
? 

2.1.3 Explorations on the Operational Properties of Matrix State Change 

Next, we will discuss the following new properties in the "T" and "L" operations of the black circle state change in the 

new mathematical model of 2×9 order matrix graph. 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 9, No. 6; 2017 

27 

Property 1. Besides these two state matrices 








111111111

000000000
and










111111110

000000001
, all other state matrices can use T operation and L operation.  










111111111

000000000
is named the "first extreme state matrix" and 










111111110

000000001
the "second Extreme state matrix". 

(Proof) 

There are 51229  black circle states on the 2 × 9 order array graph shown in the figure 3. Since the definition of L 

operation is to change the black circle state next to the right outermost black circle in the first row, regardless whether 

this black circle is located on the first or second row. It is clear that of the 512 matrix symbols, the first extreme state  

matrix 








111111111

000000000
is unable to conduct L operations because there is no black circle on the 

first row. 

Since there is no black circle inside the first black circle on the first row of the second extreme state matrix  










111111110

000000001
, it can’t be operated with L operation. The rest of the state matrices are  

consistent with the T and L operations in the state change definition, so they can perform T operation and L operation. 

Property 2. T and L operations are reversible in the state change of the 2×9 array graph. 

(Prove) 

(1) Let X be a black circle state on the 2×9 array graph, X = 








0

1

18

18

bb

aa




, then




























0

1

1

0
)

0

1
(

18

18

18

18

18

18

bb

aa

bb

aa
T

bb

aa
TT












, XXTT ))(( . 

(2) Let X be a black circle state on the 2 × 9 array graph, without loss of generality,  

X = 








101

010

8

8





b

a
, then 



























101

010

100

011
)

101

010
(

8

8

8

8

8

8













b

a

b

a
L

b

a
LL ,

XXLL ))(( . 

Property 3. The state change operation in the perfect solution of the nine rings on the 2x9 array is composed of T and L 

operations alternately. 

In order to facilitate the subsequent discussion, we make the following definitions: 

(Definition 1) 

(1) In the 29 array graph the X state is changed to the Y state after the T operation, or L operation, T(X)=Y or L(X)=Y. 

It is defined as an "segment" for the X state to the Y state. 
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(2) In the state transition on the 29 array graph, the X state is changed to Y state via a series of T or L operations, T (L 

(T (L ... T (X) = Y, or T (L (L ... L (X) = Y. We call it a "path" for the X state to the Y state. A " segment" is also a 

single "path". 

(3) The number of T or L operations that can be made to a state on one path in the 29 array state change process is 

called the "degree" of this state. For example, the degree of the two extreme states is 1 and other state’s dimensions are 

2. 

Property 4. There is a single path for any change between any two states from all states of the 29 array graph. 

(Analysis) 

There are 512 black circle states in the 2×9 array graph, where the degree of the two extreme states is 1, the degree of 

the remaining states is 2, and from property 3, the state is changed by both T and L alternating operation. According to 

the principle of one stroke, from the first extreme state 








111111111

000000000
as a starting point, the 

first operation is T operation, and after a series of L and T alternating operations we can reach to the end point, the 

second extreme state 








111111110

000000001
. The first and last operations are T operations. The total 

number of operations is an odd number, 511, and the total number of all states is an even number, 512. In theory this 

path should exist, and is unique. 

So we make the following definition: 

(Definition 2) 

If there is a path from the first extreme state, 








1111

0000




after a series of alternating T and L operations to 

the second extreme state, 








1110

0001




. This path connects all the 2

n
 states on the 2n order array graph. We 

call this path the "whole path" of the 2n order array graph. 

In the preceding proof process, some of the used symbols are defined as followings: 

(Definition 3) 

(1) In all state matrices of 2n order array graphs, if the state matrix of each column vector is the same as 








1

0
, we call 

thus the first extreme state matrix, nX 2 . 

(2) In all state matrices of 2n order array graphs, if the state matrix of each column vector is the same  as 








0

1
. We 

define this the all upper state matrix, nZ 2 . 
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(3) If in the state matrices of the 2n order array graph, except for the first column vector 








0

1
, the rest of column 

vectors are all state matrix, 








1

0
, which is defined as the second extreme state matrix, nY 2 . 

(4) If in the state matrices of the 2n order array graph, except the second column vector 








0

1
, the rest of column 

vectors are all state matrix 








1

0
, we call this the first exchange state matrix, nV 2 . 

(5) In all state matrices of the 2 × n order array graph, except the first and second column vectors 








0

1
, the rest of 

column vectors are all state matrix 








1

0
, we call this the second exchange state matrix, nU 2  

From the above analysis, proof of property 4 is equivalent to proving that there is a single and unique full path in the 

state change operation of the 2×n order array graph. 

(Proof) 

Using mathematical induction 

(1) n=1, there are two states, 








1

0
and 









0

1
respectively. After a T operation, forming a unique path, n=1 holds. 

n=2, there are four states, 








11

00
, 









10

01
, 









01

10
and 









00

11
respectively. Through two T operations and one L 

operation, it forms a unique path, which is 





































10

01

00

11

01

10

11

00
TLT

. So n=2 holds. 

(2) Assume that kn  it holds. In the state change operation process of 2k order array graph, there is only a full path,

kP . 









1111

0000
2 


kX is a starting state, and 










1110

0001
2 


kY is the end state. After 

12 k
times of alternating TTLT   operations, it forms the only full path. 

In the state change operation of the 2(k+1) order array graph, let 

State 
















  kk XX 21)(2

1

0

1111

0000




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State 
















  kk XY 21)(2

0

1

1110

0001




 

State 
















  kk YU 21)(2

1

0

1101

0010




 

State 
















  kk YV 21)(2

0

1

1100

0011




 

and the state )1(2  kX be a starting point. After the state change operation of the full path kP , it can be connected to the 

state )1(2  kU . The state )1(2  kU can be connected to the state )1(2  kV after one L operation. After the reverse 

operation of all the state changes at the full path kP , the state )1(2  kV is connected to )1(2  kY . There is a total 

121)12(2 1  kk
times of alternating operations, TTLT   . In conclusion, the unique full 

path in the state change operation on the 2 × (k + 1) order array graph is,

)1(2)1(2)1(2)1(2    k

reverseP

k

L

k

P

k YVUX kk . So 1 kn , it also holds. 

Through the mathematical induction, for all positive integers n, there is a single full path in the state change operation 

process of 2n order array graph.  

This property 4 plays an important role in the following inquiry process, and there is also a rigorous argument process. 

We sort it into Theorem 1 as follows: 

Theorem 1. For all positive integers n and all the
n2 state matrices of the 2n order array graph, if the two extreme state 

matrices are used as starting and end points, after a series of alternating T and L operations, we can have following two 

results: 

(a) In the state change operation process of 2n order array graph, there must be a single full path. 

(b) The number of operations required to complete this full path is 12 n
, starting with T operation and ending with T 

operation. 

2.1.4 Explore the General Relationship between the State Changes of the Full Path on 2n Array Graph. 

(1). The state matrix relationship between the 2n array graph and the 2x(n + 1) order array graph: 

Let the
n2 state matrices in the 2n array graph be kA ,

nk 2,,3,2,1  . Acording to Theorem 1, if the
n2 state 

matrices, kA (
nk 2,,3,2,1  ) are inserted into the column vector 









1

0
on the left side of the first line, we have the 

new state matrix 







kA

1

0
(

nk 2,,3,2,1  ). 
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Inserting into the column vector 








0

1
on the left side of the first line, we have a new state matrix 








kA

0

1

(
nk 2,,3,2,1  ), which forms the 

12 n
 state matrices. These are the

12 n
state matrices of the 2×(n + 1) array 

graph. 

(2). Relationship Between the Full Paths of 2xn Array Graph and 2x(n+1) Array Graph. 

We define the whole path of the 12 n
sub-state change operations in the 2n order array graph as nP . According to 

theorem 1, this whole path is exactly the first half of the whole path 1nP  and the path contains the state matrices









kA

1

0
(

nk 2,,3,2,1  ) of all the first column vectors 








1

0
. The second half is exactly the reverse of the whole 

path 1nP , and contains the state matrices 







kA

0

1
(

nk 2,,3,2,1  ) of all the vectors 








0

1
in the first column on 

the left. Besides, after one L operation, the state matrix in the middle part of the whole path 1nP , 







kU 2

1

0
=










00101

00010




, can be transformed into 








kV2

0

1
= 









00100

00011




.  

Therefore, the operation process of the full path 1nP in the 2×(n + 1) order array graph is as follows: the state matrix 









kX 2

1

0
is changed into 








kY2

1

0
after the whole path nP operation, then into 








kY2

0

1
after one L operation, 

and finally into 







kX 2

0

1
via the whole path nP reverse operation. 

(3). Summary: 

From the discussion above, we summarize the following results: 

(a) The whole path state change operation can arrange 
n2 state matrices of the 2n order array graph into a single path 

transformation map, nG . For example, the whole path state change operation 3P  can be arranged into a single path 

transformation map 3G : 



































 LTLT

101

010

001

110

011

100

111

000





































110

001

010

101

000

111

100

011
TLT
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(b) On the one stroke map nG for the
n2 state matrices of the full path nP , if masking the first vector, the first half of the

12 n
state matrices is exactly the state matrices on one stroke map 1nG for the full path 1nP in the same order. It 

reaches the state matrix 







 12

1

0
kY , and through the L operation it becomes 








 12

0

1
kY . It then continues the 

latter half of the
12 n
state matrices. The order of this latter half state matrices is the reverse order of the state matrices 

on the one stroke map 1nG . That means they are symmetrical to the first half state matrices. Therefore the one stroke 

map nG for the full path nP is: 









 






























)1(2)1(2)1(2)1(2
0

1

0

1

1

0

1

0
11

n

reverseP

n

L

n

P

n XYYX nn    

(c) In the state change operation process of 2 n order array graph, there must be a shortest path between any two state 

matrix, nA 2 and nB 2 . Therefore, the perfect solution of the nine rings Chinese game is the shortest path in the whole path

9P . 

(d) The process of reverse state operation in the perfect solution of the nine rings game is equivalent to the one stroke map 

of the whole path 9P  shown as follows:  









 

















 








 



82)1(2828292
1

0

1

0

0

1
Z

0

1
Z 18 XYY nreverseP

n

LhofPpartialpat
 

We summarize it into Theorem 2. 

Theorem 2 

For all positive integers, if there is a unique full path nP  in all the
n2 state matrices of the 2n order array graph, there 

must be the following two results: 

(1) Given two state matrices, nA 2 and nB 2 , there must be a shortest path, changing the state matrix nA 2 into state 

matrix nB 2 through alternating T and L operations. 

(2) The state matrices between the first half and the second half of the full path nP
 are symmetrical. The state matrices 

of the first half are changed into those of the second half via one L operation. 

2.2 Explore the Perfect Solution of the Nine Rings Chinese Game, and Generalize the Perfect Solution of the n Rings 

Game 

As we know that the nine rings perfect solution is to relief the nine buckles from the main sword with the least number of 

operations. Using our previous discussion, combined with the state matrix presentation in the mathematical model of 2n 

order array graph, we can see that the process of solving the perfect solution of nine rings is equivalent to changing the  

whole upper state matrix 








000000000

111111111
 into the first extreme state matrix 










111111111

000000000
 through a series of T or L operations. This operation perfectly matches the 

reverse state change operation in the partial part of the full path 9P on the 2n order array graph. So The number of steps 

for the perfect solution of the nine rings game will be less than 5111-29  . We can use the "full path" model to explore 

the nine rings solution, and even the general solution of the n rings. 
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2.2.1 Nine Rings Perfect Solution and its Number of Steps 

Using Theorem 1, Theorem 2 and inverse deduction method, we explore the number of steps to solve the nine rings: 

First, let na be the total number of T and L operations needed to change the whole upper state matrix into the first extreme 

state matrix in the full path state change operation nP of the 2n order array graph. 

Obviously, 11 a . Based on Theorem 1, the perfect solution of the nine rings is to change the all upper state matrix  











000000000

111111111
Z 92 into the first extreme state matrix 











111111111

000000000
92X through 9a times of serial T and L operations in the reverse state change  

operations of the full path 9P . According to Theorem 2, there must be a shortest path in any two state matrices of the full 

path 9P . After a series of T and L operations, the state matrix 92Z is connected to the state matrix 92X . 

Similarly, according to Theorem 2, while the state matrix 92Z is transformed into the state matrix 92X , the latter half 

process is exactly the full path 8P . The total number of times in alternating T and L operations equals to 25628  . In 

addition, analyzing the state matrix representations of the first half path with the first and second vectors ignored, we 

found that the first half of the path is exactly the process for the state matrix 72Z transformed into the state matrix

72X in which the total number of T and L operations is 7a .  

From the above ccomprehensive discussion, we have
7

8

9 2 aa  ,
5

6

7 2 aa  and 
3

4

5 2 aa  . 

In addition, we can be inferred that
6

7

8 2 aa  , 
4

5

6 2 aa  and
2

3

4 2 aa  . 

Since 11 a and 22 a , we have the recursive relationship, 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
 

Using the above recursive relation and the geometric series formula, we can deduce  

341
14

)14(1
122222222

5
2468

1

2468

9 



 aa  

So it takes 341 steps to completely solve the nine rings. The geometric series presentation expresses the perfect solution 

process of the nine chain as follows :  

       5242

)(2

3262

)(2

1282

T

92

4
4

2
2

    XZXZXZZ stepsrecursivePstepsrecursiveP
 

   92

)(2

7222

)(2 8
8

6
6

    XXZ
stepsrecursivePstepsrecursiveP

 

We first do the L operation, then the reverse operation of the whole path 2P 、 4P 、 6P 、 8P  in sequence, reaching the 

final state matrix 92X . The nine rings are completely unlocked from the main sword. 

2.2.2 N Rings Perfect Solution and the Number of Steps. 

Applying the previous investigation methods and results in nine rings game, we then explore the number of n rings 

operations steps: 

First, the number of steps in the perfect solution of the n rings satisfies the recursive relationship: 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
 

The followings are the general formulas for na with n in odd and even numbers respectively:  

(1) n is odd: 
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1

2 2 

  n

nn aa , and 11 a , so 

1

231

4

31 22222 aaa nn

n

nn

n  



   

1222 231   nn
 

3

12

14

]1[41 12

1













n

n

 

From the above recursive relationship and the geometric series formula, we can deduce that the n rings perfect solution 

process with odd number n as followings: 

       52)5(2

)(2

323)-(n2

)(2

12)1(2

T

2

4
4

2
2

    XZXZXZZ n

stepsrecursivePstepsrecursiveP

nn

     n

stepsrecursiveP

knk

stepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n   

(2) Similarly when n is even: 

1

2 2 

  n

nn aa , and 22 a , so 

2

331

4

31 22222 aaa nn

n

nn

n  



   

2222 331   nn
 

3

22

14

]1[42 12 







n

n

 

From the above recursive relationship and the geometric series formula, we can deduce the n chain perfect solution 

process with even number n as followings: 

       62)6(2

)(2

424)-(n2

)(2

22)2(2

L

2

5
5

3
3

    XZXZXZZ n

stepsrecursivePstepsrecursiveP

nn

     n

stepsrecursiveP

knk

stepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n   From the 

results of (1) and (2), we have the general formula, ]
2

)1(1
12[

3

1 1
n

n

na


 
， Nn  and summarize it as 

Theorem 3.  

Theorem 3. 

For all positive integers n, the n rings perfect solution and the number of solution steps follow three properties. 

(1) na , the number of steps to complete the perfect solution, meets the recursive relationship: 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
 

(2) The general form for na is ]
2

)1(1
12[

3

1 1
n

n 


, Nn . 

(3) When n is odd the perfect solution process is: 

       52)5(2

)(2

323)-(n2

)(2

12)1(2

T

2

4
4

2
2

    XZXZXZZ n

stepsrecursivePstepsrecursiveP

nn
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     n

stepsrecursiveP

knk

stepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n   

 When n is even the perfect solutions process is : 

       62)6(2

)(2

424)-(n2

)(2

22)2(2

L

2

5
5

3
3

    XZXZXZZ n

stepsrecursivePstepsrecursiveP

nn

     n

stepsrecursiveP

knk

stepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n   

2.3 Investigate the properties in the Transformation Function between the 2n Order Array Graph State Matrix and the 

n-bit Binary Number. 

We will explore the shortest path between any two states of the nine rings game and which buckle is operated in the mth 

step from one state to another. Further we will generalize the operation process for example, in n chains whether we can 

unlock all the buckles in any state, or in what state it will become after moving m steps from state nA 2 ? 

2.3.1 Find the Transformation Function between the 2n Order Array Matrices and the n-bit Binary Numbers. 

According to Theorem 1, there must be a single unique full path in the state change operation of the 2×9 order array 

graph, and this Eulerian path just connects the
92 state matrices through a series of T and L operations alternately. We 

want to use this as a basis, combined with the n-bit binary representation, to explore whether there is a transformation 

function mapping the state matrix to a corresponding n-bit binary number. 

Analysis: 

First, we have two default targets for this transformation function. One is that it is a one-to-one mapping function. The 

other is that it can reflect all state matrices positions in the 2n order array graph to that on the full path in the same 

order and the order of the positions is exactly the same as the order of the corresponding n bits numbers. 

Next, the relationship between the state matrices and the binary number transition on the full path of the 2n order array 

graph is discussed with n = 1, 2, 3. 

(1) When n = 1, the state matrices of the 2 × 1 order array graphs are concatenated. If we focus on the numbers in the 

first row, the state matrices correspond to 0 and 1( i.e. 0, 1) in one digit of binary representation. 

(2) When n = 2, the state matrices in the full path of the 2 × 2 order array graph are  





































10

01

00

11

01

10

11

00
TLT

. 

If we focus on the numbers in the first row of matrices, the state matrices correspond to 00,01,11,10 (i.e. 0, 1, 3, 2) in 

2-bit binary representation. The position order of the matrices and the corresponding number order in binary 

presentation are not consistent. To make them consistent, we must treat 
















10

01
,

00

11
 as 2 and 3 respectively. 

Therefore, we can not only focus on the numbers of the first row. It is necessary to refer to the entries in the second row. 

We first treat the number in the first row and the first column as the one in the first column and the second row position, 

and then do the "XOR" operation using this new value and the entry in the second column and the second row. Thus 










00

11
corresponds to the binary 10, and 









10

01
corresponds to the binary 11. These two values are 2 and 3 

respectively. 

At this time, the state matrices 
































10

01
,

00

11
,

01

10
,

11

00
corresponding to 00,01,10,11 (i.e. 0,1,2,3) of the 

2-bit binary numbers, and the order of their positions and the order of their corresponding binary numbers are 

consistent. 
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(3) When n = 3, the state matrices of the 2 × 3 order array graphs is concatenated as 














































100

011

101

010

001

110

011

100

111

000
LTLT

 





























110

001

010

101

000

111
LTT

 

Modify the corresponding relationship for the transformation, we take the value in the first row of the first column for 

the upmost digits, and then use entries of the previous row in the first column and the ones of the two consecutive rows 

behind in the first column for the "XOR operation.  

The state matrices ,
100

011
,

101

010
,

001

110
,

011

100
,

111

000








































 


























110

001
,

010

101
,

000

111
 respectively corresponding to 000,001,010,011,100,101,110,111 (i.e. 

0,1,2,3,4,5,6,7) of the 3-bit binary numbers. Their position order and the one of the binary numbers are consistent.  

Based on the above discussion, a transformation function is obtained, )(xf which associates the state matrix 













012345678

012345678

111111111 bbbbbbbbb

bbbbbbbbb
Ai

with a 9-bit binary number

)( 012345678 yyyyyyyyyai  , in which 88 by  , kkk byy XOR)(1 , Zkk  ,70 . 

That is ii aAf )( . 

Based on the result of the above analysis and discussion we describe and prove the Theorem 4. 

Theorem 4.  

If there is a transformation function between all state matrices and n-bit binary values on the full path of the 2 x n order 

array graph, ii aAf )( .This function, )(xf , maps the state matrices  

















0123421

0123421

11111111 bbbbbbbb

bbbbbbbb
A

nnn

nnn

i 


 to the n-bit binary numbers, 

)( 0123421 yyyyyyyya nnni  where nn by  , kkk byy XOR)(1 ，

Zknk  ,10 . 

The state matrix transformation function is a one-to-one mapping function, and a strictly increasing function. 

(test) 

From the above results, it is known that there is a transformation function between the set M formed by the state 

matrices connected in the full path of the 2×9 order array graph and the set N formed by the 9-bit binary values. This 

function is a one to one and surjection function. The state matrix of the 2×9 order array graph is isomorphic to the 9-bit 

binary value. We can use this function to check the number of steps required for the perfect solution of the nine chain 

game: 
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The fully upper state matrix for beginning the nine chain game is 









000000000

111111111
Z 92  and 

the final state matrix for solving the nine chain game is 









111111111

000000000
92X . The positions 

of these two matrices in the whole path 9P are

341121212121)101010101()( 2468

292 Zf and 0)000000000()( 292 Xf

respectively. Since 341)()( 9292   XfZf , the number of steps to perfectly solve the nine chain is 341 steps 

2.3.2 Properties of the Transformation Function between 2xn Order Array Graph State Matrices and n-bit Binary 

Numbers 

We further explore some properties of the transformation function )(xf , such as the meaning of the function value 

parity, and the inverse function )(1 xf 
. 

(1) Parity of the function values.  

Based on the previous study results, we know that the function between the 9-bit binary values and the corresponding 

state matrices on the full path of the 2×9 order array graph is strictly increasing. Therefore, studying the order in the 

9-bit binary values of two state matrices, we can determine the series of T and L operations between these two matrices. 

The following is a discussion of the process: 

Since there are 512 state matrices on the full path of the 2×9 order array graphs, it is necessary to use a series of 511- 

time T and L alternate operations in which the beginning is the T operation and the ending is also T operation. Thus, 

these odd number operations are T operations, and the even number operations are L operations. In the full path of 2×9 

order array graph, besides the first and 512th state matrix, the odd- number state matrix has T operation forwards and L 

operation backwards. In the other hand the even-number state matrix has L operation forwards and T operation 

backwards. 

In addition, the state matrix transformation function with a one-to-one property has 9-bit binary values. Therefore 512 

state matrices on the full path of the 2 x 9 order array graph are represented by the transformation function )(xf , as1, 2, 

3, ..., 511. Thus, the odd-numbered state matrix function value is even, which does T operation forwards and L 

operation backwards. The even- number state matrix function value is odd which does L operation forwards and T 

operation backwards.  

We will discuss the results as Theorem 5 and prove it. 

Theorem 5.  

Through the matrix transformation function )(xf on the full path of the 2xn order array graph, any arbitrary state 

matrix nA 2 is transformed into a n-bit binary value )( 2 nAf  .Let nZ 2 and nY 2 be first and second extreme state 

matrices on the full path of the 2n order array graph. Then: 

(a) If nA 2 is the 12 k state matrix on the full path nP and Zkk n   ,20 1
,the value )( 2 nAf  is k2 .The state 

matrix nA 2 is connected to the second extreme state matrix nY 2 in via a series of the order of

TTLT   alternating operations in kk 212  times, and can be connected to the first extreme State 
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matrix nZ 2 via alternating TLTL    operations for k2 times.  

(b) If the state matrix nA 2 is the k2 value on the full path nP  and Zkk n   ,20 1
, )( 2 nAf   equals to 12 k . 

The state matrix nA 2 is connected to the second extreme state matrix nY 2 via kk 22  times of "

TLTL   " alternating operations. It also can reach the first extreme state matrix nZ 2 through 12 k

times of “ TTLT   ” alternating operations. 

(Test) 

Given the nine chain state matrix, 









010100101

101011010
1A , the 9-bit binary value of )( 1Af equals 

to 217)(011011001 2  . From the Theorem 4, It takes a total of 217 times of serial T and L alternating operations 

starting with T operation for the state matrix 1A to reach the first extreme state matrix. 

Similarly, given the other state matrix of nine chain rings, 









100111001

011000110
2A , the 9-bit 

binary value )( 2Af equals to 132)(010000100 2  . By the Theorem 4, from the state matrix 2A to achieve the first 

extreme state matrix, it takes a total of 132 times through a series of L and T alternating operations starting with L 

operation. 

(2). Inverse function )(1 xf 
 

Because f is a one-to-one and onto function, its inverse function exits. What is its inverse function? The followings are 

our discussion: 

One-to-one function )(xf satisfies the following correspondence: MNM xfxf  
 )()( 1

 

Any MAi  , let 











012345678

012345678

111111111 bbbbbbbbb

bbbbbbbbb
Ai

 

then, )( iAf )( 012345678 yyyyyyyyyai   

among them, 88 by  , kkk byy XOR)(1 , Zkk  ,70 . 

Next, let’s confirm whether ii Aaf  )(1
holds. That means we can derive elements of iA from any of the nine 

elements in ia . 

First, as determined by the first row, the second row follows. 

So we can just find out the first row’s elements, 8,,2,1,0, kbk . 
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Furthermore, ii aAf )( , 88 by  , so iA ’s vector on first column is 








 8

8

1 y

y
. 

Since kkk byy XOR)(1 , doing XOR)(1ky bit operation on both sides of the equation at the same time, we have

kkkkkk bbyyyy   )XOR)(XOR)((XOR)( 111 . So, 1XOR)(  kkk yyb   

Given )( 012345678 yyyyyyyyyai  , 













012345678

0123456781

111111111
)(

bbbbbbbbb

bbbbbbbbb
Aaf ii

, 

and 88 yb  , 1XOR)(  kkk yyb , Zkk  ,70 . 

Using the graph below, we can illustrate their correspondence: 









































012345678

012345678

188

1

2012345678

188

012345678

012345678

111111111

0,1,2,3,4,5,6,7,)(,),(

)(

0,1,2,3,4,5,6,7,)(,),(

111111111

bbbbbbbbb

bbbbbbbbb

kyXORybybxf

yyyyyyyyy

kbXORyybyxf

bbbbbbbbb

bbbbbbbbb

kkk

kkk

 

We will discuss the results above, generalize them as Theorem 6. 

Theorem 6. 

If any state matrix iA on the full path of the 2xn order array graph is transformed into a n-bit binary value ia through the 

state matrix function )(xf , let )( 0123421 xxxxxxxxa nnni  , then 

















0123421

01234211

11111111
)(

bbbbbbbb

bbbbbbbb
afA

nnn

nnn

ii 


, 

nn xb  , 1XOR)(  kkk xxb , Zknk  ,10 . 

(Test) 

(1) Given two 9-bit binary numbers, 2)011011011( and 2)101101101( , and applying Theorem 5, the corresponding 
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state matrices on the 2 × 9 order array graph are 









100100101

011011010
))011011011(( 2

1f ， 











001001000

110110111
))101101101(( 2

1f  

(2) Given the nine-ring state matrix 









100111001

011000110
1A , the 9-bit binary value of )( 1Af is

132)(010000100 2  , and it takes the L-operation followed by a series of L and T operations in 75 times to reach 

the state matrix 2A . From the theorem 4 we can see that the value of )( 1Af is 20775132  . Its 9-bit binary 

expression is 2)(011001111 , and by the Theorem 5, 









 

111010101

000101010
))011001111(( 2

1

2 fA . 

2.3.3 To Explore the Sequence in the Perfect Solution Operation Order of the n Buckles on n-chain Main Sword  

From the Theorem 3 conclusion, we know that the perfect solution of the n-chain is from the fully upper state matrix 

nZ 2 in the 2n order array graph to the first extreme state matrix nX 2 , in which it takes ]
2

)1(1
12[

3

1 1
n

n 


( Nn ) times of T and L alternating operations. Next, we number the n buckles from outside to inside on n-ring 

main sword as1,2,3, ..., n. We will study the order change of buckle numbers and its related properties while the n 

buckles go through ]
2

)1(1
12[

3

1 1
n

n 


( Nn ) times of serial T and L alternating operations.  

(1) 1n , the buckle number sequence in the perfect solution of one-ring is 1. 

(2) 2n , the buckle number sequence in the perfect solution of two-ring is 2,1. 

(3) 3n , the buckle number sequence in the perfect solution of three-ring is 1,3,1,2,1. 

(4) 4n , the buckle number sequence in the perfect solution of four- ring is 2,1,4,1,2,1,3,1,2,1. 

(5) 5n , the buckle number sequence in the perfect solution of five-ring is 1,3,1,2,1,2,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1. 

(6) 6n , the buckle number sequence in the perfect solution of six-ring is 

2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,1,2,1,4,1,2,1,3,1,2, 1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1. 

From the above sequences, we found several properties: 

(a). The sequence  na  is formed by the operations order of n numbered buckles on the n-ring main sword in the 

perfect solution. This sequence can be separated into several sub-series combinations, which are

  122 nnnn aaantinaa . 

(Prove) 

By Theorem six, the perfect solution of the n-chain main sword relies on unlocking the first 2n buckles through the 

sequence  2na . Thus the main sword has only the 1n and n numbered buckles closely connected in which the L 

operation will unlock the n  numbered buckle.  Via the anti-arrangement of the sequence  2na , the first 2n
buckles are operated reversely with alternating T and L operations leaving the main sword with 1n buckles. Finally 
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by the sequence  1na we can unlock the 1n buckles, and complete the perfect solution of the n chains. The 

recursive relationship of the n-numbered-buckles sequence is as following: 









 Nnnaaantinaa

aa

nnnn ,3,

1,2,1

122

21
 

(b). When n is odd: 

The first ring is in the 12 m position, where the third ring is in the 28 m position, the fifth ring in the 632 m

position, the 12 p ring in the
3

22
2

2
12 


p

p m position, and the n ring in the 
3

22
2

1 


n
n m position, Zm ,

Zpnp  ,120 . 

The second ring is in the 44 m position, where the fourth ring is in the 1416 m position, the sixth ring in the

5464 m position, the p2 ring in the
3

222
2

1212
2 


 pp

p m position, and the 1n ring in the 

3

222
2

2
1 





nn

n m position, Zm , Npnp  ,122 . 

(Proof) 

By mathematical induction,  

1n , the number 1 buckle is in the odd position, which is in the 12 m position. It holds. 

3n , the number 1 buckle is in the 12 m position, and the second and third buckles are in the fourth and second 

positions, respectively. 

12  kn , the number p2 buckle is in the
3

222
2

1212
2 


 pp

p m , Zpkp  ,1 , where the number

12 p buckle is in the
3

22
2

2
12 


p

p m position, Zpkp  ,0 . 

32  kn , the recursive relationship of the n-numbered-buckles sequence in the perfect solution of the n chains on 

the n-chain main sword is as follow: 

 









 Nnnaaantinaa

aa

nnnn ,3,

1,2,1

122

21
 

We have   22121232 32 kkkk aaantikaa , 

and   122222 22 kkkk aaantikaa . 

So the numbered 22 k buckle is in the subsequence  22ka from the main sequence  32ka .  

From Theorem 3, the sequence  ka2 has 
3

22 12 k

terms, the sequence  12ka  has 
3

12 22 k

terms, and the 

sequence  12kaanti has 
3

12 22 k

terms. 
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Thus the numbered 22 k buckle is located in the numbered 1
3

22

3

12
1

3

12 122222








  kkk

=

3

222 1232   kk

term in the sequence  32ka . 

Similarly, the numbered 32 k buckle is located in the numbered 1
3

12 22


k

=
3

22 22 k

term of the sequence

 32ka . So, it also holds.  

Therefore, by the mathematical induction we can deduce that for all positive odd number n, in the sequence formed by 

the perfect solution of the n buckles on the n-chain main sword, the numbered p2 buckle lies in the 

3

222
2

1212
2 


 pp

p m position, Npnp  ,122 and the numbered 12 p buckle is in the

3

22
2

2
12 


p

p m position, Zpnp  ,120 .   

(c). When n is even: 

The first ring is in the 22 m position, where the third ring is in the 78 m position, the fifth ring in the 2732 m

position, the 12 p ring in the
3

122
2

222
12 





pp

p m position, and the 1n ring in the
3

122
2

2
1 





nn

n m

position, Zm , Zpnp  ,22 . 

The second ring is in the 14 m position, where the fourth ring is in the 316 m position, the sixth ring in the

1164 m position, the p2 ring in the
3

12
2

12
2 


p

p m position, and the n ring in the 
3

12
2

1 


n
n m position,

Zm , Zpnp  ,22 . 

(Proof) 

By mathematical induction,  

2n , the number 1 and 2 buckles are in the even and odd positions respectively. So 2n it holds. 

4n , the number 1 and 2 buckles are in the m2 and 1'4 m positions respectively, Zmm ', . The third and fourth 

buckles are in the seventh and third positions, respectively. 

If kn 2 , the numbered p2 buckle is in the
3

12
2

12
2 


p

p m , Zpkp  ,1 , where the numbered 12 p

buckle is in the
3

122
2

222
12 





pp

p m position, Zpkp  ,1 . 

When 22  kn , the recursive relationship of the n-numbered-buckles sequence in the perfect solution of the n 
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chains on the n-chain main sword is as follow: 

 









 Nnnaaantinaa

aa

nnnn ,3,

1,2,1

122

21
 

We have   122222 22 kkkk aaantikaa , 

and   kkkk aaantikaa 2121212 12 . 

So the numbered 22 k buckle is in the sequence  32ka . 

From Theorem 3, the sequence  ka2  has
3

22 12 k

terms, the sequence  12ka  has 
3

122 k

terms, and the 

sequence  12kaanti also has
3

122 k

terms. 

Thus the numbered 12 k buckle is located in the numbered 1
3

12

3

22
1

3

22 21212








  kkk

=

3

122 222  kk

term in the subsequence  12ka of the sequence  22ka . Similarly, the numbered 22 k

buckle is located in the numbered 1
3

22 12


k

=
3

12 12 k

term in the sequence  22ka . So 22  kn , it also 

holds.  

Therefore, by the mathematical induction we can deduce that for all positive even number n, in the sequence formed by 

the perfect solution of the n buckles on the n-chain main sword, the numbered  p2 buckle lies in the

3

222
2

1212
2 


 pp

p m position, Zpnp  ,22 and the numbered 12 p buckle is in the

3

122
2

222
12 





pp

p m position, Npnp  ,22 . 

Theorem 7. 

The n rings on the n-chain main sword are numbered from the outside to inside as 1,2,3, ..., n. If the sequence  na  

is formed by the operations order of n numbered buckles on the n-ring main sword in the perfect solution, and the 

sequence  naanti is the reverse of the sequence  na , then  

(1) The sequence satisfies the recursive relationship, 









 Nnnaaantinaa

aa

nnnn ,3,

1,2,1

122

21
 

(2) When n is odd: 
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(a) The first ring is in the 12 m position, where the third ring is in the 28 m position, the fifth ring in the 632 m

position, the 12 p ring in the
3

22
2

2
12 


p

p m position, and the n ring in the 
3

22
2

1 


n
n m position, Zm ,

Zpnp  ,120 . 

(b) The second ring is in the 44 m position, where the fourth ring is in the 1416 m position, the sixth ring in the

5464 m position, the p2 ring in the
3

222
2

1212
2 


 pp

p m position, and the 1n ring in the

3

222
2

2
1 





nn

n m position, Zm , Npnp  ,122 . 

(3) When n is even: 

(a) The first ring is in the 22 m position, where the third ring is in the 78 m position, the fifth ring in the

2732 m position, the 12 p ring in the
3

122
2

222
12 





pp

p m position, and the 1n ring in the

3

122
2

2
1 





nn

n m position, Zm , Zpnp  ,22 . 

(b) The second ring is in the 14 m position, where the fourth ring is in the 316 m position, the sixth ring in the

1164 m position, the p2 ring in the
3

12
2

12
2 


p

p m position, and the n ring in the 
3

12
2

1 


n
n m position,

Zm , Zpnp  ,22 . 

(4) The buckle numbering sequence has a non-repetitive property. 

(test) 

(a) in the sequence the sequence  na  formed by the operations order of n numbered buckles on the n-ring main 

sword in the perfect solution , there are 1711
2

341









number 1 buckles lie in the (mold 2 more than 1) position,

85
4

341









number 2 buckles in the (mold 4 more than 0) position, 431

8

341









number 3 buckles in the (mold 

8 more than 2) position, 21
16

341









number 4 buckles in the (mold 16 more than 14) position, 111

32

341










number 5 buckles in the (mold 32 more than 6) position, 5
64

341









number 6 buckles in the (mold of 64 more than 54) 
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position, 31
128

341









number 7 buckles in the (mold 128 more than 22) position, 1

256

341









number 8 buckles in 

the (module 256 more than 214) position, and 11
512

341









number 9 buckles in the (mold 512 more than 86) position. 

Therefore, this sequence  na has a total of 341 items. 

(b) In the perfect solution of the nine chains, starting from the all upper state matrix 









0000

1111
2 


nZ and 

after a series of T, L operations alternately, which buckle it is at the 126
th

 step of operation? Because 126 is divided by 

16 more than 14, the 126th step operated the number 4 buckle. In addition, if starting from the state matrix











100111001

011000110
1A  , it begins with L operation, and after a series of T, L alternating 

operations, which buckle it is at the 66th steps? By Theorem 4, the 9-bit binary value of )( 1Af is an even number, 

132)(010000100 2  . After the L operations it moves toward the first extreme state matrix. It will reach the position 

with the value )(xf equaling to 6666132  . That is 27566341  operations beginning from the all upper 

state matrix. Since 275 is divided by 2 more than 1, the 66th step operates the first buckle. 

2.3.4 Graphical Discriminant Method for State-changing Operation of State Matrices in 2xn Order Array Graph 

According to the Theorem 4 results, through the parity of )(xf value, we can determine the series of T, and L 

operations needed for any state matrix iA on the full path of the 2x n order array graph to reach the first or second 

extreme state matrix. We can even determine the minimum number of operating steps required to complete the task. At 

the same time the result of Theorem 7 can be used to determine which buckle is involved for any given state matrix iA
moving toward any given state matrix jA at the mth step in the perfect solution process of the n chains.  

Next, we want to explore the graphical discriminant method of the state change operation in the 2x n order array graph 

via the mathematical model of the 2xn order array graph, and the results of the Theorem 4 and Theorem 7. Through this 

graphical diagram we can easily and quickly decides what is the first step needed for the current nine-ring state to be 

solved in the perfect solution, what is the nine-ring state after moving m steps, and also which buckle is involved at the

mth step? 

Construct a graphical Discriminant method. 

First, we try to find the figurative interpretation pattern between the state matrix of the 2x9 order array graph and the 

9-bit binary value via their transformation function )(xf . 

For example, as shown below the graph in the 2x 9 order array of Figure 4, 











001100101

110011010
iA is its corresponding state matrix in the perfect solution of the nine rings. 

The function value is odd, 221)011011101()( 2 iAf . From Theorem 4, if T operation is the next step, we can 

complete the perfect solution of the nine rings. In addition, the state matrix iA is obtained by a series of alternating T 
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and L operations in 021221341  times from the all upper state matrix 92Z . Next step is the 121th step, and 121 is 

divided by 2 more than 1. Therefore, the next operation is T operation. By Theorem 7 it is on the first buckle moving 

into another state matrix 









101100101

010011010
jA  as shown in Figure 5 below. Its function value is 

even, 220)011011100()( 2 jAf . Similarly, if L operation is next, we can complete the nine chain perfect 

solution. The state matrix jA is obtained by a sequential and alternating T and L operations in 121220341  times 

from the all upper state matrix 92Z . Next step is the 122th step, and 122 is divided by 8 more than 2. From Theorem 7, 

L operation is the next operation. It is on the third buckle, then moving into another state matrix











100100101

011011010
kA  as in Figure 6 below.  

 

(Fig. 4) 

 

(Fig. 5) 

 

(Fig. 6) 

On the other hand, in the perfect solution of the nine rings, the purpose of its main operation is to unlock the innermost 

ring on the main sword. So in the array diagram of figure 4, the purpose of a series of T, L operations is to unlock the 

innermost 8th black circle into F state. To achieve this goal we must first move the 7th buckle into P state, provided that 

the 1st to 6th buckles must be in the F state. Every two buckles is named as a section, so the first step in the perfect 

solution for figure 4 is to move the first buckle. That is the T operation. 

In addition, observing the black circle state in the first row of the graph in figure 5, we aim to move the 8th black circle 

to F state. To achieve this, the 7th buckle has to be changed to P state, provided that the first to sixth buckles are in the F 

state. From the inside to the outside every two buckles are treated as a section. In order to make the second buckle into 

F state, the first step in the perfect solution for figure 5 is to move the third buckle. That is the L operation. 
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Similarly, observing the black circle state in the first row of the graph in figure 6, we are to move the 8th black circle to 

F state. To achieve this, the 7th buckle has to be changed to P state, provided that the first to sixth buckles are in the F 

state. From the inside to the outside every two buckles are treated as a section. So the first step in the perfect solution 

for figure 6 is to move the first buckle. That is the T operation. 

Based on the above discussion, we summarize the following two principles as the main principles of the graphic 

discriminant method:  

Main principle. The main operation in the perfect solution is to unlock the innermost buckle on the main sword. So the 

target in each stage of the operation is to move the innermost two buckles into adjacent state on the main sword.  

Complementary principle. To follow the main principle, one must change the remaining outside buckle into F state. 

Thus from the inside out every two buckles are treated as a section. If there is no buckle left, we do the L operation. If 

there is only one buckle left in a section, we can then do the T operation. 

We summarize these investigation results in the following graphic discriminant method for the state change operation of 

the 2x n order array graph. 

Graphic Discriminant Method. 

The graphical rule for the state matrix changing operation in the 2xn order array graph. 

(a) If the number of black circle in the first row is odd, T operation first can reach to the first extreme state matrix in the 

shortest path, where L operation first can reach to the second extreme state matrix in the shortest path. 

(b) If the number of black circle in the first row is even, L operation first can reach to the first extreme state matrix in a 

shortest path, where T operation first can reach to the second extreme state matrix in a shortest path. 

(test) 

The following figure is a state in the perfect solution of nine rings. By graphic discriminant method, we can see that 

starting with L operation, moving the fourth buckle into P state, gives us the opportunity to unlock the nine rings. 

 
2.4 Investigation on the Generating Function of n Rings 

We have used the recursive relationship of the n rings to find the expression of the general term. We want to use the 

general term of the sequence to find the correspondent generating function. Given the sequence  
1nna , we can find 

the generating function of the sequence, 





1

1)(
n

n

n xaxf .   

By Theorem 3, na , the number of times in the n rings perfect solution operations meets the following recursive 

relationship: 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
 

The general formula for na is ]
2

)1(1
12[

3

1 1
n

n 


, Nn . 
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What is the generating function  for the sequence 
1nna ? 

Investigation: 

(a) method 1. 

First let na as the number of times in the perfect solution operations for n rings. 

Because the recursive relationship for na is 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
, the sequence equals to

  ,,,5,2,1,,,,, 321 nn aaaaa  

and
1

2 2 

  n

nn aa  …..(1), 
2

31 2 

  n

nn aa …... (2) 

2)2()1(  , we have  

 3,22 321   naaaa nnnn  

Let the generate function as   13

4

2

321)( n

n xaxaxaxaaxf ----(3). 

(3) multiplied by x2 ,
2x ,

32x , respectively, we have  

  n

n xaxaxaxaxaxxf 22222)(2 4

4

3

3

2

21  

  15

4

4

3

3

2

2

1

2 )( n

n xaxaxaxaxaxfx  

  26

4

5

3

4

2

3

1

3 22222)(2 n

n xaxaxaxaxaxfx  

We add them all together,  

3

123

2

121

32 )22()2(2)()22( xaaaxaaxaxfxxx   

  

n

nnn xaaaxaaa )22()22( 21

4

234  

   

n

n xaxaxaxaaxaxfxxx 1

4

5

3

4

2

121

32 )2(2)()22(  

 )()2()2()()22( 2

312211

32 xfxaaaxaaaxfxxx   

  1)()221( 32  xfxxx  


122

1

221

1
)(

2332 







xxxxxx
xf  

(b) method 2. 

Since there is a recursive relationship between na and 1na : 1212 2121   nnnnnn aaaaaa , 

)(xf

3,22 321   naaaa nnnn
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we multiply 





1

1)(
n

n

n xaxf by x, and
22x respectively 

















1

1

5

4

4

3

3

2

2

1

2

1

1

4

4

3

3

2

21

222222)(2

)(

n

n

n

n

n

n

n

n

xaxaxaxaxaxaxfx

xaxaxaxaxaxaxxf
 

Subtracted by )(xf , we have 

 







1

21

3

234

2

123121

2

`)2()2()2()(

)(2)()(

n

nnn xaaaxaaaxaaaxaaa

xfxxxfxf

1

1
1)12)(( 4322




x
xxxxxxxxf n   

122

1

)1)(12(

1
)(

232 





xxxxxx
xf  

(c) method 3. 

Suppose that 





1

1)(
n

n

n xaxf is the generating function for na , the number of times in the perfect solution 

operations for n rings. 

The general formula for na is ]
2

)1(1
12[

3

1 1
n

n 


， Nn . 

So we want to merge some special generating functions as follows to the final form, 





1

1)(
n

n

n xaxf : 

 


nxxxx
x

321
1

1
 

 


nn xxxxxxx
x

)1()1()1()1(1)()()(1
1

1 332232
 

 


nn xrxrxrrx
rx

.1
1

1 3322
 

1

1

1 ]
2

)1(1
12[

3

1
)( 








 n

n

n
n xxf  

}
2

)1(

2

3
2{

3

1 1

1

1

1

1

1

1 














 


 n

n

n
n

n

n

n

n xxx  

})1(
2

1

2

3
24{

3

1 1

1

1

1

11

1

1 














   n

n

n

n

nn

n

n xxx  

}
1

1

2

1

1

1

2

3

21

1
4{

3

1

xxx 






  
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122

1

)1)(1)(12(

1

1

6

1

1

2

1

12

3

4

23 
















xxxxxxxxx

 

We summarize the results of the above discussions in Theorem 8. 

Theorem 8. 

Let the number of times in operations for the perfect solution of the n rings be a sequence  na . The generating 

function of the sequence 
1nna is )(xf .Thus, )(xf satisfies the following mathematical formula:  

(1)
122

1
)(

23 


xxx
xf  

(2)
xxx

xf









1

1

6

1

1

1

2

1

21

1

3

4
)(  

3. Main Results 

Mathematical model of 2xn order array graph 

(1) Black circle in the first row of the array graph represents the buckle on the nine ring main sword, which is defined as 

the P state. Black circle in the second row is the buckle unlocked from the main sword, which is defined as the F state. 

(2) We use 2-bit binary system to represent the buckle’s state on the nine ring main sword. “1” means   the buckle is 

on the main sword, where “0” means the buckle is off the main sword. So the state of nine buckles can be continuously 

written in a 9-bit binary number, 201278 )( aaaaa  which indicates the states of each nine buckles on the main sword 

in the solution process. Similarly, using the matrix, we can indicate the state of the black circle on the 2x9 order array 

graph. The vector, 








0

1
is used to represent the black circle on the first row, and 









1

0
indicates that the black circle is on 

the second row. Thus the states of the nine black circles on the 2x9 order array graph can be represented by a 2x9 

matrix, 








018

018

bbb

aaa




. So the states of the black circle on the array graph in the operation process can be 

described as a 2x9 state matrix. It can be deduced that there is a one-to-one and surjection correspondence between the 

symbolic representations of these two states. 

Theorem 1 

For all positive integers n and all
n2 state matrices of the 2xn order array graph, if the two extreme state matrices are the 

end points, they can be reached either way through a series of T and L operations alternately. The followings are the 

two results:  

(1) There must be a single full path in the state change operation process of the 2xn order array graph. 

(2) The number of operations required to complete this full path is 12 n
, starting and ending with T operation. 

Theorem 2 

For all positive integers n and all
n2 state matrices of the 2xn order array graph, if there is a unique full path nP , there 

will be the following two results: 
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(1) Given two state matrices, nA 2 and nB 2 , there must be a shortest path through T and L operations for the state 

matrix nA 2 changing into the state matrix nB 2 . 

(2) There is a symmetry between the state matrices on the first half and those on the second half of the whole path nP , 

in which the transformations between these state matrices are completed by one L operation. 

Theorem 3 

For all positive integers n, n rings perfect solution and the number of steps to complete the solution all meet the 

following three results: 

(1) The number of steps to complete the perfect solution meets the following recursive relationship, 











 Nnnaa

aa

n

nn ,3,2

2,1

1

2

21
 

 (2) The general formula for na is 

]
2

)1(1
12[

3

1 1
n

n 
 ， Nn 。 

(3) When n is odd, the perfect solution process is 

       52)5(2

)(2

323)-(n2

)(2

12)1(2

T

2

4
4

2
2

    XZXZXZZ n

stepsrecursivePstepsrecursive

nn

     n

stepsrecursiveP

knk

stepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n   When n is 

even, the perfect solution process is 

       62)6(2

)(2

424)-(n2

)(2

22)2(2

TL,

2

5
5

3
3

    XZXZXZZ n

stepsrecursivePstepsrecursiveP

nn

     n

stepsrecursiveP

knk

sepsrecursiveP

knk XXZXZ    




2

)(2

)2(2)2(2

)(2

)(22

1-n
1-n

1k-n
1k-n  Theorem 4 

If there is a transformation function )(xf between all state matrices iA and n-bit binary values ia on the full path of 

the 2xn order array graph, then ii aAf )( , )(xf transforms iA into ia .  

















0123421

0123421

11111111 bbbbbbbb

bbbbbbbb
A

nnn

nnn

i 


 

The binary number is )( 0123421 yyyyyyyya nnni  , nn by  , and kkk byy XOR)(1 , 

Zknk  ,10 . 

The state matrix transformation function )(xf is a one-to-one and reflected function, and is a strictly increasing 

function. 

Theorem 5 

Through the matrix transformation function )(xf on the full path of the 2xn order array graph, any arbitrary state 
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matrix nA 2 is transformed into a n-bit binary value )( 2 nAf  .Let nZ 2 and nY 2 be first and second extreme state 

matrices on the full path of the 2n order array graph. Then: 

(1) If nA 2 is the odd-numbered state matrix on the full path nP ,the value )( 2 nAf  is even. The state matrix nA 2 is 

connected to the second extreme state matrix nY 2 in via a serial order of TTLT   alternating 

operations, and can be connected to the first extreme state matrix nZ 2 via alternating TLTL  

operations.  

(2) If nA 2 is the even-numbered state matrix on the full path nP , the values )( 2 nAf  is odd. The state matrix nA 2 is 

connected to the second extreme state matrix nY 2 via a serial order of TLTL   alternating operations, 

and can be connected to the first extreme state matrix nZ 2 via alternating TTLT   operations.. 

Theorem 6 

If any state matrix iA on the full path of the 2n order array graph is transformed into an n-bit binary value ia through 

the state matrix function )(xf , )( 0123421 xxxxxxxxa nnni  , then 

















0123421

01234211

11111111
)(

bbbbbbbb

bbbbbbbb
afA

nnn

nnn

ii 



,

 

nn xb 
, 1XOR)(  kkk xxb

,
Zknk  ,10

.
 

Theorem 7 

We number the n chains on the main sword from outside to inside, as 1,2,3, ..., n. If the numbers of n chains in the 

perfect solution operation process form a sequence  na , then 

(1) The number sequence  na satisfies a recursive relationship, 









 Nnnaaantinaa

aa

nnnn ,3,

1,2,1

122

21
,  

where the sequence  naanti is the reverse order sequence of  na . 

(2) When n is an odd number, 

(a) the numbered 12 p  buckle ring is in the
3

22
2

2
12 


p

p m position, Zm , Zpnp  ,120 . 

(b) the numbered p2 buckle ring is in the
3

222
2

1212
2 


 pp

p m  position, Zm , Npnp  ,122 . 
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(3) When n is an even number, 

(a) the numbered 12 p buckle ring is in the
3

122
2

222
12 





pp

p m position, Zm , Zpnp  ,22 . 

(b) the numbered p2 buckle ring is in
3

12
2

12
2 


p

p m position, where Zm , Zpnp  ,22 . 

(4) The buckle numbers sequence is non-repetitive. 

Graphic Judgment: 

In the 2n order array graph, the graphic determination rule for the state matrix operation change is follows: 

(1) If the number of black circle in the first row of the 2n order array graph is odd, T operation first can make it to the 

first extreme state matrix in a shortest path. L operation first can make it to the second extreme state matrix in a shortest 

path. 

(2) If the number of black circle in the first row of the 2n order array graph is even, L operation first can make it to the 

first extreme state matrix in a shortest path. T operation first can make it to the second extreme state matrix in a shortest 

path. 

Theorem 8. 

Let the number of operations in the perfect solution for the n rings form a sequence  na , and the generating 

function of the sequence 
1nna is )(xf which satisfies the following mathematical formula: 

(1)
122

1
)(

23 


xxx
xf  

(2)
xxx

xf









1

1

6

1

1

1

2

1

21

1

3

4
)(  

4. Discussion 

We simplify the images of the nine rings on the main sword into 2x 9 array graphs. Combined with state matrix 

representation and binary representation of each array graphs, we study the corresponding state matrix and its binary 

representation to explore the operation mode of each state matrix change, whether there is an optimal operation path 

between any two state matrices and whether such an operation path is helpful to understand the number of steps and 

decide the paths in the perfect solution of the nine rings. In doing so, we try to expand and generalize the cases in n 

rings. 

In this study, the most difficult problem is the use of nine rings equipment to practice hands-on experiments and 

research. The process encounters difficulties in experimental operation and expression.  So we first construct a set of 

image-based mathematical model and mathematical language of matrix symbols. Via the image-based mathematical 

models, we can specify an abstractive description and operable abstractive problems. In doing so we converted the nine 

rings game into a rigorous mathematical problem, which is one of the most important contributions of our study. There 

was also a difficulty in exploring and solving the extension of this problem: to decide the next operation mode when the 

buckle is on a different position of the main sword and which buckle status should be changed. After observing, 

experimenting and summarizing, we derived a result in Theorem 7. In the process of the perfect solution for the n rings, 

through corresponding function values to the matrix expression and its binary representation of the current buckles 

states we can decide which buckles one should operate in the next step. Most importantly the sequence formed by the 

buckle numbers in the process of perfect solution operation has a non-repetitive property. 

On the other hand, in Theorem 4, the most intriguing part, the one-onto-one mapping characteristic, reversibility, and 

increment in the transformation function between the state matrix and the binary representation of the 2xn array graph 

were found. There is an isomorphic relationship  

between the state matrix and the binary representation of the 2xn array graph in which there is also a reversible function 

between the state matrix and the binary representation of the full path of the 2xn array graph. This reversible function 

has a strictly increasing property. Therefore, by the result of Theorem 4, one can determine the number of perfect 

solution steps needed for the change between any two state matrices in the whole path. Through Theorem four’s 
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conclusions, rather than the recursive relationship of the sequence, we calculate the number of perfect solution steps to 

solve the nine rings to be 341 steps, and then deduce the number of perfect solution steps for the n rings to be 

]
2

)1(1
12[

3

1 1
n

n 


 steps. 

5. Future Outlook 

Restructure and study the nine-ring into a double-decked 18-rings is an important future direction for exploration. In 

this context, we assume that the first thing to be explored is if the two main modes of operations in the perfect solution 

for the original nine ring is still viable for the 18 rings, or there will be a third or fourth mode of operations. We also try 

to think about the possible developments of the problems and list them below: 

(1) In the operation of the double-decked 18 rings, can we find a certain law of operations which can meet our 

conditions? We can’t help but wonder that in the state matrices of the 3×n array graph, whether we can find a similar 

three-bit representation for the matrices to meet our the conditions ? Is there a perfect solution for the double-decked 18 

rings? Whether there are similar laws of operations to meet our proposed conditions? 

(2) Is there an isomorphic relationship for any state matrix in the 3xn array graph, so that the correspondence between 

these state matrices and the 3-bit representations is one-to-one. 

(3) Exploring the buckle numbers in the perfect solution for the double-decked 18 rings, can we find a sequence of 

non-repetitive property? 

These are worthy of continuous study. Break through on the operation modes in the perfect solution for the 

double-decked 18 rings will aid us in towards the ultimate study the number of times in the perfect solution operations 

for the double-decked n rings.  
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