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Abstract

The Calderén reproducing formula is the most important in the study of harmonic analysis, which has the same property
as the one of approximate identity in many special function spaces. In this note, we use the idea of separation variables and
atomic decomposition to extend single parameter to two-parameters and discuss the convergence of Calderdn reproducing
formulae of two-parameters in L?(R™ x R™), in (R™ x R™) and in ./ (R™ x R™).
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1. Introduction

The main purpose of this article is to construct some Calderén reproducing formulae for two parameters. For this, we
recall some history about Calderdén reproducing formulae and some works in this field. There are some type of Calder6én
reproducing formulae with applications to characterization of function spaces in harmonic analysis. The famous one is
the reproducing formula generated by Poisson kernel

Pi(x) := Cput(jx* + 2)""*D/2 for t>0and x € R".

See (Frazier, M., Jawerth, B. & Weiss, G., 1991) for details and we describe shortly here. To do this we choose a radial
function ¢ € . (R") with the support of ¢ contained in the unit ball at the origin in R" and f ¢(x)dx = 0. Using

normalization, we always assume that fooo @(se))e*ds = —1, where ey = (1,0,---,0) € R", where ¢ is the Fourier
transform of ¢. Then we have the Calderén reproducing formula in the following: for f € LP(R"), 1 < p < oo,

* 0 dt
1= [ [ frge polee-nad,

where ¢, = t"¢(t"' x) as usual. Next let us make a discretization on the last equation. For this purpose we define a family
of dyadic cubes in R”. We say that Q C R” is a dyadic cube if there exist v € Z and k € Z" such that

0=0x={xeR": 27k <x; <27+ 1), i=1,2,--- ,n}.

Set 2 :={Qw :veZkeZ}and T(Q) = Q X [@,Z(Q)] c R™!, where £(Q) is the side length of the given dyadic
cube Q. Then R+ = Uge2T (Q) is a union of pairwise disjoint sets. If we set

e[ o

ag) = L f f 2 (P =y D
so JJr) Ot

Thus we obtain a decomposition f(x) = 3 peo Spag, which is an atomic decomposition. Moreover, the function ag
satisfies ap € C*, f agp(x)dx = 0 and supp(ap) € 30, where cQ denote the cube concentric with Q whose each edge is ¢
times as long. We found that the coefficient s¢ and the Littlewood-Paley g, function

d 1/2
&) = f ' = (P, "oy <)
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are closely related, 3’ pc o Isol* = ||g2(f)||iz. Therefore,

AG. = D sl

Qe2
In general, if the Poisson kernel P,(x) is replaced by any compactly support kernel ¢ € L' (R") satisfying

(i) ¢ is real-valued and radial;
(i) supp(p) C{x e R": |x < 1};
(iii) ¢ € C*(R");
(v) [ P4 = 1, for & € R"\ {0},

then we have a Calderén reproducing formula

f@) = fo . f)(x)df.

This is called a continuous version of Calderén reproducing formula. In (Frazier, M. & Jawerth, B., 1990), authors
constructed a discrete version of Calderén reproducing formula which is called the ¢-transform identity. Namely, choose
¢ € L (R") with supp(p) C {£ € R": 1/2 < & <2} and [g] = ¢ > 0 when 3/5 < |£] < 5/3. Then there is ¢ € S (R")
satisfying the same condition such that

DT =1, £#0.

VEL

Equivalently,
f= Z?ﬁz-v Yo f,

veZ

where f(x) = f(—x). Using a sampling theorem, the last equality can be discretized as

F= ) (f- 9000,
Qe2
where, for a given function g and a dyadic cube Q = Q. with left corner xp = 27K, go(x) = |0/ 2g(%).

In fact, the concept of Calderén reproducing formulae is to write a given function into a sum of convolutions K, * f,
where K is a kernel satisfying certain conditions. This was first appeared in a paper written by Calderén in (Calderén, A.
P., 1964) dealing on complex interpolation in 1967. In 1975, Calder6n introduced parabolic Hardy spaces in (Calderdn,
A. P, 1977) in sense of atomic decomposition which is more popular now. In 1980, Chang and R. Fefferman introduced
atomic decomposition of H' on the bidisc (Chang, S.-Y. A. & Fefferman, R., 1980). In 1982, Uchiyama gave a concise
form of Calderén reproducing formula in (Uchiyama, A., 1982). Frazier and Jawerth introduced the ¢-transform identity
and smooth atomic decomposition in (Frazier, M. & Jawerth, B., 1990). It is natural to ask what does the Calderén
reproducing formula converges in some sense?

To describe the convergence of a Calderén reproducing formula of one parameter case, choose H, h € .%(R") satisfying
(i) supp(H) C (& € R : |¢] < 2);
(ii) supp(h) C {£ € R : 1/2 < || < 2);
(i) H(E&) + Yo E(f) =1, forall £ e R";

(iii") Zji_m/h\‘,(f) =1, forall ¢ € R"\ {0},

where h,(x) = 2""h(2”x). For a given (generalized) function f, set fy := H * f + )2, h, = f for N € N. Then we have the
following well-known results which were given by Frazier, Jawerth and Weiss.

Proposition 1.1. Ler H and h satisfy conditions (i), (ii) and (iii).
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(@ If f e LP(R") for 1 < p < oo, then fy converges to f a.e. and in LP as N — oo.
(b) If f € L(R"), then fy converges to [ in S (R") as N — oo.
() If f € " (R"), then fy converges to f in ' (R") as N — oo.

Proposition 1.2. Let h satisfy conditions (ii) and (iii’). Also set fy 1= Y., _yhy * f for N e N.

(@ If f € LP(R") for 1 < p < oo, then fy converges to [ a.e. as N — oo.

) If f € LP(R") for 1 < p < oo then fy converges to fin LP as N — oo,

(©) If f e L"(R™) and fR” Ff(x)dx = 0 then fy converges to fin L' as N — oo.
(d) If f € L"), then fy converges to [ in S (R") as N — oo.

(e) If f € S’ (R"), then fy converges to [ in /(R") as N — oo, where k = degf

There are some works concerning Calderén reproducing formulae on space of homogeneous type, see (Han, Y.-S., 1997;
Deng, D.-G. & Han, Y.-S., 1995) for details. Also there are some concerning Calderén reproducing formulae associated
to para-accretive functions, see (Han, Y.-S. & Yang, D.-C., 2005; Yang, D.-C., 2005) Ifor details. We do not intend to
complete the list concerning Calderén reproducing formulae here. In harmonic analysis, there are some study on singular
integral operators on product spaces, see (Fefferman, R. & Stein, E. M., 1982; Journé, J.-L., 1985; Fefferman, R., 1981;
Fefferman, R., 1987; Han, Y.-S., & et al. 2010) for more details. Here we will study the convergence of a Calderén
reproducing formula of two parameters. In general, the case of m parameters is the same but more tedious.

The paper is organized as follows. In Section 2, we construct a Calderén reproducing formula for inhomogeneous case and
then study the convergence of such a Calder6n reproducing formula in LP(R" xR"2), in . (R™ xR"?) and in ."(R™ xR"2).
In Section 3, we will do the same argument but for homogeneous case.

Throughout, we Use C to denote a universal constant that does not depend on the main variables but may differ from line
to line. Also, Q and P always means the dyadic cubes in R” or in R™, and for r > 0, we denote by rQ the cube concentric
with Q whose side length is 7 times as long.

2. A Calderon Reproducing Formula: Inhomogeneous Cases

For convenience, we first give some notations. Let Z} = {& = (@1, - ,@,) : @ € Z,,i = 1,...,n}. Wesay ais a
multi-index means @ € Z! and its norm is the sum of its components, i.e., [a| = Y1, @;. Also D* denote the partial
differential operator
o
Ox] Ox3? - Oxy"

To emphasize, we use DY instead of D* for x € R". For @ € Z7 and x = (x1,---,x,) € R", x* := x{"x3*---x,". For

ki € Z", i = 1,2, let us consider a rectangle Q X P C R™ x R™, where Q = Qi is a dyadic cube in R™ and P = Py
is a dyadic cube in R™. As usual, xp = 27/k! and yp = 27*k? denote the left corner of Q and P, respectively. For any
function f defined on R™ x R™, let

X—Xo y—Jyp
«o) ’ «p)

for(x,y) == Q2P £( ) = 2imipkmi2 g iy — it 2ky — k2,

[, y) = 272 £(27x,24y),
Fey) = Fx ).
From these, it is easy to check g * f(xg,yp) = |QI7V2|PI7V2(f, gop) if it exists.
Choose H, h € #(R™), i = 1,2, satisfy
(i) supp(H') € (& € R" : ] < 2),
(i) supp(h') C {& € R : 1/2 < |&] < 2},

(iii) H(&) + Yo hi(€) = 1 forevery & € R™,

4
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where Rt (x) = 2" h!(2"x) for v € Z. Then we can deduce an equation in .7 (R"™ x R™):

6(51,52)+Zzh w&,é6) =1 VY(&,&) e R xR™, 2.1

j=1 k=1

where

D&, )

H'(E)HA &) + H'(&) ) 1@ + HA &) D hj(é)
k=1 k=1
= H'E)H &)+ H' () - HX&)) + HX &)1 - H' (). 2.2)
For N = (N1, N,) € Z, X Z, and a (generalized) function f defined on R™ x R"2, we define a truncated Calder6én formula

for two parameters in the following way:

N N>

Fu(x,y) := @ % fx,y) + ( > h}hi) * f(%,Y). 2.3)

=1 k=1

Let Dy (x,y) := 2Mm+Nam (2N x, 2M2y) for N = (Ny, N,) € Z, X Z,. From equation (2.1) we have

D) =1- ) S TRERED,

J=1 k=1

and hence
Oy, = 1= Y RQTNERQ )
=1 k=1
= 1= ) D HERE) 24)
J=Ni1+1 k=N,+1
The Fourier transform of fy given in equation (2.3) is
fu=0f+ Z Z hip)f
Jj=1 k=1
MM
=A@+ ) ) hii)
=1 k=1
joo o Ny N,
i (EOWWTEWICE
=1 k=1 j=1 k=1
M 0 N> 00 N N
=Al -7+ X BT+ 3 R+ 3 )
J=1 J=N1+1 k=1 k=N,+1 j=1 k=1
) co N, 00 o N
Al-( X Y Ry Y R~ Y, Y Aw))
JENI+1 k=Ny+1 J=1 k=Np+1 J=Ni+1 k=1
) ) Ny ) © M
=(1- BT = (2 2 W) =( ) ) m)f.
JENI+1 k=N +1 =1 k=Ny+1 J=NI+1 k=1
Hence we have
N oo o
szcDN*f—(Zl Domm)sf-( D) Zhh2 2.5)
j=1 k=N,+1 JENI+ k=1

We say that fy — f as N — oo in certain sense means that fy — f in certain sense as N; — oo and N, — oo. To prove
one of main theorems, we need the following two lemmas.
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Lemma 2.1. With the notations above, we have the following results.
(@) If f € LP(R™ X R™), then (2?21 Z,‘:‘;NZH h}h]%) * f converges to 0 pointwise and in LP(R™ x R™).
(b) If f € S(RM x R™), then (zjﬁ | S et M) 5 f = 0 in S (R X R™).

(© Iff € "™ X R™), then (XY, B2y, oy hHZ)  f = 0in 7/ (R™ X R™).

Proof. For part (a), since (Z’]V:‘ | D+l h}h,%) — 0 as N — co and using the continuity of convolution on L7,

‘(i i h}h,%)*f‘—)O as N — oo,
j=1 k=Np+1

and hence, by Lebesgue dominated convergence theorem, ”( zjﬁ | DNy 1 h}h]%) * f “LP —0asN — oo,
To show part (b), we use Leibniz’ formula for each multi-index @ = (a1, as) € Z}' X Z'?,

(3 i)=Y 5w« s

j=1 k=Ns+1 j=1 k=N, +1

=(2, 2 mhi)=0"s.

j=1 k=N+1

because (Z?/:‘ | ZkeNy 1 h}hz) — 0 as N — oo and the continuity of convolution on .. Therefore, (Z?/:ll ZheNy+1 h}hz) *
f—= 0in LS (R" x R™).

The proof of part (c) follows from part (b) by a duality argument. Let g € . (R™ x R"™), we have

N o Ny sl
((Z 3w *f,g) - (f,(z AL g).
j=1 k=N +1 j=1 k=N +1
Applying part(b), one has
N o
( Z hjhi) xg—0
=1 k=N,+1
Hence
N o
((Z Z h}hf)*fg) —0asN — o
j=1 k=Np+1
for every g € (R™ x R™), and so (Zyz‘l Z,‘;":Nﬁl hihi) * f — 0in (R™ x R™), O

The proof of the convergence of ( DIPID I e N hz) is similar with Lemma 2.1 in each case, hence we have the following
results.

Lemma 2.2. With the notations above, we have

(a) if f € LP(R™ X R™), then (Z;’-‘;NIH 22’21 h;hz) « f converges to 0 pointwise and in LP(R™ X R™) as N — oo;

(b) if f € SR" XR™), then (T2, .1 T2y Bh2) « f = 0 as N — oo in S (R™ X R™);

(©) if f € S (R™ x R™), then (Z] Nyl Zszl h]hz) f—0asN — oo in . (R" x R™),
After we obtain Lemmas 2.1 and 2.2, we can show that the convergence of the Calderén reproducing formula on L?, on
& and .. We first consider that fy converges on LP(R™ x R™).
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Theorem 2.3. Let f € LP(R™ X R™) for 1 < p < oo. If fy is defined in (2.3) then fy converges to f a.e. and in
LP(R" X R™)as N — oo.

Proof. By (2.5), Lemma 2.1 part (a) and Lemma 2.2 part (a), it suffices to show that ||®y * f||.» — f as N — co. Note that
® is an approximate identity since @ satisfies me fan D(x,y)dxdy = 1. Let f € LP(R™ x R™) and s = (¢, 5) € R™ x R™,
By the continuity of norm, for any & > 0, there exists » > 0 such that ||f-s — fll.» < &/2 when |¢f| + |s| < r. Since
® is an approximate identity, there exists M > 0 such that f flx |®N(x, y)ldxdy < —%— for min{N, N,} > M. For

AlAllr
1= [[ Dy (1, s)drds,

[+ylzr

fxOn(x,y) = flx,y) = f (f(x=t,y = 5) = f(x,»))Pn (1, s)dids.

Hence, by Minkowski integral inequality,

1

P 7
17 <@y = < [[[( [[ 17013 =9 = e pionte siaras) axay)
< [[ 1= on. iasas

< f f 1fos = fllur [P (2, $)drds
[t]+]s|<r

" f f 1fs = Fllorl O, $)drds
|t|+]s|=r

E E
<, =,
2 P

when min{N;, N,} > M. Consequently, @y = f — fas N — ocoin LP(R™ x R"). m]

Next let us consider the convergence of fy in /(R™ X R™) and in .#”(R™ x R"). To obtain the convergence of fy, it
suffice to show the convergence of fy by the continuity of inverse Fourier transform. More precisely, fy — f is equivalent
to fy = fasN — oo.

Theorem 2.4. Let fy be given in (2.3). Then

(@) if f € SR xR™) then fy — f in S (R" x R™) as N — oo;

(b) if f € '/ (R" x R™) then fiy — f in ' (R" x R™) as N — oo,

Proof. For part (a), by (2.5), Lemma 2.1(b) and continuity of inverse Fourier transform, it is enough to show that (’ﬁNf—> f
in Z(R™ x R™), this is to show that

sup (1 + &)+ 1EDMIDY(F - Dyf)l — 0as N — oo, for M > 0,y € Z" x Z™.
(é1,62)eRM xR™

Since f—®y f = ﬂ Z Z 7137[,%), we need to estimate D‘T( Z Z 71\}71?(), and D* f(£), &), where o, p € Z" XZ"™.

[ee)
j=Ni+1 k=N>+1 Jj=N1+1 k=N>+1

First let us observe Iy := Z Z ’h\;‘(fl )’h\zk(fz)

j=N1+1 k=N2+1

0, if |¢1] < 2 or || < 2V
Iy ). if 2V < ] < 21+ and |&] > 20+
_ @), if 2% < |&] < 2%+ and |g] > 2M1+!

Iy = 4+ .
Iy EDRY, (&), i 2V <& | < 20

and 2V < |&,| < 2MH1
1, if 161 > 29+ and |&] > 2N+
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Let o = (a,B8) € Z' x Z?, and then D° = D‘E’]Di. Note that when |&;] < 2M, |&] < 2™, or (both |&,| > 2M*! and

|&o] > 2N,
pr( Y Y Bee)-

Jj=N1+1 k=N,+1

Also, when 2V < |¢/] < 2M* and 2™ < |&,| < 2N+,

Z Z M@ (E) = 2 MDDV g2 N DR 2 ),

JEN 1 k=Nt 1
For 2V < |&/] < 2M* and |&,| > 221,

if B#0
(Z Z @) = {2 T2l i 8o

J= N1+1k Nr+1
Similarly, for 2 < |&] < 2V*! and |¢| > 2M*,

if a#0
( Z Z (fl)hk(fz)) {2 W+ DB DEIR2Y (2N 18y), if @ =0

Jj=N1+1 k=N+1

Hence we getfor N € Z, X Z,,and o € Z' X Z?,

( Z Z (fl)hk(fz)) < CoX (4, £ern xR 46 52% and fel>2M2)-

J=N1+1 k=Na+1

Now if f € Z(R™ x R™) then fe S (R™ x R™). For any M > 0 and multi-index p, we have IDPJ?(&,&)I < Com(1 +
|€1] + |€2))~™~!. Therefore, by the Leibniz’s formula, for any y € Z}' x Z"> and M > 0,

D"(F-Bufll=| 3 Copl( 3y BERE)D Ti&, &)

T+p=y J=N1+1 k=N,+1
—M-1
< G+ 101+ 16D X ¢, gyyerr g >2v and 627

L+l + 16D

M (1 + &1 + &) Xi@.6)eRn xRm:jg1>2M and |&[>2M)
< Cyu(1 +1&]+16D™M27Y,

where N’ = min{N;, N>}. Hence  sup  (1+|&|+|&DYIDY(F =@y )l = 0as N — oo for any M > 0 and multi-index
(é1,62)eRM XR™

p,ie., Oy — fin S(R" xR™)as N — oo.
For part (b), let g € .Z(R™ x R™), and then, by a duality argument, we have
Ny ) N

gy =@ f=(D, Do mm)«f=( D Dmi)«f.e)

J=1 k=Na+1 j=N1+1 k=1

By part (a), Lemma 2.1 (c), Lemma 2.2 (c) and continuity of tempered distributions, we have (fy, g) — (f,g) as N — oo,
for all g in S(R™ X R™), i.e., fy — fin ' (R™ x R™)as N — co. O
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At the end of this section, we give a concrete example to show the existence of a Calder6n reproducing formula for
inhomogeneous case. Choose ¢(x,y) = ¢! (x)¢?*(y) € L (R™ x R™), where ¢’ € .7 (R") satisfying supp(¢’) C {£' € R" :
1/2 < |€] < 2} and ¢i(¢') > ¢ > 0 when 3/5 < |¢] < 5/3, fori = 1,2. Let

KE.&) = > ol )pi@).

JEZL keZ

Then K(¢',&2) > ¢ > 0. Define a function y by /117(51, £2) = Ii((:ﬁ;?’)) Then ¥ satisfies the same conditions as ¢ and hence

Z Z"ﬁjk‘?jk =1

JEZL keZ

6 =1- Z Zajk”l;jk

JjeN keN

Define @ by

Since @, ¥ = 0, Y jen Sken @itk < 1. Thus @ > 0, d € #(R" x R™) and supp(®) C {(¢',&?) : €] < 2,i = 1,2}. Set
¥ = VO. Then ¥ € S(R™ x R™) and supp(¥) C {(£1,&%) : |&] < 2,i = 1,2} which is a compact set in R" x R™.

Therefore, R _
VW4 S =1
JeN keN

By the theorems above, we can represent f as ‘¥ W x f + 3 ey Dken @jx * Wi * f, and then, using the sampling theorem,
we get

fley) = Z Z (f.Wop)¥op + Z Z (f-¢orVor. 2.6)

[(Q}) ]f(Pk) 1 [(QJ)<1 l(Pk)<1

3. The Calderon Reproducing Formula: Homogeneous Cases

In this section, we consider the convergence of a Calderén reproducing formula in homogeneous case. First choose /'
e LS(RM),i=1,2, satisfy

(i) supp(h') C{& e R™ : 1/2 < |&] < 2},
(i) Y52 o hi(&) = 1 for every & € R™ \ {0},

where hi(x) = 2" h'(2"x) for v € Z. By (2.1), we have

Dy@né)=1- ), > MEME)  for N=(Ni,Ny) € Z X L.

j=Ni+1 k=N+1

Consider

Ni+1 k=N>+1 Jj=—Ni k=—N»
o o N o N, o
2 2
ZZM (N7 YA X R+ 3 )
J=N1+1 k=N, + Jj=—Ni Jj=N1+1 k=—N, k=N>+1
N Ny o0 N>
71 7172
(X7 X3 XT3 X7
j=—N1 k=—N2 ]_—Nl k= N2+l j:N|+l k=—N2

Let f be a (generalized) function and we define a truncated function fy by

(> 3wy

J==Ni k=—N,
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Thus we get
N, co o N>
Sy =@y —O_y_y) = f— Z Z i)« f = ( Z Z niig) « f. (3.7)
J=—N; k=Na+1 j=Ni+1 k=—N,

From (3.7), to see the convergence of fy, it suffices to show the convergence of Oy f, O_y_;* f, ( Z?’:‘ N, e Not1 h}h]%)* f

[ Nz
and ( Z Z h}hi) * f. From Theorems 2.3 and 2.4 in last section, ®y * f converges to f as N — oo. It remains to
j=N1+l k=—Nz

consider the others.

Lemma 3.1. With the notations above, we have the following results.
(@) If f € LP(R™ x R™), then (zjﬁ_Nl popav h}hi) « f — 0 pointwise and in LP(R™ x R") where 1 < p < .
(b) If f € S (R™ x R™), then (Z?Q_NI DheNy1 h;hi) x* f— 0in S(R" X R™).
(©) If f e S"(R" x R™), then (Z?’:'_Nl ZheNy i1 h;hi) * f— 0in " (R" x R™).

Proof. For part (a), by Lebesgue dominated convergence theorem the convolution

|( i i h}hi)*f|—>0asN—>oo

Jj==Ni k=N»+1

. . . N
pointwise, since (Zj:‘

( IS Yl hjhi)  f and Lebesgue dominated convergence theorem again, H( Z?’:‘_Nl SN+l h}hi) x f Hu -0

N, DNl hihi) converge to 0 pointwise as N — oo. By the pointwise convergence of

J=—Ni
as N — oo,

For part (b), we see, for all multi-index a,

(3 3 ) n) = 3, 3 s

J=—Ni k=Ns+1 Jj=—Ni k=Na+1
Ny o
(3 5 wyeo
Jj=—Ni k=N,+1

Because (Z?,:‘_Nl DNy 41 h}
LR x R™).

The proof of part (c) follows from part(b) by duality. Precisely, for g in .#(R™" x R™), we have

(3 ST mm)erdd=(n( S S mi)-c)

j=—N1 k:N2+1 j:—Nl k:N2+1

2 . . . N 00 1.2 .
hk) — 0 as N — oo, and continuity of convolution, (ZF‘_N] 2N, +1 hjhk) x f — 0in

Then, by part (b) (Z];/:'_Nl Z,ZNZHZ};%) x* g — 0. Hence {(( Z?’:'_Nl PP h;hi) * f,g) > 0as N — oo, for all g in

S (R™ x R™), and so (ij;—Nl Z/ZNZH h;hi) « £ — 0in. 7 (R" x R™), O

The proof of the convergence of ( X7y, 4 ZkNi_Nz h;h,%) is similar with Lemma 3.1 in each case, hence we have the
following results.

Lemma 3.2. With the notations above, we have the following results.
(@) If f € LP(R™ X R™), then (Z;’;NIH ZkN:Z_Nz h}hi) * [ — 0 pointwise and in LP(R™ X R™) where 1 < p < co.

(b) If f € SR™ X R™), then ( XLy 11 iy, B2) % f = 0 in F(R™ X R™),

95



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 4; 2017

(©) If f € SR XR™), then ( N3y, 1 T2y, B12) * f = 0in 7" (R™ x R™),

As in Section 2, we first deal with the convergence of fy in L?(R™ x R™) and then in . (R™ X R™) and .’/ (R™ x R"™)
by Lemmas 3.1 and 3.2.

Theorem 3.3. For N = (N1,N;) € Z, X Zy and f € LP(R™ X R™), let fy := (ZN‘

N, k__ hhz) « f. Then

(a) for1 < p < oo, then fy — fa.e.as N — oo;
(b) for1 < p < oo, then fy — fin LP(R" X R™) as N — oo;

(c) for p = 1, furthermore, assume fff(x, y)dxdy = 0 then fy — fin L'(R™ x R™) as N — co.

Proof. To prove part (a), by (3.7), Lemma 3.1 (a), Lemma 3.2 (a) and Theorem 2.3, it is suffices to prove ®_y = f — 0
a.e.as N — oo. Let g be the conjugate index of p, i.e. ,l) + %1 = 1. By Holder’s inequality,

[0y < Syl = 0 [ [ @m0, 2y 2V, s
1
< g7 Nm=Nom( f QN x = 271, 27Ny — 27V 5)\dtds) s

1/
= g7 Nm =N f QM x — 1,27y — 12NN ds) Nl

ll Nymy

= g~ Nm=m .9 P all ANl
~(Nnj +Nyny)

=2 7 | Dllgall flle-

Hence ®_y = f — 0 a.e. as N — oo.

Next let us prove part (b). Since @ is an approximate identity and ® € . then |®| = 372, a;x¢,, Where a; are positive
and Q; = C; X D; are rectangles of R™ x R™. A calculation shows

1f * apyo, Y < a; f f =ty = s)ldsdr

1|Q] |Qj|ff|f(x—l‘y—s)|dsdt

< ajlQiIMf)(x,y),
which implies

IF )" apo, (60 < (MO D al0)1 < (M)
j=1 j=1

since Z;’-‘;l a;|Q| = 1. Hence |f * ®(x,y)| < (Mf)(x,y) and so M f € LP(R™ x R"). By part (a) and Lebesgue dominated

convergence theorem,
]\llim ff@_[v x f1Pdxdy

f f lim [@_y * fI’dxdy = 0.

Finally, let us consider part (c), let f € L'(R™ x R™) with f f f(x,y)dxdy = 0. Then

lim ||D_y * f||°
Jim 10y « 1,

Oy * flx,y) = 27Mmp e f f (@@ Mx =271y, 27Ny — 2Mopy)

- 027V x,27y))f(t1, )dn .
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Taking L'-norm on both sides and then applying Fubiini’s theorem, we have

”(D—N * f”L‘ = f |2—N1111—N2112 ff (q)(z—le _ 2—N1 1, 2—N2y _ 2_N2t2)
- ®2V x, 27 y))f (11, y)dn diyldxdy

< [[ramprmese [[o@- 2,25y -2

— ®Q2 M x, 27Ny dtydxdy

_ f f e, ) f f (DG = 2711,y — 27Ve0y) — D(x, y)ldty didxdy.

Allim ff |D(x — 2’N‘t1,y —27Mp) — O(x, Ydxdy = 0,

For each (11, 1,) € R x R™,

by continuity of L'-norm. Note that the integrand is dominated by |f(#1, £)12||®||;: in L'(R™ x R™). So by Lebesgue
dominated convergence theorem, ||®_y * f|[;1 — 0as N — oo. m]

Let us recall a definition about degree of a tempered distribution.

Definition 3.1. Let L € .”(R"). The least positive integer k is called the degree of L, denoted by deg L, if for ¢ € . (R"),

IL(p) < C Z llelllas =2 Cllglle Ve L,

larl<t
Bl<k

where [[[¢llla,s 1= SUp g [x* DPep(x)).
Fork e Z,, let
(R :={ge S (R"): fxyg(x)dx =0, Vly| <k}

and o (R") := Niez, Z2(R™).

Now we give another main theorem in this section.

Theorem 3.4. For N = (N, N,) € Z, X Z.y and a given function f, let

N N
fo=( 2, 2, mi)«f.
j==Ni k==N»

(@) If f € S(R" XR™), then fy — fin S(R" x R™)as N — oo,

(b) If f € S"(R" X R™), then fy — fin S/ (R" XR™) as N — oo where k = degf
Proof. By (3.7), Lemma 3.1 (b), Lemma 3.2 (b), Theorem 2.4, and the continuity of inverse Fourier transform, it is
suffices to prove @_y f — 0 in S (R™ x R™).

First, we put f(x,y) = f(z), where z € R"*™2, Since f € .7 (R™ x R™), then for 0 < |p| < k, for any k € Z,, and
w = (11, h),

D) = f FO—inPFle o d;
k-lol

. —izw (_iZ : w)j
- f f(z)(—zz)'p‘(e - ,Z; T)dz.

By Taylor’s theorem,
+1

m . i
. (~i6) aml
|el0 _ E ]' | < C||d9m+1 el€'|m|9|m+l‘
=
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Thus

D’ fw) < f [f@lzl¥]z - ]! Pldz

< o [l
— Cf|w|k+l—|p\
< Cpnl + )V,

by equivalence of norms in a finite-dimensional space.

Observe that,

1, if |l < 27N or |t <27V
L=y @), if 27N < |fy] < 27N+ and [t > 27N2+1
1=, ., (0), if 27V < || < 27+ and || > 27N+

DO_pn(t, 1) = - Al -
L=hly (D2, (1), 327N < | < 27Nt

and 27 < || < 27M2*]
0, if ] > 27N+ and || > 2N+

Let o = (a,8) € Z}' X Z}'. Then D = D;YlDf2 When [t;] < 27, |t;] < 27 or (both |t;| > 27V*! and [t| > 27N>+,

p( Y3 Bwkw)=o.

j==Ni+1 k=—N,+1

When 271 < |ty < 27N+ and 27N < || < 27Nt

pr( D5 D R ) = 20 RN 2 DR R ),

j=N1+1 k:N2+1
For 2™ < |t;| < 27M* and |t,| > 27M+1,

o~ TS _ o, if B£0
D ( Z Z hj(tl)hk(IZ)) = {Z(NII)IQI(DQEI)(ZNIII])’ i ﬂ -0 .

J==N1+1 k=—N,+1
For 2V < |t;| < 27™2*1 and || > 27M1+1,

- o 0 if @#0
o 1 72 _ ’
D ( Z Z hj(tl)hk(tZ)) = {Z(Nz_l)LBl(DB’]:l‘z)(ZNZ_Itz)’ fa=0 .

j==N1+1 k==N,+1

Thus we get for N € Z, X Z,, and N’ = max{Ny, N,},

Tl 2 ‘
D(T(l_ 2 X hj(tl)hk(n))SCO—ZNlo-‘/\/[(flh)ER"‘XR”ZilfllSTN‘”,|t2\52’N2”}'

Jj=—Ni+1 k=—N,+1

Hence by the Leibniz’s lemma, if |y| = k
(1 + |0 + D™D @y )t 1)
<+l + D" D CoplD7® v, D F1, 1)l
TH+p=y

M N’ k+1-
Sl + D" DT Corp2Vn | + It
THp=y

X X {(t) 1) €R™ xR™2:[t|<2-N1+! and [f|<2-N2+1}
< (1 + |t1| + |l2|)M Z Co',plel(rl(z . 2N')k+1—|0'|

otp=y
<C Z oN'(ol+lpl) | 9=N"k=N" _ ok+1-lp|
g+p=y
<c-27V,
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Hence ®_y * f - 0in L (R™ x R™) as N — o,

For part (b), by ,£3'7,)z Lemma 3.1 (c), Lemma 3.2 (c), Theorem 2.4, and the continuity of inverse Fourier transform, it
suffice to show ®_yf — 0in ’(R™ x R™). The proof follows from part (a) by a duality. Let g € ./ (R™ X R"™). Since
k = degf, there exists M > 0 such that

(D_y * f, ) = [(D_n [, D)
= |(f, D_xD)|

<C sup (1 +10+ [)MID"(@_y )t ),

lyl<k (t1,1)eR" xR"™2

By part (a), we have
sup  (1+ 1] + ) MIDY @y (11, 12)] = O,

(t1,52)ER™M xR™2

for any g in S (R™ x R™) — 0, and hence we have ®_y * f — 0 € S/(R" x R™) as N — oo, by continuity of
distributions. o

If we choose ¢ and  at the end of the last section, then we have

Z Z’(Ejk/l/;jk =1 a.e.

JEZ kel
and
f= ZZ%k*lﬂﬂc*ﬁ
JEZ kel
Using the sampling theorem, we obtain
f= Z Z {f>porMop,
QEQ] PEQZ

where 2; is the collection of all dyadic cubes in R™, i =1, 2.
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