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Abstract

A new continuous distribution is proposed in this paper. This distribution is a generalization of Mukherjee-Islam distribu-
tion using the quadratic rank transmutation map. It is called transmuted Mukherjee-Islam distribution (TMID). We have
studied many properties of the new distribution: Reliability and hazard rate functions. The descriptive statistics: mean,
variance, skewness, kurtosis are also studied. Maximum likelihood method is used to estimate the distribution parameters.
Order statistics and Renyi and Tsallis entropies were also calculated. Furthermore, the quantile function and the median
are calculated.
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1. Introduction

Shaw and Buckley (2007) have proposed to transmutation maps, the sample and rank transmutations. The simplest rank
transmutation map is the quadratic rank transmutation map. The quadratic rank transmutation map will be used through
this paper to derive a generalization of the Mukherjee-Islam distribution with some of its properties. This generalization
is called the transmuted Mukherjee-Islam (TMI) distribution. Al-Omari et al. (2017) proposed the transmuted janadran
distribution as a generalization of the Janadran distribution. Aryal and Tsokos (2011) worked out a generalization of the
weibull probability distribution (transmuted weibull distribution). Merovci (2013a) used the quadratic rank transmutation
map to develop a new distribution called the Transmuted Lindley Distribution. Merovci (2013b) used this map to develop
a Transmuted Rayleigh Distribution. An extension of the exponentiated generalized G class of distributions (Cordeiro
et al., 2013) called the transmuted exponentiated generalized G family. A simple representation for the transmuted G-
family density function as a linear mixture of the G and the exponentiated-G densities was derived by Bourguignon et al.
(2016). Many authors worked out generalizations to some distributions using the quadratic rank transmutation map. For
example Merovci and Elbatal (2014) introduced the Transmuted Lindley-Geometric distribution, whereas, Vardhan and
Balaswamy (2016) proposed a transmuted new modified Weibull distribution. A Transmuted Lomax distribution (Ashour
and Eltehiwy, 2013), a Transmuted Log-Logistic Distribution (Aryal and Tsokos, 2013), Transmuted Burr Type XII Dis-
tribution (Khazaleh, 2016). El- batal et al. (2014) studied some general properties of the transmuted exponentiated Frêchet
distribution. Based on new modified weibull distribution, Vardhan and Balaswamy (2016) produced a transmuted distri-
bution using the quadratic rank transmutation map, named transmuted new modified weibull distribution. A transmuted
modified weibull distribution is introduced by Khan and King (2013).

We organized the rest of this paper as follows: In Section 2 the pdf and CDF of the TMI distribution are demonstrated. In
Section 3, the reliability and hazard rate functions of our model are computed. We summarized the distributions of order
statistics in Section 4. Some properties, like the rth moment, mean, variance, skewness, kurtosis, coefficient of variation
and the moment generating function of the TMI distribution are derived in Section 5. In Section 6 the maximum likelihood
estimates of the distribution parameters are demonstrated. The Renyi and Tsallis entropies are calculated in Section 7.
The quantile function is derived in Section 8. Finally, in Section 9 we will draw conclusions.

2. Transmuted Mukherjee-Islam Distribution

A random variable, X, is said to have a Mukherjee-Islam distribution (Mukheerji and Islam, 1983) with parameters θ and
p if it has a cumulative distribution function (CDF)

W(x) =


0, x < 0
xp

θp , 0 < x ≤ θ
1, x > θ

(1)
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with a corresponding probability density function (pd f ) given by:

w(x) =
{

pxp−1

θp , 0 < x ≤ θ, θ, p > 0
0, other wise

(2)

Definition 2.1 A random variable X is said to have a transmuted distribution if its CDF is given by

Ψ(x) = (1 + λ)W(x) − λ[W(x)]2, | λ |≤ 1 (3)

where W(x) is the CDF of the base distribution. The pd f of the transmuted random variable is given by

ψ(x) = w(x)
(
1 + λ − 2λW(x)

)
(4)

The CDF of this random variable is, hence, defined using Equations (1) and (3) as:

Ψ(x) = (1 + λ)
xp

θp − λ
x2p

θ2p , 0 < x ≤ θ (5)

Therefore, the pdf of the transmuted Mukherjee-Islam random variable, X, is defined using Equations (1), (2) and (4) as:

ψ(x) =
(1 + λ)p
θp xp−1 − 2λp

θ2p x2p−1, 0 < x ≤ θ (6)
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(a) The pdf of the TMI distribution with different values of
p, λ when θ = 5
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(b)The CDF of the TMI distribution with different values of
p, λ when θ = 5

Figure (1a) shows the pdf of the TMI for θ = 5 and different values of p, 2, 4, 6 and 8. We varied the value of λ from
-1 to 1 with a step of 0.5. The figure shows that the TMI random variable has a left skewed distribution. The tail of the
distribution gets heavier as the value of λ gets smaller. Figure (1b) shows the plot of the CDF of the TMI random variable
for θ=5 with p equals to 2, 4, 6 and 8 and λ = -1, -0.5, 0, 0.5, and 1.

3. Reliability Analysis

The reliability and hazard rate functions are defined by:

R(t) = 1 − Ψ(t) (7)

H(t) =
ψ(t)

1 − Ψ(t)
(8)
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Theorem 3.1 The reliability and hazard rate functions of the TMI distribution, respectively are

R(t) = 1 − tp

θp

[
1 + λ − λ tp

θp

]

H(t) =
ptp−1

[
(1 + λ)θp − 2λtp

]
θ2p − tp

[
(1 + λ)θp − λtp

]
Proof. The proof of the reliability is straightforward, by substituting the CDF of the TMI distribution Equation (5) in
Equation (7). Now, for the hazard rate function, substituting Equations (5) and (6) in Equation (8), we get

H(t) =

(1+λ)p
θp tp−1 − 2λp

θ2p t2p−1

1 − tp

θp

[
1 + λ − λ tp

θp

]

=
ptp−1

[
(1 + λ)θp − 2λtp

]
θ2p − tp

[
(1 + λ)θp − λtp

]
�
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(a) Reliability of the TMID with different values of p, λ
when θ = 5
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(b) Hazard rate function of the TMID with different values
of p, λ when θ = 5

4. Order Statistics

Let X1, X2, ... Xn be a random sample with pd f ψ(x) and CDF Ψ(x). If X(1), X(2), ... X(n) is the order statistic of this
sample, where X(1) ≤ X(2) ≤ ... ≤ X(n). Then the pd f of the jth order statistics, X( j) is given by:

ψ( j)(x) = j
(
n
j

)
ψ(x)[Ψ(x)] j−1[1 − Ψ(x)]n− j, (9)

Substituting j = 1 in Equation (9), we get the pd f of first order statistics X(1) = min(X1, X2, ... Xn).

ψ(1)(x) = np
xp

θp

(
1 + λ − 2λ

xp

θp

)(
1 − (1 + λ)

xp

θp + λ
x2p

θ2p

)(n−1)

, x ∈ (0, θ) (10)
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The pd f of the nth order statistic X(n) = max(X1, X2, ... Xn), is defined as:

ψ(n)(x) = np
xp

θp

(
1 + λ − 2λ

xp

θp

)(
(1 + λ)

xp

θp − λ
x2p

θ2p

)(n−1)

(11)

Furthermore, for any value of j the common form of ψ( j)(x) can be obtained as

ψ( j)(x) = j
(
n
j

)[
(1 + λ)p
θp xp−1 − 2λp

θ2p x2p−1
][

(1 + λ)
xp

θp − λ
x2p

θ2p

] j−1

×
[
1 − (1 + λ)

xp

θp + λ
x2p

θ2p

]n− j

= j
(
n
j

)
xp j−1

θp j

[
(1 + λ)p − 2λp

xp

θp

][
1 + λ − λ xp

θp

] j−1[
1 − (1 + λ)

xp

θp + λ
x2p

θ2p

]n− j

(12)

5. Moments

5.1 rth Moment

Theorem 5.1 The rth moment of the TMI random variable is defined as:

E(Xr) =
(

2p2 + rp − rpλ
(r + p)(r + 2p)

)
θr (13)

Proof.

E(Xr) =

∫ θ

0
xrψ(x)dx

=

∫ θ

0
xr

(
(1 + λ)p
θp xp−1 − 2λp

θ2p x2p−1
)
dx

=
p(1 + λ)
θp

∫ θ

0
xr+p−1dx − 2pλ

θ2p

∫ θ

0
xr+2p−1dx

=
p(1 + λ)
θp

(
θr+p

r + p

)
− 2pλ
θ2p

(
θr+2p

r + 2p

)
=

(
2p2 + rp − rpλ
(r + p)(r + 2p)

)
θr

�

5.1.1 Mean, Variance, Skewness, Kurtosis and Coefficient of Variation

The first and the second moments can be computed by replacing r by 1 and 2; respectively in (13) as follows:

µ = E(X) =

(
2p2 + p − pλ

(1 + p)(1 + 2p)

)
θ

E(X2) =

(
p2 + p − pλ

(2 + p)(1 + p)

)
θ2

But the variance of a random variable is defined as var(X) = E(X2) − (E(X))2, therefore

var(X) =

(
p2 + p − pλ

(2 + p)(1 + p)

)
θ2 −

(
2p2 + p − pλ

(1 + p)(1 + 2p)

)2

θ2

=
−p

(
p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

(1 + p)2(2 + p)(1 + 2p)2 θ2
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The coefficient of variation (cv) is defined to be the ratio of standard deviation of the random variable to it expected value,
that is cv =

√
var(X)
E(X) . Therefore,

cv =

√
−p

(
p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

(2p2 + p − pλ)
√

2 + p
(14)

The third and fourth moments of the random variable X can be determined by replacing r by 3 and 4; respectively in
Equation (13). Thus, they are given by:

E(X3) =
(

2p2 + 3p − 3pλ
(3 + p)(3 + 2p)

)
θ3 (15)

E(X4) =
(

2p2 + 4p − 4pλ
(4 + p)(4 + 2p)

)
θ4 (16)

The skewness and the kurtosis of a random variable are defined as:

sk(X) =
E(X3) − 3E(X)var(X) − (E(X))3

(var(X))
3
2

(17)

kur(X) =
E(X4) − 4(E(X))(E(X3)) + 6(E(X))2var(X) + 3(E(X))4

(var(X))2 (18)

Based on the first four moments, the skewness and the kurtosis of the TMI random variable, X are given by:

S k(X) =
(2p2 + 3p − 3pλ)((1 + p)3(1 + 2p)3(2 + p)

3
2 )

(3 + p)(3 + 2p)
( − p

(
p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

) 3
2

− (2p2 + p − pλ)3(2 + p)
3
2( − p

(
p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

) 3
2

−
3(2p2 + p − pλ)

√
(2 + p)√( − p

(
p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

)
kur(X) =

(p2 + 2p − 2pλ)(1 + p)4(2 + p)(1 + 2p)4

(2 + p)
( − p(p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

)
− 4(1 + p)3(2 + p)2(1 + 2p)3(2p + 1 − λ)(2p + 3 − 3λ)

(3 + p)(3 + 2p)(p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)

+

[
(1 + p)(2 + p)(1 + 2p)(2p + 1 − λ)

]2

p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1

+
4p2(2p + 1 − λ)(2 + p)2

(p2λ2 + 2pλ2 − 2p2λ + pλ + λ − 4p2 − 4p − 1)2
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Table 1. The mean, standard deviation, skewness, kurtosis and the coefficient of variation of the TMI distribution for
different values of λ when p=2 and θ=5

λ µ = E(XT MI ) σx S k(X) Kur(X) CV(%)
-1.0 4.000 0.816 -1.050 3.696 20.412
-0.9 3.933 0.883 -1.103 3.883 22.438
-0.8 3.867 0.939 -1.088 3.776 24.291
-0.7 3.800 0.988 -1.042 3.574 26.007
-0.6 3.733 1.031 -0.981 3.352 27.606
-0.5 3.667 1.067 -0.913 3.138 29.105
-0.4 3.600 1.098 -0.842 2.944 30.513
-0.3 3.533 1.125 -0.771 2.774 31.839
-0.2 3.467 1.147 -0.701 2.627 33.086
-0.1 3.400 1.165 -0.632 2.503 34.258
0.0 3.333 1.179 -0.566 2.400 35.356
0.1 3.267 1.188 -0.501 2.317 36.378
0.2 3.200 1.194 -0.440 2.252 37.326
0.3 3.133 1.197 -0.381 2.204 38.194
0.4 3.067 1.195 -0.326 2.172 38.979
0.5 3.000 1.190 -0.275 2.153 39.675
0.6 2.933 1.181 -0.230 2.148 40.276
0.7 2.867 1.169 -0.189 2.150 40.764
0.8 2.800 1.152 -0.156 2.161 41.136
0.9 2.733 1.131 -0.134 2.173 41.374
1.0 2.667 1.106 -0.125 2.180 41.457

Table 1 shows the values of the mean, standard deviation, skewness, kurtosis and the coefficient of variation (CV) of
the TMI random variable for different values of λ when p = 2 and θ=5. The table shows that as λ increases the mean
decreases. The kurtosis decreases as well. It, also tells us that the shape of the distribution is always skewed to the left
regardless the value of λ. The shape of the distribution has sharper peak as λ decreases. The table, as well shows that the
mean of the MI distribution, which equals to 3.333, is not far from the mean of the TMI distribution for −0.5 ≤ λ ≤ 0.5.
Both means are equal when λ = 0.

5.2 Moment Generating Function

Theorem 5.2 The moment generating function (MGF) of the TMI random variable is given by

Mx(t) =
∞∑

k=0

p(2p + k − λk)
(k + p)(k + 2p)

(tθ)k

k!
(19)

Proof.

Mx(t) = E(etx)

=

∫ θ

0
etxψ(x)dx

=

∫ θ

0

(
(1 + λ)p
θp xp−1 − 2λp

θ2p x2p−1
)
etxdx

=
(1 + λ)p
θp

∫ θ

k=0
xp−1etxdx − 2λp

θ2p

∫ θ

k=0
x2p−1etxdx

=
(1 + λ)p
θp

∫ θ

k=0
xp−1

∞∑
k=0

tk xk

k!
dx − 2λp

θ2p

∫ θ

k=0
x2p−1

∞∑
k=0

tk xk

k!
dx

=
(1 + λ)p
θp

∞∑
k=0

tk

k!

∫ θ

k=0
xk+p−1dx − 2λp

θ2p

∞∑
k=0

tk

k!

∫ θ

k=0
xk+2p−1dx

=
(1 + λ)p
θp

∞∑
k=0

tk

k!(k + p)
θk+pdx − 2λp

θ2p

∞∑
k=0

tk

k!(k + 2p)
θk+2pdx

= (1 + λ)p
∞∑

k=0

tk

k!(k + p)
θkdx − 2λp

∞∑
k=0

tk

k!(k + 2p)
θkdx

=

∞∑
k=0

[
(1 + λ)p

k + p
− 2λp

k + 2p

]
(tθ)k

k!

=

∞∑
k=0

[
(1 + λ)(k + 2p)p − 2λp(k + p)

(k + p)(k + 2p)

]
(tθ)k

k!

=

∞∑
k=0

p(2p + k − λk)
(k + p)(k + 2p)

(tθ)k

k!

�
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6. Maximum Likelihood Estimates

Definition 6.1 Let X1, X2, ..., Xn be a random sample size n with a pd f ψ(x). The likelihood function is defined as the joint
density of the random sample, which is defined as

ℓ = L(λ, θ, p|x1, x2, ..., xn) =
n∏

i=1

ψ(xi|λ, θ, p)

Hence, the likelihood function is given by

ℓ =

n∏
i=1

(
(1 + λ)p
θp xp−1

i − 2λp
θ2p x2p−1

i

)

=

n∏
i=1

p
xp−1

i

θp

(
(1 + λ) − 2λ

θp xp
i

)

Therefore, the log-likelihood function is given by

lnℓ = ln
( n∏

i=1

p
xp−1

i

θp

(
(1 + λ) − 2λ

θp xp
i

))

= nlnp + (p − 1)
n∑

i=1

lnxi − nplnθ +
n∑

i=1

ln
(
1 + λ − λ

xp
i

θp

)
(20)

Deriving Equation (20) withe respect to the parameters we get:

∂ℓ
∂θ
= 1

θ

(
− np +

∑n
i=1

λxp
i

(1+λ)θp−λxp
i

)
∂ℓ
∂p = n

p +
∑n

i=1 ln(xi) − nln(θ) −∑n
i=1

xp
i ln

(
xi
θ

)
(1+λ)θp−λxp

i

∂ℓ
∂λ
=

∑n
i=1

θp−xp
i

θp−λ(θp−xp
i )

(21)

Equating the system of derivatives in Equation (21) to zero, we get the following system of equations

n∑
i=1

λxp
i

(1 + λ)θp − λxp
i

= np

n
p
−

n∑
i=1

xp
i ln

(
xi
θ

)
(1 + λ)θp − λxp

i

= nln(θ) −
n∑

i=1

ln(xi)

n∑
i=1

θp − xp
i

θp − λ(θp − xp
i )
= 0

There is no exact solution for this system of equations. So, to get the maximum likelihood estimates for the distribution
parameters, we have to solve this system numerically.

7. Entropy

7.1 Renyi Entropy

Theorem 7.1 The Renyi entropy of order β ≥ 0 is defined is

Eβ =
1

1 − β log
n∑

i=0

(
β

i

)
(1 + λ)i(−2λ)β−i pβθ(1−β)

2pβ − pi − β + 1
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Proof.

Eβ =
1

1 − β log
∫ θ

0
(ψ(x))βdx

=
1

1 − β log
∫ θ

0

(
(1 + λ)p
θp xp−1 − 2λp

θ2p x2p−1
)β

dx

=
1

1 − β log
∫ θ

0
pβ

(
(1 + λ)xp−1

θp − 2λx2p−1

θ2p

)β
dx

=
1

1 − β log
∫ θ

0

pβxβ(p−1)

θβp

(
(1 + λ) − 2λxp

θp

)β
dx

=
1

1 − β log
∫ θ

0

pβxβ(p−1)

θβp

( n∑
i=0

(
β

i

)
(1 + λ)i(−2λ)β−i

( xp

θp

)β−i)
dx

=
1

1 − β log
n∑

i=0

(
β

i

)
(1 + λ)i(−2λ)β−i pβ

θp(2β−i)

∫ θ

0
x(2pβ−β−pi)dx

=
1

1 − β log
n∑

i=0

(
β

i

)
(1 + λ)i(−2λ)β−i pβ

θp(2β−i)

θ(2pβ−β−pi+1)

2pβ − β − pi + 1

=
1

1 − β log
n∑

i=0

(
β

i

)
(1 + λ)i(−2λ)β−i pβθ(1−β)

2pβ − pi − β + 1

�

7.2 Tsallis Entropy

Tsallis entropy (Tsallis, 1988) for a continuous random variable is defined as follows:

ET (X) =
1

q − 1

(
1 −

∫ θ

0
(ψ(x))qdx

)
, x ≥ 0

=
1

q − 1

[
1 −

n∑
i=0

(
q
i

)
(1 + λ)i(−2λ)q−i pqθ(1−q)

(2pq − pi − q + 1)

]
8. Quantile Function

The quantile value is a value, say x, of the random variable, X, with CDF Ψ(x) such that Ψ(x) = p(X ≤ x) = q, where
0 < q < 1. Therefore, the quantile of the TMI distribution is given by

x = θ
p

√
1 + λ ±

√
(1 + λ)2 − 4λq
2λ

, λ , 0 (22)

Proof.

Ψ(x) = q

(1 + λ)
xp

θp − λ
x2p

θ2p = q

Assume y = xp

θp , then

(1 + λ)y − λy2 = q

λy2 − (1 + λ)y + q = 0

Using the general formula for quadratic equations, we get

y =
1 + λ ±

√
(1 + λ)2 − 4λq
2λ

142



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

replacing y by its value xp

θp , we have

xp

θp =
1 + λ ±

√
(1 + λ)2 − 4λq
2λ

xp =

(
1 + λ ±

√
(1 + λ)2 − 4λq
2λ

)
θp

∴ x = θ
p

√
1 + λ ±

√
(1 + λ)2 − 4λq
2λ

�

The median of a continuous random variable X is defined to be the value m such that Ψ(m) = 1
2 . Hence, the median is the

quantile value when q = 1
2 . Therefore,

m = θ
p

√
1 + λ ±

√
(1 + λ)2 − 2λ
2λ

= θ
p

√
1 + λ ±

√
1 + λ2

2λ

9. Conclusion

In this paper, a generalization of Mukherjee-Islam distribution of failure time is introduced. It is called the transmuted
Mukherjee-Islam distribution. We have studied some properties of this distribution, such as: moments, mean, variance,
order statistics, maximum likelihood estimates of the distribution parameters. we, also have found the reliability and
hazard rate functions, Renyi and Tsallis entropies and the quantile function as well as the median. The mean and the
kurtosis decrease as the value of λ increases. The shape of the distribution is left skewed always regardless the value of p
and λ.
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