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Abstract

We analyse optimal portfolio selection problem of maximizing the utility of an agent who invests in a stock and money
market account in the presence of proportional transaction cost λ > 0 and foreign exchange rate. The stock price follows
a (generalized) Geometric Itô-Lévy process. The utility function is U(c) = cp/p for all c ≥ 0, p < 1, p , 0.
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1. Introduction

The study of dynamic portfolio choice has a long history, tracking back to Merton (1971). The introduction of the jumps
to the Merton model where the dynamics of stock price are modelled by a Lévy process has attracted a lot of researchers;
Øksendal and Sulem (2004, 2005, 2014), Tankov (2005) and many more. But so far when the jumps are included, the
determination of the optimal portfolio has not been amenable to a closed-form solution and this is a long-standing open
problem in continuous time finance. Lévy processes were introduced by Lévy (1937) who pioneered the theory of infinite
divisibility. Modern accounts of the probability theory of Lévy processes are given in Sato (1999) and Applebaum (2004).

Our work is motivated by Øksendal and Sulem (2014) on their quick introduction to some important tools in the modern
research within mathematical finance, with emphasis on applications to portfolio optimization and risk minimization, Liu
(2004) by successfully analyzing and deriving the optimal transaction policy in an explicit form when n ≥ 1 risky assets are
correlated and subject to fixed transaction costs in an infinite horizon, Janeček and Shreve (2004) and Bichuch (2011) by
considering the cases where an agent invests in a stock and a money market account with the hope of maximizing his/her
wealth in an infinite time horizon and at the final time T , respectively, in the presence of the proportional transaction costs.
Their main idea were to provide a heuristic and a rigorous derivation of the value function in powers of λ

1
3 . In this paper,

we intend to make contribution in modeling choices and bring powerful yet simple mathematical tools through discussing
the impact of foreign exchange when the risky asset is a generalised Itô-Lévy process in the face of transaction costs. We
discuss several propositions based on different kinds of jumps in our optimal portfolio problem.

The rest of the paper is organised as follows. In section 2, we present in detail out model. In section 3, we discuss the
optimal portfolio in the absence of the transaction costs. In section 4, we provide an optimal investment in the presence
of transaction costs. Conclusions are in section 5 followed by references.

2. The Model

We consider a market consisting of two investment opportunities, the money market account a bond and a stock. Assume
that there are two riskless assets BW money market and US money market in BW pula and US dollars, respectively with
interest rates r1 > 0 and r2 > 0. Due to uncertainty about the future exchange rates, the asset in a US money market is
not riskless with respect to the BW pula investor, nor is the asset in BW pula market riskless with respect to the US dollar
investor, thus choice of numeraire determines which asset is riskless. Let Dt be the rate of exchange at time t ∈ [0,T ].
The dynamics of Dt at time t ∈ [0,T ] follow the diffusion process.

dDt = Dt[µ1dt + σ1dB1(t)], (1)

where B1(t) is the Brownian motion. Let bond share price Rb
t at time t ∈ [0, T ] reported in units of bond be given by

dRb
t = r1Rb

t dt, Rb
0 = 1, (2)

Thus, the share price of the money market at time t in dollar is Rb
t Dt = Rt. From equation (1) and (2) we obtain the

stochastic differential equation (SDE) given by

dRt = Rt[(r1 + µ1)dt + σ1dB1(t)], R(0) = r0 > 0.
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In the point of view of the bond investor; in the bond markets, neither the bond nor the exchange rate is tradable. However,
{Rt}t≥0 can be thought as a bond tradable. Suppose the share price of stock, S t, which is in dollars at any time t ≥ 0 is a
geometric Itô-Lévy process given by

dS t = S t−

[
µ2dt + σ2dB2(t) +

∫
R

g(t, ζ)Ñ(dt, dζ)
]

; S (0) = S 0 > 0. (3)

Taking g > −1 then S (t) can never jump to 0 or a negative value (Øksendal and Sulem, 2014). Solution to (3) is given by

S t = S 0 exp
µ2 −

σ2
2

2

 t + σ2B2(t) +
∫ t

0

∫
R

(ln(1 + g) − g)ν(dζ)ds +
∫ t

0

∫
R

ln(1 + g)Ñ(dt, dζ)
 (4)

where µ1,2 > r1,2 > 0 and σ1,2 > 0 are (constants) known as mean rates of return and volatilities of the exchange rate and
stock, respectively. Ñ denote the compensated jump measure of S , defined as Ñ(dt, dζ) = N(dt, dζ) − ν(dζ)dt, N(dt, dζ)
is the differential notation of the random measure N([0, t], A). ζ is regarded as a generic jump size. The jump measure
N([0, t], A) gives the number of jumps of S up to time t with jump size in the set A ⊂ R − {0}. Moreover, if we assume
that Ā ⊂ R − {0}, then it can be shown that A contains only finitely many jumps in any finite time interval (Øksendal and
Sulem, 2014). The Lévy measure ν(·) of S is defined by ν(A) = E[N([0, 1], A)] and satisfies

∫
R min{1, |x|}ν(dx) < ∞, so

the jumps have finite variation. S t− means that whenever there is a jump, the value of the process before the jump is used
on the left-hand side of the formula. {Bi(t)}t≥0 for i = 1, 2 is the standard Brownian motion on a filtered probability space
(Ω,F , (Ft)t≥0,P) with Bi(0) = 0 for i = 1, 2 almost surely. The correlation between {B1(t)}t≥0 and {B2(t)}t≥0 is given by

B1(t) = βB2(t) +
√

1 − β2Bt, − 1 ≤ β ≤ 1,

where β is the correlation coefficient and Bt is a Brownian motion independent of B2(t).

Define the dynamics of the bond and stock holdings in monetary terms as

dXt = (r1 + µ1)Xtdt + σ1XtdB1(t) − (1 + λ)dLt + (1 − λ)dMt, X0 = x, (5)

dYt = Yt−

[
µ2dt + σ2dB2(t) +

∫
R

g(t, ζ, ω)Ñ(dt, dζ)
]
+ dLt − dMt, Y0 = y, (6)

where λ ∈ [0, 1) accounts for proportional transaction costs paid from the money market, Lt represents the cumulative
dollar value of stock purchased up to time t, while Mt is the cumulative dollar value of stock sold. The agent must choose
a policy consisting of two adapted processes Lt and Mt that are nondecreasing and right-continuous with left limits and
L0− = M0− = 0. Note that, purchase of dLt units of stock requires a payment of (1+λ)dLt from the money market account
while sale of dMt units of stock realizes only (1 − λ)dMt in cash. The investor’s net wealth in monetary terms at time
t ∈ [0,T ] is

Wt = Xt + Yt − λ|Yt |.
Define the solvency region

Qλ := {(x, y); x + (1 + λ)y ≥ 0, x + (1 − λ)y ≥ 0}
as the set of positions from which the agent can move to a positive wealth in both assets. The policy (Ls,Ms)s∈[t,T ] is
admissible for the initial position (t, x, y) if (Xs,Ys) starting from (Xt−,Yt−) = (x, y) and given (5) and (6) in Qλ ∀s ∈ [t,T ].
Since the agent may choose to re-balance his position, then we set the initial time to be t−. We let A(t, x, y) be the set of
all such admissible policies.

Define the agent’s utility function by U(c) = cp

p for all c ≥ 0, p < 1, p , 0. Define the value function as the supremum of
the utility of the final cash position, after the agent liquidates her stock holdings

v(t, x, y) = sup
(L,M)∈A(t,x,y)

Ex,y[U(XT + YT − λ|YT |)|Ft], (7)

for (t, x, y) ∈ [0, T ] × Qλ. Define the auxiliary value function

vρ(t, x, y) = sup
(L,M)∈A(t,x,y)

Ex,y[e−ρ(T−t)U(XT + YT − λ|YT |)|Ft], (8)

for (t, x, y) ∈ [0,T ] × Qλ and ρ ≥ 0. Here ρ ≥ 0 is the discounting factor and Ex,y denotes the conditional expectation at
time t given that initial endowment is Xt = x and Yt = y. Therefore

v(t, x, y) = eρ(T−t)vρ(t, x, y), ρ ≥ 0, (t, x, y) ∈ [0,T ] × Qλ.
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The paper concentrates on finding vρ. The problem with foreign exchange rate, jumps and no transaction costs (λ = 0)
has solution

vρ(t, x, y) =
1
p

epA(T−t)(x + y)p, ρ ≥ 0, (t, x, y) ∈ [0,T ] × Sλ, (9)

where

A = − ρ
p
+ µ +

(p − 1)
2

(
σ2

1 − π⋆
2(σ2

1 + σ
2
2)
)

+
1
p

∫
R
{(1 + π⋆g(t, ζ))p − 1 + pπ⋆g(t, ζ)((p − 1)π⋆g(t, ζ) − 1)}ν(dζ) (10)

and the wealth proportion satisfies the equation

π⋆ =
µ − µ2 + (p − 1)σ2

1

(p − 1)(σ2
1 + σ

2
2)
+ ((p − 1)(σ2

1 + σ
2
2))−1

∫
R

g(t, ζ)[(1 + π⋆g(t, ζ))p−1 − 1]ν(dζ) (11)

with µ = r1 + µ1.

3. No Transaction Costs Case

Let π(t) denote a portfolio representing the portion of the total wealth invested in the risky asset at time t ∈ [0,T ]. If we
assume that π(t) is self-financing, the corresponding wealth W(t) = Wπ(t) satisfies

dWt = Wt

[
(µ2π + (1 − π)µ)dt + (1 − π)σ1dB1(t) + πσ2dB2(t) + π

∫
R

g(t, ω)Ñ(dt, dζ)
]
, (12)

where µ = r1+µ1. We seek to maximize E[e−ρ(T−t)U(Wπ(T ))|Ft] over all π ∈ A, whereA denotes the set of all admissible
portfolios and U is the power utility function.

From Theorem 3.2 in Øksendal and Sulem (2014) and taking U(w) = wp/p, p < 1, p , 0. Then the problem is to
maximize E[e−ρ(T−t)(Wπ(T ))p/p|Ft]. Thus,

(L f )(t,w) =
∂ f
∂t

(t,w) + w((µ2π + (1 − π)µ)) ∂ f
∂w

(t,w) +
1
2

w2[(1 − π)2σ2
1 + π

2σ2
2]
∂2 f
∂w2 (t,w)

+

∫
R
{ f (t,w + wπg(t, ζ)) − f (w) − ∇ f (w)wπg(t, ζ)}ν(dζ) = 0. (13)

We guess that f (t,w) = e−ρt(h(t)w)p/p, where h(t) is a deterministic function. We also assume that g(t, z) is deterministic.
Then the optimal portfolio π⋆ is the solution of the equation

π⋆ =
µ − µ2 + (p − 1)σ2

1

(p − 1)(σ2
1 + σ

2
2)
+ ((p − 1)(σ2

1 + σ
2
2))−1

∫
R

g(t, ζ)[(1 + π⋆g(t, ζ))p−1 − 1]ν(dζ). (14)

Now, if we assume that the measure ν has light tails, then we can apply Taylor expansion

1 − (1 + π⋆g(t, ζ))−(1−p) = (1 − p)π⋆g(t, ζ) + o(g(t, ζ)2)

which leads to the optimal portfolio (13) evolving as

π⋆ ≈ 1
p − 1

·
µ − µ2 + (p − 1)σ2

1

(σ2
1 + σ

2
2) −

∫
Rg2(t, ζ)ν(dζ)

. (15)

We note that for pure diffusive case, ν = 0, we obtain the Merton solution

π⋆ =
µ − µ2 + (p − 1)σ2

1

(p − 1)(σ2
1 + σ

2
2)
.

Therefore, with jumps it is optimal to place a larger wealth fraction in the risky investment. The resulting value is
smaller than in the no-jump case (see Øksendal and Sulem (2005)). Next, we find h(t) (our assumed solution of (13)) by
substituting corresponding derivatives into (13) and setting h(T ) = 1 to get

h(t) = exp{A(T − t)},
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where

pA = −ρ + p(µ2π
⋆ + (1 − π⋆)µ) +

p(p − 1)
2

(
(1 − π⋆)2σ2

1 + π
⋆2
σ2

2
)

+

∫
R
{(1 + π⋆g(t, ζ))p − 1 − pπ⋆g(t, ζ)}ν(dζ)

= −ρ + pµ +
p(p − 1)

2
(
σ2

1 − π⋆
2(σ2

1 + σ
2
2)
)

+

∫
R
{(1 + π⋆g(t, ζ))p − 1 + pπ⋆g(t, ζ)((p − 1)π⋆g(t, ζ) − 1)}ν(dζ). (16)

Finally, the value function is given by

f (t,w) = v(t,w) = e−ρtepA(T−t)wp/p, p < 1, p , 0.

Substituting the constants π⋆ and A in (12), yields the optimal wealth process W⋆t of the Ito-Lévy process.

4. Optimal Investment in the Presence of Transaction Costs

Theorem 1 Since X,Y are jointly Markov, the value function v(t, x, y) defined by equation (8) is a viscosity solution of the
Hamilton-Jacobi-Bellman (HJB) equation on [0,T ] × Qλ

min {−vt − K(v),−(1 − λ)vx + vy, (1 + λ)vx − vy} = 0 (17)

where K is the second-order differential operator given by

K(v) = −ρv(t, x, y) +
1
2

[σ2
2y2vyy(t, x, y) + σ1

2x2vxx(t, x, y)]

+ µxvx(t, x, y) + µ2yvy(t, x, y) + βσ1σ2xyvxy(t, x, y)

−
∫
R
{v(t, x, y + g(y, ζ)) − v(t, x, y) − vy(t, x, y)g(y, ζ)}ν(dζ) (18)

with the terminal condition

v(T, x, y) = U(x + y − λ|y|), (x, y) ∈ Qλ. (19)

Noting that the value function v has the homotheticity property for γ > 0,

v(t, γx, γy) = γpv(t, x, y) (20)

where the admissible policy A(t, γx, γy) = {(γL, γM) : (L,M) ∈ A(t, x, y)}. We can reduce the problem into that of two
variables with the transformation; ξ = y

x+y , 1 − ξ = x
x+y . Define

ϕ(t, ξ) = v(t, 1 − ξ, ξ), (t, ξ) ∈ [0,T ] × Qϕ (21)

where Qϕ =
[
−1
λ
, 1
λ

]
, gives

v(t, x, y) = (x + y)pϕ(t, ξ), (t, ξ) ∈ [0,T ] × Qv. (22)

Theorem 2 ϕ is a viscosity solution of the HJB equation L(ϕ) = 0 on [0,T ] × Qϕ;

L(ϕ) = min{−ϕt − P(ϕ), λpϕ(t, ξ) + (1 − λξ)ϕξ(t, ξ), λpϕ(t, ξ) − (1 + λξ)ϕξ(t, ξ)}, (23)
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such that

(24)

P(ϕ) = {−ρ + p(µ(1 − ξ) + µ2ξ) +
p(p − 1)

2
(σ2

2ξ2 + σ1
2(1 − ξ)2 + 2βσ1σ2ξ(1 − ξ))}ϕ(t, ξ)

+ ξ(1 − ξ)[µ2 − µ + (p − 1)(βσ1σ2(1 − 2ξ) + ξ(σ1
2 + σ2

2))]ϕξ(t, ξ)

− ξ2(1 − ξ)2

2
(σ2

2 + σ1
2 + 2βσ1σ2)ϕξξ(t, ξ)

−
∫
R
{ϕ(t, ξ + h(ξ, ζ)) − ϕ(t, ξ)(1 + ph(ξ, ζ)) − ϕξ(t, ξ)h(ξ, ζ)}ν(dζ),

= {pA − Λ0 +
p(p − 1)

2
(
(σ1

2 + σ2
2)(ξ − π)2 + 2βσ1σ2ξ(1 − ξ)

)}ϕ(t, ξ)
+ (p − 1)ξ(1 − ξ)[(ξ − π)(σ1

2 + σ2
2) + βσ1σ2(1 − 2ξ) + σ1

2 +

∫
R

g2(t, ζ)ν(dζ)]ϕξ(t, ξ)

− ξ2(1 − ξ)2

2
(σ2

2 + σ1
2 + 2βσ1σ2)ϕξξ(t, ξ)

−
∫
R
{ϕ(t, ξ + h(ξ, ζ)) − ϕ(t, ξ)(1 + ph(ξ, ζ)) − ϕξ(t, ξ)h(ξ, ζ)}ν(dζ),

where

h(ξ, ζ) = (x + y)−1g(y, ζ)
= (x + y)−1yk(t, ζ)
= ξk(t, ζ), (25)

and
Λ0 =

∫
R
{(1 + π⋆g(t, ζ))p − 1 + pπ⋆g(t, ζ)((p − 1)π⋆g(t, ζ) − 1)}ν(dζ),

subject to the terminal condition
ϕ(T, ξ) = U(1 − λ|ξ|), ξ ∈ Qϕ.

For convenience we shall from now on impose the following additional integrability condition on ν(·):∫
R

g2(t, ζ)ν(dζ) < ∞.

Remark

1. This is equivalent to Bichuch (2011) when there are no jump term and no foreign exchange fluctuations ( that is,
σ1 = 0 and µ1 = 0).

2. In the presence of the jumps, we then study the scenario when the impact of the foreign exchange is given by

Λ0ϕ(t, ξ) =
(
(p − 1)ξ(1 − ξ)

∫
R

g2(t, ζ)ν(dζ)
)
ϕξ(t, ξ)

−
∫
R
{ϕ(t, ξ + h(ξ, ζ)) − ϕ(t, ξ)(1 + ph(ξ, ζ)) − ϕξ(t, ξ)h(ξ, ζ)}ν(dζ). (26)

We will be concerned with the nature of the solution to equation (26) as the impact of foreign exchange. We assume
ϕ(t, ξ) = f (ξ)l(t) and g(t, ζ) = ζ. Since l(t) , 0, then (26) simplifies to∫

R
f (ξ(1 + ζ))ν(dζ) =

(
(p − 1)ξ(1 − ξ)

∫
R
ζ2ν(dζ) + ξ

∫
R
ν(dζ)

)
fξ(ξ)

+
(∫

R
(1 − pξζ)ν(dζ) − Λ0

)
f (ξ). (27)

For the ease of the computations, we set the following:∫
R

f (ξ(1 + ζ))ν(dζ) = 0,
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so we have

f (ξ) = A0 exp
{∫
Qϕ

∫
R(1 − pξζ)ν(dζ) − Λ0(∫

R((1 − p)(1 − ξ)ζ2 + 1)ν(dζ)
)
ξ

dξ
}

= A0 exp
{

R log(ξ) + P log
(∫

R
((1 − p)(1 − ξ)ζ2 + 1)ν(dζ)

)}
(28)

where

R =

∫
R ν(dζ) − Λ0∫

R((1 − p)ζ2 + 1)ν(dζ)
,

P =
Λ0 −

∫
R ν(dζ)∫

R((1 − p)ζ2 + 1)ν(dζ)
+

p
∫
R ν(dζ)

(1 − p)
∫
R ζ

2ν(dζ)

and A0 is a constant. Satisfying the following condition∫
R

((1 − p)(1 − ξ)ζ2 + 1)ν(dζ) > 0.

We need to specify the Lévy measure ν(dζ) driving the common jumps; then we can successfully compute the integrals
in (27). This is considered under different cases below:

4.1 Uniform Jumps

Proposition 1 Suppose the value function is ϕ(t, ζ) = f (ζ)l(t), l(t) , 0 and g(t, ζ) = ζ, then under uniform jumps, (28) is
valid if

0 < ξ <
(1 − p)ζ2 + 3

(1 − p)ζ2

∣∣∣∣∣R. (29)

Proof. Set ν(dζ) = τdζ, where τ is arbitrary constant describing the intensity of the jump. Then we obtain∫
R

f (ξ(1 + ζ))dζ =
( p − 1

3
(1 − ξ)ζ2 + 1

)
ξζ

∣∣∣∣∣R fξ(ξ)

+
(
(1 − pξζ)ζ

∣∣∣∣∣R − Λ⋆0 ) f (ξ), (30)

where

Λ⋆0 =

(
(1 + πζ)1+p

(1 + p)π
− p(1 − p)

3
π2ζ3 +

p
2
πζ2 + ζ

)∣∣∣∣∣R.
Assuming that the integral on the right of (30) varnishes, we then obtain the following solution

f (ξ) = B0 exp
{∫
Qϕ

(1 − pξζ)ζ
∣∣∣∣∣R − Λ⋆0(

1−p
3 (1 − ξ)ζ2 + 1

)
ξζ

∣∣∣∣∣R
dξ

}
, (31)

where B0 is a constant of integration and

∫
Qϕ

(1 − pξζ)ζ
∣∣∣∣∣R − Λ⋆0(

1−p
3 (1 − ξ)ζ2 + 1

)
ξζ

∣∣∣∣∣R
dξ = P⋆(ζ) log

(1 − p
3

(1 − ξ)ζ2 + 1
)∣∣∣∣∣R

+ R⋆(ζ) log(ξ)
∣∣∣∣∣R, (32)

where

R⋆(ζ) =
3(1 − Λ⋆0 )

(1 − p)ζ2 + 3
(33)
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and

P⋆(ζ) =
3(Λ⋆0 − ζ)

((1 − p)ζ2 + 3)ζ
+

3p
(1 − p)ζ

. (34)

such that the inequality

0 < ξ <
(1 − p)ζ2 + 3

(1 − p)ζ2

∣∣∣∣∣R
is met.

4.2 Power Law Jumps

We assume that the arrival of jumps of size ζ follows a power law, dampened by an exponential function:

ν(dζ) =

τ+e−β+ζζ−α−1dζ, if ζ ∈ (0,∞)
−τ−e−β− |ζ ||ζ |−α−1dζ, if ζ ∈ (−∞, 0),

(35)

with the parameters α ∈ [−1, 2) and β±, τ± ∈ R+. Setting β± = 0, that is, without exponential dampening, the Lévy density
uniquely determines an α-stable Lévy motion that generates the α-stable distribution (see Mandelbrot (1963) and Fama
(1965)). For strictly dampening β± > 0, the exponential functions e−β+ζ and e−β− |ζ | dampen the Lévy density so that the
arrival of jumps decays faster as the absolute jump size |ζ | increases (see Wu (2006)). We also note the following:

1. When α < 0:
∫
R ν(dζ) < 0. Then we have large and rare events.

2. Infinite activity when α ≥ 0: Both small and large jumps. Jumps frequency increases with declining jump size and
approaches infinity as ζ → 0.

3. Infinite Variation when α ≥ 1: many small jumps.

We shall consider a special case where the exponential dampening parameter, β = 1, and propose as follows;

Proposition 2 Suppose the value function is ϕ(t, ξ) = f (ξ)l(t), l(t) , 0 and g(t, ζ) = ζ, t ∈ [0,T ], then (28) is valid under
dampen power law jumps with β± = 1 if

0 < ξ <
(1 − p)(1 − α)α − 1

(1 − p)(1 − α)α
. (36)

Proof. Setting β± = 1, τ± = τ > 0 and α ∈ [−1, 2) in (35). Then for all t ∈ [0,T ], the value function is given by

ϕ(t, ξ) = A0l(t) exp
{
R log(ξ) + P log

(
2τΓ(−α)(1 − α(1 − α)(1 − p)(1 − ξ))

)}
(37)

where Γ(·) is a gamma function,

R =
1 − π((1 − p)πα − p)(1 − α)

1 − (1 − p)(1 − α)α
, (38)

P =
p

(p − 1)(1 − α)α
− R, (39)

and A0 is an arbitrary constant. The value function ϕ(t, ξ) is defined only when

0 < ξ <
(1 − p)(1 − α)α − 1

(1 − p)(1 − α)α
. (40)

Which completes the short proof.

4.3 Fixed Jump Size

Proposition 3 Suppose the value function is ϕ(t, ξ) = f (ξ)l(t), l(t) , 0 and g(t, ζ) = ζ, then (28) is valid under fixed jump
size if

0 < ξ <
11 − 2p
2(1 − p)

. (41)

Proof. Set ν(dζ) = δ(ζ = ζ̄)dζ, for some ζ̄ ∈ [−1, 1] as the Dirac measure. This measure is associated to a point ζ ∈ R
defined as follows:

ν(dζ) =
{

dζ, ζ ∈ [−1, 1];
0, ζ < [−1, 1]. (42)

139



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 9, No. 5; 2017

It then follows that (28) becomes

f (ξ) =


A0 exp

{
3(2−Λ2)
2(1−p) log(ξ) + (1−p)Λ2−2(p2−3p+1)

(2−p)(1−p) log
(

2
3 ((1 − p)(1 − ξ) + 3)

)}
, ζ ∈ [−1, 1];

0, ζ < [−1, 1].
(43)

where

Λ2 =

 1
(1+p)π

(
(1 + π)1+p − (1 − π)1+p

)
− 2

3 ((1 − p)π2 + 3), ζ ∈ [−1, 1];
0, ζ < [−1, 1],

(44)

A0 is a constant and

0 < ξ <
11 − 2p
2(1 − p)

.

Since the jump sizes are fixed, it becomes too restrictive and less suitable to use in modelling stock price (for instance).
But it can be used as a building block to construct richer models.

5. Results

Even though the stock price may experience some jumps, if they are small in absolute value then the total payoff increases
exponentially. It is also observed that in a jump setting, if the jump measure is zero then we have Merton model setting
and optimal portfolio matches. The effect of jumps, transaction costs and foreign exchange is significant as it makes the
model realistic.
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