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Abstract

IIn this paper, using frequency domain approach, a single mode laser model with delay is investigated. By choosing the

delay τ as a bifurcation parameter, we show that Hopf bifurcation can occur when τ passes a sequence of critical values.

This means that a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a

critical value. Some numerical simulations are given to justify the theoretical analysis results. The approach used in this

paper is an excellent supplement of previous known ones of Hopf bifurcation analysis.
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1. Introduction

In optics, the laser is a typical example which produces the phenomenon of self-organization. It is currently one of the

focus of research in laser field. In recent year, a lot of laser models that obtain self-organization phenomena have been

proposed. In 1998, Lu et al. (Lu et al., 1998) investigated the chaotic behavior of the following single mode laser system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx1(t)

dt = −ax1(t) + x2(t),
dx2(t)

dt = −bx2(t) + x1(t)x3(t),
dx3(t)

dt = c − x3(t) − x1(t)x2(t).
(1)

The specific meaning of model (1), one can see (Lu et. al, 1998). Taking into account that there is a certain time delay

during the input signal and the transmission signals, the dynamic behavior of the system not only is affected by the current

state of the system, but also the past state of the system, i.e., there exists inherent lag in the system. Based on this view of

point, in this paper, we will investigate the following single mode laser system with delay:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx1(t)

dt = −ax1(t) + x2(t),
dx2(t)

dt = −bx2(t) + x1(t − τ)x3(t − τ),
dx3(t)

dt = c − x3(t) − x1(t − τ)x2(t − τ).
(2)

In this paper, we investigate Hopf bifurcation of the system (2). It is worth pointing out that a lot of the early work on

Hopf bifurcation of the delayed differential equations is used the state-space formulation for delayed differential equa-

tions, known as the “time domain” approach. Yet, there is another interesting formulation for studying delayed differential

equations in the literature. This alternative representation applies the familiar engineering feedback systems theory and

methodology: an approach described in the “frequency domain”—the complex domain after the standard Laplace trans-

forms have been taken on the state-space system in the time domain. The frequency domain approach was initiated and

developed by Allwright (Allwright David J., 1977), Mees and Chua (Mees Alistair I. & Chua Leon O., 1979), and then

Moiola and Chen (Moiola Jorge L. & Chen Guanrong, 1993, 1996). This new methodology has some advantages over

the classical time-domain methods. A typical one is its pictorial characteristic that utilizes advanced computer graphical

capabilities thereby bypassing quite a lot of profound and difficult mathematical analysis.

In this paper, we will devote our attention to finding the Hopf bifurcation point for models (2). And the main methodology

of study is by means of the frequency-domain approach. It is found that if the coefficient τ is used as a bifurcation
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parameter, then Hopf bifurcation occurs for the model (2). This means that a family of periodic solutions bifurcates

from the equilibrium when the bifurcation parameter exceeds a critical value. Some numerical simulations are given to

justify the theoretical analysis results. To the best of our knowledge, it is the first time to deal with the research of Hopf

bifurcation of the model (2) by the frequency-domain approach.

The remainder of the paper is organized as follows: in Section 2, by means of the frequency-domain approach formulated

by Moiola and Chen (Moiola Jorge L. & Chen Guanrong, 1996), the existence of Hopf bifurcation parameter is determined

and shown that Hopf bifurcation occurs when the bifurcation parameter exceeds a critical value. In section 3, some

numerical simulation are carried out to verify the correctness of theoretical analysis result. Finally, some conclusions and

discussions are given in section 4.

2. Existence of Hopf bifurcation

In model (2), we assume that the following condition

(H) c > ab.

holds.

It is easy to see that system (2) has a unique positive equilibrium E∗(x∗1, x
∗
2, x

∗
3), where,

x∗1 =

√
c − ab

a
, x∗2 = ax∗1, x

∗
3 = ab.

We can rewrite the nonlinear system (2) in a matrix form as

dx(t)
dt
= Ax(t) + H(x), (3)

where x = (x1(t), x2(t), x3(t))T ,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ −a 1 0

0 −b 0

0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,H(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

x1(t − τ)x3(t − τ)
c − x1(t − τ)x2(t − τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Choosing the coefficient τ as a bifurcation and introducing a “state-feedback control” u = g(y(t − τ); τ), where y(t) =
(y1(t), y2(t), y3(t))T , we obtain a linear system with a non-linear feedback as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx
dt = Ax + Bu,
y = −Cx,
u = g(y(t − τ); τ),

(4)

where

B = C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u[g(y(t − τ), τ)] =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0

y1(t − τ)y3(t − τ)
c − y1(t − τ)y2(t − τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Next, taking Laplace transform on (4), we obtain the standard transfer matrix of the linear part of the system:

G(s; τ) = C[sI − A]−1B.

Then

G(s; τ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

s+a
1

(s+a)(s+b)
0

0 1
s+b 0

0 0 1
(s+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5)

If this feedback system is linearized about the equilibrium y = −C(x∗1, x
∗
2, x

∗
3)T , then the Jacobian of (5) is given by

J(τ) =
∂g
∂y

∣∣∣∣
y=ỹ=−C(x∗

1
,x∗

2
,x∗

3
)T
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 0 0

x∗3e−sτ 0 x∗1e−sτ

−x∗2e−sτ −x∗1e−sτ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6)

Set

h(λ, s; τ) = det|λI −G(s; τ)J(τ)|
= λ

⎡⎢⎢⎢⎢⎣λ2 − x∗3e−sτ

(s + a)(s + b)
λ +

x∗1x∗2e−2sτ

(s + a)(s + b)(s + 1)

+
x∗21 e−2sτ

(s + b)(s + 1)

⎤⎥⎥⎥⎥⎦ = 0.
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Then, we obtain the following results by applying the generalized Nyquist stability criterion with s = iω.

Lemma 2.1. (Moiola Jorge L. & Chen Guanrong, 1996) If an eigenvalue of the corresponding Jacobian of the non-
linear system, in the time domain, assumes a purely imaginary value iω0 at a particular τ = τ0, then the corresponding
eigenvalue of the constant matrix G(iω0; τ0)J(τ0) in the frequency domain must assume the value −1 + i0 at τ = τ0.

To apply Lemma 2.1, let λ̂ = λ̂(iω; τ) be the eigenvalue of G(iω; τ)J(τ) that satisfies λ̂(iω0; τ0) = −1 + 0i. Then

h(−1, iω0; τ0) = iω0

⎡⎢⎢⎢⎢⎣−ω2
0 +

x∗3e−iω0τ0

(iω0 + a)(iω0 + b)
+

x∗1x∗2e−2iωτ0

(iω + a)(iω + b)(iω + 1)

+
x∗21 e−2iωτ0

(iω + b)(iω + 1)

⎤⎥⎥⎥⎥⎦ = 0.

Separating the real and imaginary parts, we obtain

M1 cosω0τ0 + N1 sinω0τ0 = −x∗3, (7)

M2 cosω0τ0 − N2 sinω0τ0 = −x∗3ω0, (8)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
M1 = x∗1x∗2 + ax∗1 − ω2

0(ab − ω2
0 − ω2

0a − ω2
0b),

N1 = ω0x∗1 + ω0(ab − ω2
0) + (a + b)ω0,

M2 = ω0x∗1 − ω0(ab − ω2
0) − (a + b)ω0,

N2 = x∗1x∗2 + ax∗1 + ω
2
0(ab − ω2

0 − ω2
0a − ω2

0b).

(9)

Thus, we bave

cosω0τ0 = −
N2x∗3 + N1x∗3ω0

M1N2 + M2N1

, (10)

sinω0τ0 =
M1x∗3ω0 − M2x∗3
M1N2 + M2N1

. (11)

According to cos2 ω0τ0 + sin2 ω0τ0 = 1, we get

(N2x∗3 + N1x∗3ω0)2 + (M1x∗3ω0 − M2x∗3)2 = (M1N2 + M2N1)2, (12)

By (10), we can compute the value of ω0 by means of Matlab software. Then from (10), we obtain

τ0 =
1

ω0

[
(2k + 1)π − arccos

N2x∗3 + N1x∗3ω0

M1N2 + M2N1

]
(k = 0, 1, 2, ...). (13)

Theorem 2.1. ( Existence of Hopf bifurcation parameter ) For system (2), if ω0 is positive real roots of (12), then then
Hopf bifurcation point of system (2) is

τ0 =
1

ω0

[
(2k + 1)π − arccos

N2x∗3 + N1x∗3ω0

M1N2 + M2N1

]
(k = 0, 1, 2, ...),

where, Mi,Ni(i = 1, 2) are defined by (9), respectively.

3. Numerical Examples

In this section, we give numerical simulations to verify the correctness of our computation. As an example, we consider

the following system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dx1(t)

dt = −0.2x1(t) + x2(t),
dx2(t)

dt = −0.3x2(t) + x1(t − τ)x3(t − τ),
dx3(t)

dt = 0.6 − x3(t) − x1(t − τ)x2(t − τ).
(14)

By Theorem 2.1, we obtain τ0 ≈ 0.22. Let τ = 0.21, then the figures of numerical simulations are Fig.1-6. Thus we

conclude that when τ < τ0 ≈ 0.22, system (14) is asymptotically stable. Let τ = 0.23, then the figures of numerical

simulations are Fig.7-12. Thus we conclude that when τ > τ0 ≈ 0.22, system (14) undergoes a Hopf bifurcation occurs

near the positive equilibrium. Therefore τ0 ≈ 0.22 is a supercritical Hopf bifurcation point.

4. Conclusions and discussions

In this paper, we investigated a class of ecological model with delay. By choosing the coefficient τ as a bifurcating

parameter and analyzing the associating characteristic equation. It is found that a Hopf bifurcation occurs when the

bifurcating parameter τ passes through a critical value. Considering computational complexity, the direction and the

stability of the bifurcating periodic orbits for system (2) have not been studied. It is beyond the scope of the present paper

and will be further investigated elsewhere in the future.
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Figure 1-6. Behavior and phase portrait of system (14) with τ = 0.21 < τ0 ≈ 0.22. The positive equilibrium is

asymptotically stable. The initial value is (0.5, 0.5, 0.5)
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Figure 7-12. Behavior and phase portrait of system (14) with τ = 0.23 > τ0 ≈ 0.22. Hopf bifurcation occurs from the

positive equilibrium. The initial value is (0.5, 0.5, 0.5)
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