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Abstract

A left Bol loop satisfying the automorphic inverse property is called a K-loop or a gyrocommutative gyrogroup. K-loops
have been in the centre of attraction since its first discovery by A.A. Ungar in the context of Einstein’s 1905 relativistic
theory. In this paper some of the infinite dimensional K-loops are built from the direct limit of finite dimensional group
transversals.
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1. Introduction

A quasigroup is a non-empty set Q with a binary operation ⊕ : Q × Q → Q such that for all a, b ∈ Q there exists unique
x, y ∈ Q satisfying a ⊕ x = b and y ⊕ a = b. A loop (L,⊕) is a quasi-group with a two-sided neutral element e ∈ L. A
K-loop (K,⊕) is a loop satisfying the left Bol loop identity (1) and the automorphic inverse property (2) for all a, b and c
in K.

a ⊕ (b ⊕ (a ⊕ c)) = (a ⊕ (b ⊕ a)) ⊕ c. (1)

(a ⊕ b)−1 = a−1 ⊕ b−1. (2)

The left Bol identity guarantees that each element in a loop has a two-sided inverse, so the automorphic inverse property
in a K-loop makes sense. K-loops are also known as gyrocommutative gyrogroups, see (Ungar, 1997). Ungar’s famaous
discovery of a K-loop from Einstein’s 1905 relativistic theory motivated many researchers, then many examples and
theories has been studied, see (Bulut, 2015; Kerby & Wefelscheid, 1974; Kiechle, 1998; Kreuzer & Wefelscheid, 1994;
Ungar, 1997, 2001).

Kreuzer and Wefelscheid (Kreuzer & Wefelscheid, 1994) undertook an axiomatic investigation and provided a method to
form K-loops from the group transversals as follow:

Theorem 1.1. Let G be a group. Let A be a subgroup of G and let K be a subset of G satisfying:

1. G = KA is an exact decomposition, i.e., for every element g ∈ G there are unique elements k ∈ K and a ∈ A such
that g = ka.

2. If e is the neutral element of G, then e ∈ K.
3. For each x ∈ K, xKx ⊆ K.
4. For each y ∈ A, yKy−1 ⊆ K.
5. For each k1, k2 ∈ K and α ∈ A, if k1k2α ∈ K, then there exists β ∈ A such that k1k2α = βk2k1.

Then for all a, b ∈ K there exists unique a ⊕ b ∈ K and da,b ∈ A such that ab = (a ⊕ b)da,b. Moreover, (K,⊕) is a K-loop.

Kiechle in (Kiechle, 1998) showed that we can form many K-loops, see Theorem 1.2, from classical groups over ordered
fields by the method developed by Kreuzer and Wefelscheid in (Kerby & Wefelscheid, 1974). The underlying set of the K-
loops obtained by this method is the group transversals endowed with a binary operation induced by group multiplication.

Theorem 1.2. Let R be n-real, and G ≤ GL(n,K) with G = LGΩG, then there are A ⊕ B ∈ LG and dA,B ∈ ΩG with
AB = (A ⊕ B)dA,B such that (LG,⊕) is a K-loop.

In above theorem R is an ordered field such that K := R(i), where i2 = −1. L is the set of positive definite hermitian n × n
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matrices over K and Ω is the unitary group as given below.

L =
{
A ∈ Kn×n; A = A∗,∀v ∈ Kn\ {0} : v∗Av > 0

}
(3)

Ω =
{
U ∈ Kn×n; UU∗ = In

}
(4)

R is called n-real if the characteristic polynomial of every matrix in L splits over K into linear factors. We note that in this
paper the classical groups are chosen over the fields R or C. Therefore, we are not going to refer the term n-real. The real
numbers R can be considered as a prototype of n-real field R.

Kiechle remarked in (Kiechle, 1998) that Theorem 1.2 can be generalized to the unit group of Banach algebra of bounded
operators H → H (H is the Hilbert space) by polar decomposition theorem. This generalization, see Theorem 1.3, has
been studied in (Bulut, 2015) not only for GL(H), but also some of classical complex Banach Lie subgroups of GL(H).

Theorem 1.3. Let G ∈
{
GL(H),O(H , JR), S p(H , JQ)

}
be one of the classical complex Banach-Lie groups, and let

Pos(H) and U(H) are collection of positive self-adjoint operators and unitary operators respectively over C. If PG :=
G ∩ Pos(H), and UG := G ∩ U(H), then for all A, B ∈ PG there exist unique A ⊕ B ∈ PG and dA,B ∈ UG such that
AB = (A ⊕ B)dA,B. Moreover, (PG,⊕) is a K-loop.

Remark 1. Note that Theorem 1.3 can be generalized to all classical complex Banach Lie groups.

In this paper K-loop structures from the direct limit of some of the classical groups are studied.

2. Preliminaries

Let (I,≤) be a directed set, i.e., for any pair i, j ∈ I with i ≤ j there exists a k ∈ I such that i ≤ k and j ≤ k. Let {Gi : i ∈ I}
be the collection of groups with the collection of group homomorphisms

{
γi, j : Gi → G j : i ≤ j

}
. The triple (Gi, γi, j, I) is

called a direct system if the following two axioms are satisfied.

1. γi,i(x) = x for all x ∈ Gi,

2. γi,k = γ j,k ◦ γi, j for all i ≤ j ≤ k.

The group G is called the direct limit of the direct system (Gi, γi, j, I), if:

1. In case of existing the group homomorphisms αi : Gi → G, then αi = α j ◦ γi, j for all i ≤ j,

2. G respects the universal property, i.e., if there is another group K with the group homomorphisms βi : Gi → K
such that βi = β j ◦ γi, j for all i ≤ j, then there exists a unique group homomorphism θ : G → K which makes the
following diagram commute.

Gi

G K

G j

γi, j

αi βi

α j β j

θ

Figure 1. The Universal Property of the Direct Limit

The direct limit G of the direct system (Gi, γi, j, I) is denoted by lim
−−→

Gi = G. It can be verified that

lim
−−→

Gi =
⋃

i∈I Gi

/
∼.

Two elements x, y ∈
⋃

i∈I Gi where x ∈ Gi and y ∈ G j are similar, x ∼ y, if there exists k ∈ I such that γi,k(x) = γ j,k(y),
where i, j ≤ k. It can be easily verified that the relation ∼ is an equivalence relation. Let [x] be the equivalence class of x.
The product of [x] and [y] is defined by [x].[y] := [γi,k(x).γ j,k(y)] for some k ≥ i, j. It is known that the direct limit has a
group structure with respect to this product.
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3. Pseudo Unitary and Pseudo Orthogonal Groups

Let Mn(C) be the set of n by n matrices with complex entries and let GL(n,C) be the general linear group, i.e., the set of
invertible matrices in Mn(C). Restricting the entries of GL(n,C) to real numbers gives GL(n,R). In this paper we only
focus two well known classical groups that are called pseudo-unitary and pseudo-orthogonal groups. Even they are Lie
groups we only view them as algebraic groups.

Let p, q ∈ N with 0 < p ≤ q such that p + q = n and let Jp,q = diag(Ip,−Iq). Let A∗ be the conjugate transpose of A and
AT be the transpose of A. The pseudo unitary group (5) and pseudo orthogonal group (6) are given below,

U(p, q) =
{
A ∈ GL(n,C) : A∗Jp,qA = Jp,q

}
. (5)

O(p, q) =
{
A ∈ GL(n,R) : AT Jp,qA = Jp,q

}
. (6)

Direct limit of classical groups and their unitary representations are studied by Olshanskii in (Ol'shanskii, 1978). In that
paper the infinite dimensional Lie groups are viewed as the direct limit of finite dimensional Lie groups. Folowing are
some of the infinite dimensional Lie groups given in (Ol'shanskii, 1978).

1. GL(∞,C) =
⋃∞

n=1 GL(n,C).

2. GL(∞,R) =
⋃∞

n=1 GL(n,R).

3. U(p,∞) =
⋃∞

n=1 U(p, n).

4. O(p,∞) =
⋃∞

n=1 O(p, n).

The direct limit GL(∞,C) is obtained by taking the infinite union of the groups Gl(n,C). The group homomorphism
γn,m : GL(n,C) → GL(m,C) (n ≤ m) is defined by γ(A) = diag(A, Im−n), where diag(A, Im−n) is a diagonal block matrix
such that Im−n is the identity matrix of the size m − n by m − n. The group homomorphism γn,m : U(p, n) → U(p,m) (or
γn,m : O(p, n)→ O(p,m)) is defined similarly.

In this paper we define a broad class of infinite dimensional classical groups that are the proper subgroups of the groups
defined in (Ol'shanskii, 1978). In our construction we use a strictly increasing sequence of positive integers (an) and
a constant p ∈ N such that bn = p + an. It is clear that (bn) is also a strictly increasing sequence of positive integers.
Choosing (an) as a strictly increasing sequence of positive integers enable us to form K-loops based on how (an) be chosen.
Following is a list of some of the infinite dimensional classical groups that are investigated in this paper.

1. GL(∞, (an),R) =
⋃∞

n=1 GL(an,R)
/
∼

2. GL(∞, (an),C) =
⋃∞

n=1 GL(an,C)
/
∼

3. U(p, (an),∞) =
⋃∞

n=1 U(p, an)
/
∼

4. O(p, (an),∞) =
⋃∞

n=1 O(p, an)
/
∼

Let A, B ∈ GL(∞, (an),F) for F ∈ {R,C}, then A ∈ GL(ai,F) and B ∈ GL(a j,F) for some positive integers i, j such that
i ≤ j. We say that A ∼ B, if there exists a positive integer k ≥ i, j such that

γi,k(A) = γ j,k(B) (7)
diag(A, Iak−ai ) = diag(B, Iak−a j ) (8)

diag(A, Ia j−ai , Iak−a j ) = diag(B, Iak−a j ) =⇒ B = diag(A, Ia j−ai ). (9)

This observation exposes that if A ∈ GL(ai,F) is related with B ∈ GL(a j,F) for i ≤ j, then an appropriate choice of k is
k = j, and replacing k with j in equation (7) yields immediately that B = γi, j(A) = diag(A, Ia j−ai ). Let [A]+ and [A]− be
two sets defined below:

[A]+ =
{
X ∈ GL(a j,R) : X = γi, j(A), i ≤ j

}
. (10)

[A]− =
{
Y ∈ GL(ar,R) : A = γr,i(Y), r ≤ i

}
. (11)
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It is clear that A is a common element of [A]+ and [A]−, hence using the transitivity of ∼ yields that [A]+ = [A]−. Therefore,
the equivalence class of A, [A] = [A]+ = [A]−. Henceforth, we use the equivalence class of [A] as defined for [A]+ that is;

[A] =
{
X ∈ GL(a j,R) : X = γi, j(A), i ≤ j

}
(12)

Let A ∈ GL(ai,R) and let B ∈ GL(a j,R) such that i ≤ j, then the product of two equivalence classes [A] and [B] is another
equivalence class that is defined by:

[A][B] := [γi,k(A)γ j,k(B)] for some k ≥ i, j. (13)

It can be easily verified that this product is well defined by showing that it is independent from the representatives of each
equivalence class.

We only discussed above the equivalence relation over GL(∞, (an),F), but the equivalence relation ∼ for U(p, (an),∞),
and O(p, (an),∞) are same. If we take an = n, then our definitions for GL(∞, (an),F), U(p, (an),∞), and O(p, (an),∞)
are equivalent to the infinite dimensional Lie groups given in (Ol'shanskii, 1978), but if an , n, then GL(∞, (an),R),
GL(∞, (an),C), U(p, (an),∞), and O(p, (an),∞) are proper subgroups of GL(∞,R), GL(∞,C), U(p,∞), and O(p,∞)
respectively. We also show in Theorem 4.3 that GL(∞,F) � GL(∞, (an),F), U(p,∞) � U(p, an,∞), and O(p,∞) �
O(p, an,∞).

At some point we also need to define the direct limit of the set of positive definite symmetric (or hermitian) matrices. The
matrix A ∈ Mn(C) is called positive definite if for each nonzero column matrix z ∈ Cn×1 the real part of z∗Az is positive
and A is called hermitian if A∗ = A. The matrix A ∈ Mn(R) is called positive definite if zT Az is positive for each nonzero
z ∈ Rn×1 and it is called symmetric if AT = A.

Let (an) be a strictly increasing sequence of positive integers and p ∈ N such that bn = p + an, and let P(bn,C) and
P(bn,R) be the set of positive definite hermitian and positive definite symmetric matrices respectively. We showed in
lemma 4.2 that if n ≤ m, then γn,m(P(bn,F)) ⊆ P(bm,F) for F ∈ {R,C} and clearly γn,n(A) = A for all A ∈ P(bn, F) and
γi,k = γ j,k ◦ γi, j for all i ≤ j ≤ k. We denote the direct limit of positive definite hermitian (or symmetric) matrices by
P(∞, bn,F) := lim

−−→
P(bn,F), where

P(∞, (bn),F) =

∞⋃
n=1

P(bn,F)
/
∼ (14)

We say that [A] ∈ P(∞, (bn),F) is positive definite if each matrix in [A] is positive definite. Similarly, we say that [A] is
hermitan if [A]∗ = [A] and we say that [A] is symmetric if [A]T = [A].

Lemma 3.1. Let [A] ∈ P(∞, (bn),F) and let [P] ∈ GL(∞, (bn),F) for F ∈ {R,C}, then

1. [A] is positive definite if and only if A is positive definite.
2. [P]∗ = [P∗] if F = C and [P]T = [PT ] if F = R

Proof. If [A] is positive definite, then each matrix in [A] is positive definite, so A is positive definite since A ∈ [A]. On
the other hand, suppose that A ∈ P(bi,C) is positive definite for some i ∈ N. We want to show that each matrix in [A]

is positive definite. Let B ∈ [A], then B = γi, j(A) for some j ∈ N such that i ≤ j. Let z =

[
α
β

]
where α∗ = [z1, · · · , zbi ]

and β∗ = [zbi+1, · · · , zb j ]. The product z∗Bz = α∗Aα + ‖β‖2 ≥ 0 since A is positive definite. We conclude that positive
definiteness of A forces that any matrix in [A] is positive definite, thus [A] is positive definite.

To proof of [P]∗ = [P∗] comes from definition of [P]. Let [P] ∈ GL(∞, (bn),C), then P ∈ GL(bn,C) for some bn ∈ (bn).

[P] =
{
Y ∈ GL(bm,C) : diag(P, Ibm−bn ) = Y, n ≤ m

}
(15)

[P]∗ =
{
Y∗ ∈ GL(bm,C) : diag(P∗, Ibm−bn ) = Y∗, n ≤ m

}
(16)

[P]∗ =
{
Y∗ ∈ GL(bm,C) : diag(P∗, Ibm−bn ) = Y∗, n ≤ m

}
(17)

= [P∗]. (18)

The proof of the real case is same. �
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4. Main Results

In this section, let (an) be a strictly increasing sequence of positive integers and let p ≥ 0 be a fixed integer such that
bn = p + an. We use U(n) and O(n) for usual unitary and orthogonal matrix groups respectively. For a subgroup G of
GL(bn,F) where F ∈ {R,C} we define following:

∆G(bn,C) : = P(bn,C) ∩G (19)
∆G(bn,R) : = P(bn,R) ∩G (20)
ΣG(bn,C) : = U(bn) ∩G (21)
ΣG(bn,R) : = O(bn) ∩G (22)

It is shown in (Kiechle, 1998) that if G ∈ {U(p, an),O(p, an)}, then ∆G(bn,C) and ∆G(bn,R) are K-loops with respect to a
binary operation "⊕" induced by group multiplication in GL(bn,C) and GL(bn,R) respectively.

Lemma 4.1. Let (an) be a strictly increasing sequence of positive integers and let p ≥ 0 be a fixed integer and define
cm,n := am − an for each n,m ∈ N such that n ≤ m.The map γn,m : U(p, an)→ U(p, am) defined by γn,m(A) = diag(A, Icm,n )
is a group homomorphism.

Proof. Let A ∈ U(p, an), then A∗Jp,an A = Ap,an .

We first show that γn,m(A) = diag(A, Icm,n ) := B ∈ U(p, am).

B∗Jp,am B = diag(A∗, Icm,n )diag(Ip,−Iam )diag(A, Icm,n ) (23)
= diag(A∗, Icm,n )diag(Ip,−Ian ,−Icm,n )diag(A, Icm,n ) (24)
= diag(A∗, Icm,n )diag(Jp,an ,−Icm,n )diag(A, Icm,n ) (25)
= diag(A∗Jp,an A, Icm,n (−Icm,n )Icm,n ) (26)
= diag(Jp,an ,−Icm,n ) (27)
= diag(Ip,−Ian ,−Iam−an ) (28)
= diag(Ip,−Iam ) = Jp,am (29)

On the other hand, γn,m preserve the group product as follow:

γn,m(AB) = diag(AB, Icm,n ) (30)
= diag(A, Icm,n )diag(B, Icm,n ) (31)
= γn,m(A)γn,m(B) (32)

Therefore, γn,m is group homomorphism. �

Note that restricting U(p, an) to R in Lemma 4.1 gives that γn,m : O(p, an)→ O(p, am) such that A 7→ diag(A, Icm,n ) is also
a group homomorphism.

Lemma 4.2. If F ∈ {R,C} and γn,m : P(bn,F) → Mbm (F) defined by γn,m(A) 7→ diag(A, Icm,n ), then γn,m(P(bn,F)) ⊆
P(bm,F).

Proof. Let x ∈ Cbm×1 be a nonzero vector such that x∗ = [x1, . . . , xbn , . . . , xbm ], so there exists i ≤ bm such that xi , 0. Let
v∗ = [x1, . . . , xbn ] and let w = [xbn+1 , . . . , xbm ], then either v or w is a nonzero vector. Observe that:

x∗γn,m(A)x = v∗Av +

bm∑
i=bn+1

xixi = v∗Av + ‖w‖2 > 0. (33)

Moreover,
(γn,m(A))∗ = diag(A∗, Icm,n ) = diag(A, Icm,n ) = γn,m(A). (34)

Therefore, γn,m(P(bn,C)) ⊆ P(bm,C). The case F = R is similar. �

Considering lemma 4.1 and 4.2 together yields the following corollary.
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Corollary 4.2.1. Let G = U(p, an), then γn,m(∆G(bn,C)) is contained in ∆G(bm,C). If G = O(p, an), then γn,m(∆G(bn,R))
is contained in ∆G(bm,R).

Theorem 4.3. Let F be either the set of real numbers or complex numbers,then

1. GL(∞,F) � GL(∞, (an),F).

2. U(p,∞) � U(p, (an),∞).

3. O(p,∞) � O(p, (an),∞)

Proof. We only give the proof of first argument since the same map is used to verify (2) and (3). Suppose that [A] ∈
GL(∞,F), then there exists i ∈ N such that A ∈ GL(i,F). Define Φ([A]) := [γi,ai∗ (A)] such that ai∗ ∈ (an) is the smallest
integer satisfying ai∗ ≥ i. This map is well-defined. To see that suppose [A] = [B] for some A ∈ GL(i,F) and B ∈ GL( j,F)
such that i ≤ j. The equality of [A] = [B] implies that B = γi, j(A), so

Φ([B]) = Φ([γi, j(A)]) (35)
= [γ j,a j∗ (γi, j(A))] (36)

= [γi,a j∗ (A)] (37)

= [γi,ai∗ (A)] (38)
= Φ([A]) (39)

The map Φ preserves the product of equivalence classes.

Φ([A][B]) = Φ([γi, j(A)γ j, j(B)]) (40)
= [γ j,a j∗ (γi, j(A)γ j, j(B))] (41)

= [γ j,a j∗ (γi, j(A))γ j,a j∗ ((γ j, j(B))] (42)

= [γi,a j∗ (A)γ j,a j∗ (B)] (43)

= [γai∗ ,a j∗ (γi,ai∗ (A))γa j∗ ,a j∗ (γ j,a j∗ (B))] (44)

= [γi,ai∗ (A)][γ j,a j∗ (B)] (45)

= Φ([A])Φ([B]) (46)

Hence, the map Φ preserves the product of equivalence classes from GL(∞,F) to GL(∞, (an),F). Moreover, the map Φ is
surjective. If [A] ∈ GL(∞, (an),F), then there exists a j ∈ (an) such that A ∈ GL(a j,F). Let a j = i for some i ∈ N, but then

Φ([A]) = [γi,ai∗ (A)] (47)
= [γa j,a j (A)] (48)
= [A] (49)

Note that ai∗ is the smallest member of the (an) which is greater than or equal to i, but then ai∗ = a j. Therefore, the
equivalence classes given in equation (47) and (48) are same. Finally, suppose that Φ([A]) = Φ([B]) where A ∈ GL(i,F)
and B ∈ GL( j,F) for some integers i, j such that i ≤ j. The definition of Φ immediately implies that [γi,ai∗ (A)] = [γ j,a j∗ (B)],
and clearly γi,ai∗ (A) ∈ [γ j,a j∗ (B)], thus

γai∗ ,a j∗ (γi,ai∗ (A)) = γ j,a j∗ (B) (50)

γi,a j∗ (A) = γ j,a j∗ (B) =⇒ i = j =⇒ A = B =⇒ [A] = [B]. (51)

We conclude that φ is a bijective group homomorphism. Therefore, GL(∞,F) � GL(∞, (an),F). �

Proposition 4.3.1. Let Gn = U(p, an) and Hn = O(p, an), then for each n ∈ N,

Gn = ∆Gn (bn,C)ΣGn (bn,C) (52)
Hn = ∆Hn (bn,R)ΣHn (bn,R) (53)
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Proof. It is well-known by polar decomposition theorem that each invertible n by n matrix in GL(n,C) has a unique
decomposition such that the first component in P(n,C) and the second component is in U(n). Therefore, for any M ∈

U(p, an), M = PQ where P ∈ P(bn,C) and Q ∈ U(bn). What we need to see is the decomposition of M actually stays in
U(p, an). To see this we use the fact that M ∈ U(p, an),i.e., M∗Jp,an M = Jp,an , so M = J−1

p,an
(M∗)−1Jp,an . Replacing the M

with PQ gives that M = J−1
p,an

((PQ)∗)−1Jp,an and,

M = Jp,an
−1((PQ)∗)−1Jp,an (54)

= J−1
p,an

(P∗)−1(Q∗)−1Jp,an (55)

= J−1
p,an

(P∗)−1Jp,an J−1
p,an

(Q∗)−1Jp,an (56)

= (J−1
p,an

(P∗)−1Jp,an )(J−1
p,an

(Q∗)−1Jp,an ) (57)

We set S 1 := J−1
p,an

(P∗)−1Jp,an and S 2 = J−1
p,an

(Q∗)−1Jp,an . Notice that S 1
∗ = S 1 since Jp,an = J−1

p,an
= J∗p,an

, P∗ = P, and
Q∗ = Q−1. Recall also that the inverse of a positive definite matrix is also positive definite, so let v ∈ Cbn×1 be any nonzero
vector. Then

v∗S 1v = (Jp,an v)∗P−1(Jp,an v) > 0. (58)

Therefore, S 1 ∈ P(bn,C). On the other hand,

S 2 = J−1
p,an

(Q∗)−1Jp,an = Jp,an QJp,an ∈ U(bn) (59)

The product Jp,an QJp,an ∈ U(bn) since U(bn) is a group and Jp,an and Q are both in U(bn). We found another decomposition
of M that respects the polar decomposition theorem, and by the uniqueness of the polar decomposition theorem

P = S 1 = J−1
p,an

(P∗)−1Jp,an (60)

Q = S 2 = J−1
p,an

(Q∗)−1Jp,an (61)

The equations (60) and (61) imply that P,Q ∈ U(p, bn). Therefore, the equation (52) is valid. This proof can be also
applied to the case Hn = O(p, an) by restricting C to R. �

Proposition 4.3.2. Let Gn = U(p, an) and Hn = O(p, an). Then

lim
−−→

Gn = lim
−−→

∆Gn (bn,C) lim
−−→

ΣGn (bn,C) (62)

lim
−−→

Hn = lim
−−→

∆Hn (bn,R) lim
−−→

ΣHn (bn,R) (63)

Proof. We only give the proof of equation (62) since the proof equation (63) is verbatim except we use equation (53)
in proposition 4.3.1. Let [A] ∈ lim

−−→
Gn, then there exists an i ∈ N such that A ∈ Gi. The equation (52) in proposition

4.3.1 implies that there exists unique P ∈ ∆Gi (bi,C) and Q ∈ ΣGi (bi,C) such that A = PQ, but then [A] = [PQ] =

[γi,i(P)γi,i(Q)] = [P][Q] and this gives that lim
−−→

Gn ⊆ lim
−−→

∆Gn (bn,C) lim
−−→

ΣGn (bn,C).

To see the other inclusion we use the infinite union definition for the direct limit. The sets S k := ∪k
n=1[U(p, an)∩P(bn,C)]

and Rk := ∪k
n=1[U(p, an) ∩ U(bn)] are both subgroups of U(p, (an),∞) for each k ≥ 1, furthermore S k and Rk form

ascending chain of subgroups of U(p, (an),∞), so their infinite unions are also contained in U(p, (an),∞). Therefore,
the product of ∪∞n=1[U(p, an) ∩ P(bn,C)] and ∪k

n=1[U(p, an) ∩U(bn)] is contained in U(p, (an),∞) since U(p, (an),∞) is a
group, and this gives the desired inclusion. �

Corollary 4.3.1. Let Gn = U(p, an) and Hn = O(p, an). For all [X] ∈ lim
−−→

Gn and for all [Y] ∈ lim
−−→

Hn following assertions
are hold.

| lim
−−→

∆Gn (bn,C) ∩ [X] lim
−−→

ΣGn (bn,C)| = 1 (64)

| lim
−−→

∆Hn (bn,R) ∩ [Y] lim
−−→

ΣHn (bn,R)| = 1 (65)

Proof. Let [X] ∈ lim
−−→

Gn and let [α1], [α2] ∈ lim
−−→

∆Gn (bn,C)∩[X] lim
−−→

ΣGn (bn,C). There exists [W1] and [W2] in lim
−−→

ΣGn (bn,C)
such that [α1] = [X][W1] and [α2] = [X][W2]. Solving [X] in [α2] = [X][W2] and substituting it into [α1] = [X][W1] gives
that

[α1] = ([α2][W2]−1)[W1] = [α2]([W2]−1[W1]) (66)

43



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 5; 2017

Note that the product [W2]−1[W1] is in lim
−−→

ΣGn (bn,C) since lim
−−→

ΣGn (bn,C) is a group. It can be easily shown that,

lim
−−→

∆Gn (bn,C) = lim
−−→

Gn ∩ lim
−−→

P(bn,C) (67)

hence [α1] ∈ lim
−−→

Gn so,
[α1] = [α1][1] (68)

The decomposition of [α1] given in equations (66) and (68) and uniqueness of its decomposition by proposition 4.3.2
implies that [α1] = [α2].

Therefore, lim
−−→

∆Gn (bn,C) is the left transversal of lim
−−→

ΣGn (bn,C) in lim
−−→

Gn. The proof of the real case is similar. �

Theorem 4.4. If [A] and [B] are two elements of lim
−−→

∆Gn (bn,C), then there exists a unique [A]⊕ [B] ∈ lim
−−→

∆Gn (bn,C) and
a unique d[A],[B] ∈ lim

−−→
ΣGn (bn,C) such that [A][B] = ([A] ⊕ [B])d[A],[B]. On the other hand, lim

−−→
∆Gn (bn,C) is a K-loop with

respect to ⊕.

Proof. Let [A] and [B] are two elements of lim
−−→

∆Gn (bn,C), then [A] and [B] are also in lim
−−→

Gn, so [A][B] ∈ lim
−−→

Gn. The
proposition 4.3.2 forces that [A][B] = [α][β] for some unique [α] ∈ lim

−−→
∆Gn (bn,C) and [β] ∈ lim

−−→
ΣGn (bn,C). If we define

[α] := [A] ⊕ [B] and [β] := d[A],[B], then

[A][B] = ([A] ⊕ [B])d[A],[B] =⇒ [A] ⊕ [B] = [A][B]d−1
[A],[B]. (69)

To see (lim
−−→

∆Gn (bn,C),⊕) is a K-loop we verify the axioms of Theorem 1.1. We see that the decomposition of lim
−−→

∆Gn

given in (62) is exact by proposition 4.3.2 and corollary 4.3.1. On the other hand, [Ibn ] ∈ lim
−−→

∆Gn (bn,C).

If [A], [B] ∈ (lim
−−→

∆Gn (bn,C),⊕), then A ∈ ∆Gi (bi,C) and B ∈ ∆G j (b j,C) for some i, j ∈ N with i ≤ j. Notice that
[A][B][A] = [γi,k(A)γ j,k(B)γi,k(A)] for some k ≥ i, j, and

([A][B][A])∗ = [(γi,k(A)γ j,k(B)γi,k(A))∗] by lemma 3.1 (70)
= [(γi,k(A∗)γ j,k(B∗)γi,k(A∗))] (71)
= [γi,k(A)γ j,k(B)γi,k(A)] (72)
= [A][B][A] (73)

so [A][B][A] is hermitian. Let z ∈ Cbk×1 be a non-zero vector, then

z∗(γi,k(A)γ j,k(B)γi,k(A))z = (γi,k(A)z)∗γ j,k(B)(zγi,k(A)) (74)
= (r)∗γ j,k(B)r > 0 since γ j,k(B) ∈ P(bk,C) (75)

hence [A][B][A] is positive definite by lemma 3.1. Note that r = γi,k(A)z. The product [A][B][A] is already in U(p, ak)
since γi,k(A), γ j,k(B), and γi,k(A) are all in U(p, ak) and U(p, ak) is a group. We conclude that for each [A] ∈ lim

−−→
∆Gn (bn,C),

[A] lim
−−→

∆Gn (bn,C)[A] ⊆ lim
−−→

∆Gn (bn,C).

Let [A] ∈ lim
−−→

ΣGn (bn,C) and let [B] ∈ lim
−−→

∆Gn (bn,C), then the product [A][B][A]−1 is contained in lim
−−→

∆Gn (bn,C) due to
[A]∗ = [A]−1 and [B]∗ = [B], and [B] is positive definite.

On the other hand, suppose that for [A1], [A2] ∈ lim
−−→

∆Gn (bn,C) and [B] ∈ lim
−−→

ΣGn (bn,C) such that [A1][A2][B] is an
element of lim

−−→
ΣGn (bn,C), then

[A1][A2][B] = ([A1][A2][B])∗ = [B∗][A2
∗][A1

∗] = [B−1][A2][A1]. (76)

In the equation (76) [B−1] ∈ lim
−−→

ΣGn (bn,C) since lim
−−→

ΣGn (bn,C) is a group.

Therefore, (lim
−−→

∆Gn (bn,C),⊕) is a K-loop by Theorem 1.1. �

The following corollary is immediate from Theorem (4.4) if C is restricted to R.

Corollary 4.4.1. If [A] and [B] are two elements of lim
−−→

∆Hn (bn,R), then there exists a unique [A] ⊕ [B] ∈ lim
−−→

∆Hn (bn,R)
and a unique d[A],[B] ∈ lim

−−→
ΣHn (bn,R) such that [A][B] = ([A] ⊕ [B])d[A],[B]. On the other hand, lim

−−→
∆Hn (bn,R) is a K-loop

with respect to ⊕.
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